
Received December 28, 2021, accepted January 16, 2022, date of publication January 21, 2022, date of current version January 31, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3145428

Enhanced Edge Detection Using SR-Guided
Threshold Maneuvering and Window Mapping:
Handling Broken Edges and Noisy
Structures in Canny Edges
DEEPAK DHILLON , (Member, IEEE), AND RAJLAXMI CHOUHAN , (Senior Member, IEEE)
Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India

Corresponding author: Deepak Dhillon (deepak.2@iitj.ac.in)

This work was supported in part by the Project titled ‘‘Noise-Enhanced Edge-Preserving Image Denoising Using Stochastic Resonance’’
through the Department of Science and Technology, Government of India, under Project ECR/2016/001606; and in part by Digital India
Corporation through the Visvesvaraya Ph.D. Scheme.

ABSTRACT Preserving edges in a noisy environment is a challenging task as even some of the latest end-
to-end deep learning (DL) algorithms continue to struggle in achieving high pixel-level accuracy. As the
Canny Edge Detector (CED) continues to be one of the most popular edge detection operators, this paper
presents an enhanced CED using Stochastic Resonance (SR) guided threshold maneuvering and window
mapping, which takes the same input parameter set as that of the conventional Canny but produces the
edge map with better-connected edges and reduced noise. The SR-based analysis informs the steps that
should be followed to enhance the performance of the classical CED. We also propose a new measure for
efficient edge detection; a unique, efficient way of edge content extraction and its combination for various
channels; and a framework to handle repercussions of the randomness of the noise. Since the proposed
solution comes in the form of a modular patch-based framework, it can be easily incorporated into other
algorithm developments. Qualitative and quantitative results are presented along with the BSDS500 &
BIPED benchmarking to showcase the proposed algorithm’s effectiveness. On BIPED benchmarking, our
algorithm gives the human-level performance (F1 score .79), which is appreciable considering that it is a
non-DL–based algorithm.

INDEX TERMS Image edge detection, stochastic resonance, smart cameras, noise, digital cameras, image
edge analysis, thresholding, image filtering, feature extraction.

I. INTRODUCTION
When working with edges, pixel-level details hold pertinent
information. Even some of the latest popular end-to-end
deep learning algorithms like HED (Holistically-Nested Edge
Detection) [1], RCF (Richer Convolutional Features) [2], etc.
give thick grayscale edges as the output. These thick edges
are usually then processed with some thinning algorithm
and thresholded to get the final thin binary edge map.
These processes are usually not that accurate; a threshold
value decided based on an ensemble of the dataset could
give a incorrect result on a single instance (single image)
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from the same dataset (because of the high variability
within the dataset). Further, the edge-thinning algorithms
somewhat deteriorate the wide-edge input provided to them.
In short—Edges are tough to handle.

Canny Edge Detector (CED) [3], though presented more
than three decades ago, is still one of the most popular edge
detection algorithms. CED algorithm or its implementation
function in OpenCV [4] orMATLAB R© [5] mainly takes three
inputs:

1) an input image
2) a low threshold
3) a high threshold
and gives a binary edge map as the output. Even for the

cases of a single input (only image) or two inputs (image &
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FIGURE 1. The problem.

a threshold) in MATLAB R© implementation of CED, the two
thresholds are first calculated in the back-end, and then the
main CED algorithm is applied.

A. THE PROBLEM UNDER CONSIDERATION
Consider the example shown in Figure 1, where CED [3]
with an input parameter set is applied to a digital photograph
captured from a Google PixelTM smartphone [6]. Two of the
main problems with CED [3] are:

1) Broken edges

2) Noisy structures
as is shown in Figure 1. These noisy structures are not
necessarily one-or-two pixels long but can be of a larger
lengths and unpredictable shapes. To get better edges from
the CED, we can decrease the thresholds; this, however,
will increase the noisy structures in the edge map. On the
other hand, to decrease the noisy structures, we can increase
the thresholds but this leads to more broken edges. There
actually exists a trade-off between Better edges and less
noise in the CED. This problem can be mitigated using some
pre-processing or post-processing steps but can not altogether
be eradicated. Further, pre/post-processing can unfavorably
alter our data in addition to the extra computations added.
Many a times, there does not exist a sweet spot of the
threshold values, such that we get very good edges with very
low noise. This paper focuses exactly on this problem of
getting Better edges and less noisy structures in the edge
map of an input image. Figure 1 shows the result of the
proposed SR-guided enhanced CED using Thresholding
maneuvering and Window mapping (SR-TW-CED), with
the same input parameter set as that of CED, without any
pre/post-processing, but by modifying the core of the CED
algorithm. In our result, some noisy structures can be seen
in the areas near the edges, as we have prioritized ‘edges
and their neighborhood’ over ‘noise’. This effect, however,
would be less visible when the full size of the image is
considered. The edge maps presented in Figure 1 are inverted
(black↔white) to save the printing resources (when printed
on a white paper). More insight over the problem can be
gained from Section II. Further details of the proposed
algorithm are presented in Section III.

B. EXISTING LITERATURE AND RELATED WORK
1) EDGE DETECTION
Work in edge detection dates as early as seven decades
ago and is still an important topic in current research.
Various classical as well as learning-based algorithms have
progressed the work of edge detection. Gradient has an
important property that it always points in the direction of
maximum change, and edges occur only at the places where
there is a change (i.e. no change, no edge). Various classical
algorithms were based on this property of the gradient.
These algorithms include Roberts [7], Prewitt [8], Sobel [9],
Kirsch [10], & Marr and Hildreth [11]. Canny [3] considered
edge detection as an optimization problem satisfying three
objectives—Low error, good localization, & single edge
response.

With a small loss in detection accuracy, SMED ((Scale
Multiplication Edge Detection)) [12] uses scale multipli-
cation to improve the localization accuracy in CED [3].
To implement Canny [3] faster, Distributed Canny [13] breaks
the whole image into blocks and implements a parallel FPGA
implementation. It calculates the local variance at each pixel,
which is then used to evaluate the threshold of the enclosing
block. Instead of manually choosing the threshold & sigma
for CED [3], Kalbasi and Nikmehr [14] created a lookup table
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based on the noise intensity present in the image for selecting
these parameters.

Instead of relying on thresholding, Edge Drawing [15]
takes edge extraction as a dot-by-dot (anchors) boundary
joining problem. Whereas PEL (Predictive Edge Link-
ing) [16] works on joining the small edge segments to
create longer edges. Liu et al. [17] used 2D entropy to
adjust the threshold automatically and kept linking the edge
segments until the edge percentage achieves a reference
value.

The research on edge detection has again blossomed with
the availability of exhaustive datasets like BSDS500 [18],
NYUD [19], & BIPED [20], and access to the supporting
hardware for deep learning techniques. gPb (Globalized
Probability of Boundary) [18] uses a new method for
gradient signal calculation. At each pixel, it calculates
the histogram in each half-circular disk around the pixel.
It also includes working on a texture channel that involves
convolution with 17 filters, and combines multiple cues from
brightness, color, & texture channels to a spectral clustering
framework. SE (Structured Edge Forest) [21] articulates
the edge detection problem as the local segmentation mask
prediction from the image patches. It labels each pixel as
Edge or Not Edge and uses a random forest framework
to catch the structured information. HED [1] uses VGG
net [22] to learn the hierarchical features, & includes side
outputs from the last stage of each layer to contribute to the
final end-to-end edge detection system. RCF [2] removes
all the fully connected layers and uses outputs from all
the convolution layers in a way to facilitate the back-
propagation. BDCN (Bi-Directional Cascade Network) [23]
uses a different supervision strategy; instead of training
different intermediate layers with the same ground truth,
it uses a layer-specific supervision. It trains the shallow layers
for low-level details and the deep layers for object-level
details. With this strategy, BDCN achieves the performance
with significantly reduced number of parameters. DexiNed
(Dense EXtreme Inception Network for Edge Detection) [20]
uses an Xception [24]-like network followed by a multi-scale
learning network (inspired from HED [1]). The upsampled
outputs from various layers are fused together to obtain
the final edge map. DexiNed [20] claims to be the first
DL-based edge-detector that worked towards thin edge maps.
Bhattacharjee and Roy [25] have presented a normalized
Pattern of Local Gravitational Force Magnitude (PLGFM),
an edge detector inspired by the universal law of gravitation
force. For each pixel, the authors propose to evaluate the
force exerted on the central pixel by its neighborhood using
a novel filter designed for the same. A remarkable feature of
PLGFM is that it is illumination-invariant and thus extracts
edges from low-illuminated areas as well. Li et al. [26]
presented a contour sketch algorithm that generates and
detects the object boundaries, salient inner edges, and salient
background edges using a GAN-based network. It also
includes an artistic style while generating the contour
sketch.

2) STOCHASTIC RESONANCE
Most of the natural systems are intrinsically nonlinear and
noisy. Noise is usually cursed to deteriorate the signal; the
higher the noise, higher the deterioration. However, this is
not always the case. Stochastic Resonance (SR) [27], [28]
is a counter-intuitive phenomenon, where the response of
a nonlinear system to the weak input is actually enhanced
with an optimal amount of noise. There actually occurs
constructive cooperation (resonance) between the feeble
deterministic signal and the stochastic noise. As the noise
increases, the response of the system to the weak signal
improves, reaches a maximum at the optimal level of the
noise, and then decreases on a further increase of the noise.
The bell-shaped curve (as in Figure 3) is the characteristic
curve of the SR phenomenon. Gammaitoni et al. [27] states
three required gradients for the SR phenomenon:

1) an activation barrier (threshold)
2) a weak input signal
3) noise

Gammaitoni explains the SR mechanism with the motion
of a heavily-damped particle in a double-well potential
dynamical system. SR has also been experimentally verified
in ac-driven Schmitt trigger, bistable ring laser, etc. [27],
[29]. In [30] Gammaitoni discussed SR with the focus on
the thresholded systems (while we have used SR and ‘noise-
induced threshold crossing’ synonymously in our paper).

Resonant Retina [31] exploits the effect of shaking the
optical axis of a camera (AWGN) to detect the edges from
the captured images. Chouhan et al. [32] used dynamic SR
to induce the transition at every pixel in the image from a
low-contrast to a high-contrast state, thus enhancing a dark
and low contrast image. Asha et al. [33] further utilized this
image enhancement model in high sub-bands of the shearlet
transform domain to enhance the low contrast satellite images
and their structural details. Rallabandi and Roy [34] used
SR in the Fourier domain to enhance the MRI images.
Dhillon and Chouhan [35] used SR in edge-preservation
while denoising an image. Liu et al. [36] used the dynamic
SR in both the spatial as well as the spectral domains
to enhance the shadow areas in hyperspectral images. The
dynamic SR enhanced images are then fused with the original
data and followed by a CNN classifier. Singh et al. [37]
used an optimized multistable SR technique for contrast
enhancement of MRI images to enhance the detection of a
lesion (tumor) in the pituitary gland, which is otherwise very
difficult to be detected. The patent [38] talks in general that
the performance of any detector can be improved if a suitable
amount of noise is added to the input signal before it is passed
through the detector.

C. KEY CONTRIBUTION
This paper presents an enhanced Canny Edge Detector, which
takes the same input parameter set as that of the Canny,
and produces the edge map with better-connected edges and
reduced noise. Our key contributions include:
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• Demonstration of the exhibition of Stochastic Reso-
nance (noise-induced threshold crossing) in Sobel/CED
for Smartphone images (with their corresponding noise,
not AWGN) (Section II)

• AnalyzingCED from the point of view of noise-enhanced
stochastic resonance and inferring the steps to improve
it

• Jointly addressing the two-fold problem of broken edges
and noisy structures of CED

• A newmeasure—pmeasure proposed; first instance of use
of emeasure & its combination with pmeasure for efficient
edge detection (Section III-I)

• A unique way of extracting the edge content from
patches and combining various channels efficiently
(grayscale, R, G, & B) (Section III-G, III-H)

• A framework to handle repercussions of the randomness
of the noise using Processed Window Mapping (con-
nectivity, line filling, hole filing, & isolation removal)
(Section III-E)

• Two versions proposed to expand the usefulness of our
algorithm (Section IV-C)

• Modular framework and patch-based processing to
enable easy future developments and multiprocessing

II. EXHIBITION OF STOCHASTIC RESONANCE BY
SOBEL/CANNY EDGE DETECTOR IN SMARTPHONE
IMAGES
Stochastic Resonance (SR) is a phenomenon that manifests
only in non-linear systems, where a weak signal is opti-
mized/amplified by the assistance of noise [27]. The basic
idea of observing SR is that the sensitivity of a weak signal
in a non-linear system can be amplified by addition of
controlled amounts of noise. At an optimal amount of noise,
a maximization of the SNR or any other performance is
observed. Equally important to the exhibition of SR is how
can we use it to improve our systems. As per the authors’
knowledge, this is the first instance of demonstrating SR
(noise-induced threshold hopping) in Sobel/CED in images
captured by smartphone cameras (& thus their corresponding
noise, not AWGN). The authors have tried to make it as
simple and crisp as possible.

A. SR MANIFESTATION: DIFFERENT NOISE, SAME
THRESHOLD
Figure 2 shows the results of applying the Sobel edge detector
on the image scene shown in Figure 1. By Sobel edge detector,
the authors are referring to Sobel operator followed by a
threshold. In Figure 2, on the left is shown the result on
the Pristine image, and on the right is that for the noisy
image. Therefore, the noise level has increased from left to
right, but the threshold value was kept the same. The result
shows that edges are better visible from the noisy image than
that from the pristine image, which is counter-intuitive! The
True-Positive edge detection has increased from 41 to 362,
further reinforcing that more edges have appeared in the noisy
case. The reason for this is ‘noise-induced threshold crossing’

FIGURE 2. SR in sobel edge detector on a smartphone image.

FIGURE 3. SR in sobel edge detector on a smartphone image.

or SR [30]. Red peaks in the surface plots are the ridges
that have crossed the threshold. As can be seen, only a small
number of ridges from the pristine image could cross the
threshold. Whereas, in the noisy case, the noise has actually
helpedmore edge peaks to cross the threshold. Here, the noise
has proved to be useful for edge detection. Similar results
were observed for the case of CED, as Canny mainly uses
two thresholds instead of just one. Also, similar results were
observed for DSLR images.

B. SR MANIFESTATION: SAME NOISE, DIFFERENT
THRESHOLD
Another manifestation of SR considered in this paper is
by not adding up any noise but changing any system’s
internal parameter like a threshold. Consider again the noisy
image shown in Figure 1; figure 3 shows the results of
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applying Sobel edge detection with decreasing thresholds.
As observed, as we keep on decreasing the threshold, more
and more edges keep on appearing (here, as black pixels).
This can also be easily visualized using the surface plots of
Figure 2, as we will decrease the threshold, more & more
ridgeswould be able to cross the threshold,& appear as edges.
‘F1 measure (edges) vs. threshold’ curve in Figure 3 shows
that decreasing the threshold helps the edges until an optimal
threshold is reached, after which the noise starts dominating
over the edges. This bell-shaped curve is characteristic [27]
of SR, where the optimal value of the parameter lies between
the low & high values.

Therefore, for better edges, we can decrease the threshold.
However, this comes with a shortcoming—on decreasing
threshold, edge content increases while also increasing
noise content in the output. Another observation is—lower
threshold favors more edge content, & a higher threshold
favors less noise content.

C. IDEA
The idea that we got from this SR phenomenon that drives our
algorithm development is—decrease the threshold for edge
areas, & increase the threshold for noisy areas. This could
enhance the edges as well as reduce the noise.

III. PROPOSED ALGORITHM: SR-GUIDED ENHANCED
CANNY EDGE DETECTOR USING THRESHOLDING
MANEUVERING AND WINDOW MAPPING (SR-TW-CED)
A. PRINCIPLES KEPT IN MIND
The authors have followed the following principles while
developing the algorithm:
• Modular framework
• Lower computations preferred over a small loss of
accuracy

• Better edges preferred over lower noise

B. CHANNEL SEPARATION
Figure 4 shows the proposed modular-framework &
algorithm. The proposed algorithm deviates from the
MATLAB R© [5], & OpenCV [4] implementation of CED
from the beginning itself. Consider a colored image from
a ‘consumer camera’ or a ‘smartphone camera’ is provided
as the input image. MATLAB R© does not support the multi-
channel input, & one has to convert the colored image to the
grayscale image to use it further. OpenCV does support the
colored input, but it picks (at a pixel) the highest gradient
magnitude among all channels, which is quite different from
ours.

The proposed algorithm separates the colored input into
their ingredient color channels—R, G, & B, and also creates
a grayscale component using the HSImodel. Thus, in contrast
to Matlab R© & OpenCV, which uses one & three channels
respectively, we use four channels R, G, B, & grayscale. Most
of the computations go with the processing over the grayscale
channel, whereas only the Edge Content is extracted from
the R, G, & B channels (Subsection III-H). Even though the

inclusion of R, G, & B channels in addition to the grayscale
channel have added to the computation, the authors have
found it to improve the results significantly.

C. CED STEPS
Like in Canny Edge Detector [3], the grayscale image is then
smoothened using the convolution with a gaussian kernel.
The smoothened image is then operated upon with the Sobel
filter to obtain a gradient-intensity image and a gradient-
angle image. Non-Max Suppression uses the gradient-angle
image to reduce the wide edges from the gradient-intensity
image to narrow edges. The gradient-intensity image is then
thresholded with Tl , & Th individually (both provided as
the input parameters) to obtain two separate thresholded
images. Here Tl denotes lower threshold, & Th denotes higher
threshold.

D. RAW WINDOW MAPPING
The output from the ‘Double Thresholding’ comprise two
images—a low-thresholded image and a high-thresholded
image. Some of the next few steps of the proposed algorithm
depend only on the low-thresholded image. The RawWindow
Mapping partitions the low-thresholded image into square
windows of 50 × 50 pixels (number found analytically)
and creates a Raw Window Map (RWM) of reduced size
(1/2500 size reduction). Each 50 × 50-pixel window from
low-thresholded image is mapped to a single pixel in the
RWM. As shown in Figure 4 (color-coded, blue color), each
pixel in RWM is associated with two types of flags–Edge flag
and Noise flag.
• For Edge flag, the 50× 50 window is categorized as:

- - Sure Edge (SE) if it contains an edge for sure
- - Unsure Edge (UE) if the window probably has an

edge but is not sure
- - No Edge to cover the remaining set relating the edge

flag
• For Noise flag, the 50× 50 window is categorized as:

- - Noisy if it contains noise
- - Not Noisy (NN) to cover the remaining set relating

the noise flag
The No Edge flag or Not Noisy flag does not ensure that

the window would not have any edge or noise, but only that
it is very less likely to have them. In other words, focus is
on detecting the presence of Edge or Noise, not on detecting
their absence. The process of flag selection is explained in
detail in Subsection III-I.

E. PROCESSED WINDOW MAPPING
Input to this stage is the Raw Window Map. In the absence
of noise, a simple raw window mapping would have sufficed.
However, in order to handle the repercussions of the random
nature of noise, the proposed algorithm adopts various
strategies. All these strategies are enveloped under the name
‘Processed Window Mapping’ (PWM) as shown in Figure 4
(yellow color). Our inclusion ofUnsure Edge flag in between
the Sure Edges and No Edges is also a reflection of handling
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FIGURE 4. The proposed algorithm.

this randomness. Following are the modifications done to the
Raw Window Map to get the Processed Window Map:
• Connectivity: If an Unsure Edge has a Sure Edge in
N8 neighbor, modify its flag to Sure Edge

• Line filing: If the current pixel has two opposite
pixels (i.e. preceding and succeeding pixels along any
direction) in N8 as Sure Edge, modify its flag to Sure
Edge

• Hole filing: If all the N8 open neighborhood of a Not
Noisy window are Noisy, modify its flag to Noisy

• Isolation removal: If all the N8 open neighborhood of
a Noisy window are Not Noisy, modify its flag to Not
Noisy

During PWM, all the Unsure Edge flags have been dissolved
either into Sure Edge or No Edge. The PWM is used to decide
whether to modify the thresholds of the CED—Tl and Th.

F. ADAPT Tl AND Th
The stage of adaptation does careful maneuvering of Tl and
Th so as to enhance the edges as well as reduce the noise.
In case of clashes, the edge is given preference over the noise.
Following are the modifications done to Tl and Th based on
the edge/noise flags from the Processed Window Map:

• If the flag is Edge and Not Noisy, decrease both Tl
and Th
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FIGURE 5. Extract edge content from R G B channels.

• If the flag is Not Edge and Noisy, increase both Tl and
Th. Also, if all the N8 open neighborhood is Noisy and
Not Edge, remove small noisy structures

• If the flag is Edge and Noisy, no modification. Although
both Tl and Th can be increased, if low noise is preferred
over a little loss of edges.

For the cases where Tl and Th are modified, the step of
‘Double Thresholding’ is executed again with the modified
parameters. This way, the step of ‘Double thresholding’ is
executed in total only once for the case of no modification
(in Tl & Th), and twice for the case of modification.

G. COMBINE R-G-B EDGE CONTENT
As the input to this step, we have two thresholded images
and an image with edge content that was extracted from R,
G, & B channels. To combine the extracted edge content, it is
sufficient to combine it only with the high-thresholded image.

Next is the step of ‘hysteresis’ [3], where the two
thresholded images are intelligently merged to a single edge
map. This edge map is our final output.

H. EXTRACT EDGE CONTENT FROM R G B CHANNELS
The ‘Extract edge content’ block from figure 4 is illustrated
in Figure 5. Input to this block are three channels R, G,
& B. In this block, the focus is only on extracting the edges
and completely avoiding the noise. For each channel, the

FIGURE 6. Edge flag using e-measure, p-measure.

image is first smoothed using convolution with a gaussian
kernel. Then the image gradient is calculated using the Sobel
operator. Non-Max Suppression is then used to sharpens the
edges. After this, instead of double thresholding, only single
thresholding with Tl is used. The ‘single thresholded image’
is then partitioned into windows of 50×50. For each window,
the decision is taken on whether it contains an edge or not.
If the window contains an edge, the two Largest Connected
Components (LCC) are extracted and are considered as the
Edge Content for that window. On spanning all the windows
from a channel, we get the Edge Content for that channel.
Edge Content from each of the three channels R, G, & B are
then combined into a single channel which is referred to as
the Edge Content from RGB channels.

I. EDGE FLAGS AND NOISE FLAGS
1) EDGE FLAGS
To know whether a window has an edge or not, it is
categorized for its edge flag. To find the edge flag, the
authors have created two measures—emeasure and pmeasure;
which are simple & efficient to calculate. The largest
connected component (LCC) from the window is extracted
and checked for emeasure and pmeasure tests; emeasure is a
measure for elongation, which is similar to the feature
descriptor eccentricity but has the range 1 to ∞. emeasure is
calculated as:

emeasure =

√
λ1

λ2
where λ1 ≥ λ2 (1)

where λs are the eigenvalues of the covariance matrix of
the curve. Consider an LCC curve extracted be as shown in
Figure 6, on the left in black. For this curve, we can create
an ellipse with the same second central moment as that of the
curve. Lengths of the major-axis and the minor-axis of this
ellipse are proportional to the eigenvalues of the covariance
matrix of the curve. Therefore, more elongated is the curve,
the more elongated the ellipse becomes, and higher is the
emeasure. Therefore, we consider a window to have Sure Edge
if it evaluates to a high value of the emeasure. In Figure 6,
on the right are shown three LCC curves. The top one has
a high emeasure & is thus a Sure Edge. The middle one is a
noisy structure, and thus have a low emeasure. The bottom one,
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though, is an edge but fails the emeasure test because it has a
corner (change in direction). Since we use a small window
size, this sudden change in direction is not observed in most
of the edge windows. This is because a long curve can be
approximated with small piece-wise straight lines.

To handle these changes in the directions, we propose the
pmeasure test. We created pmeasure taking ‘plus sign’ (+) as the
reference. A curve in the shape of the plus sign have emeasure
value as 1 (equivalent ellipse will be a circle), as a = b.
pmeasure is calculated as:

pmeasure =
length of curve

k.(
√
λ1 +

√
λ2)

(2)

where k is a proportionality constant. pmeasure puts a
constraint on the curve’s length and measures its ratio with
the sum of the major & minor axes of the equivalent ellipse.
In Figure 6, in bottom-right image, pmeasure is used to
conclude if the window has an edge. A low value of pmeasure
assures the Sure Edge. For both the emeasure and pmeasure tests,
the cut-off (threshold) values have been decided analytically.

Since the covariance framework carries an inherited
assumption of number of data points to be much larger than
the number of dimensions; for the cases where there is a
possibility of ambiguity in the surety of edges, we assigned
those windows asUnsure Edge. These Unsure Edges are then
handled in the Processed Window Mapping step (III-E).

2) NOISE FLAGS
To evaluate whether a window is noisy or not, we have used
a fast and easy method. We assign a window to be noisy
if the number of isolated pixels it encompasses exceeds a
limit (threshold decided analytically). To extract the isolated
pixels from a window, we did a single convolution pass of the
following kernel:

1 1 1
1 -1 1
1 1 1

followed by a comparison operation.
To avoid any confusion, we state it explicitly that a window

can have noise as well as edge, and noise and edges are
not mutually exclusive. Depending on the flag, a particular
window is accordingly processed in the subsequent steps.

IV. RESULTS AND DISCUSSION
A. EVALUATION METRICS USED
To evaluate various edge detection algorithms, the following
metrics have been used based on the Precision-Recall
framework [18]:
• True-Positive (TP): The count of TP denotes the number
of correctly detected edge-pixels. Higher the TP count,
the better the edge detector.

• F1 score [18]:F1 score is a metric which in turn depends
upon two metrics—Precision (P) and Recall (R).

Precision =
TP

TP+ FP
Recall =

TP
TP+ FN

(3)

F1 score = 2
P.R
P+ R

(4)

whereFP denotes the False Positive, andFN denotes the
False Negative detected pixel counts. For a given detec-
tion algorithm, Precision (P) measures how many of the
detected edge pixels are correct. Recall (R) measures
how many of the true edge pixels are actually detected
by the algorithm. Precision and Recall trade off against
one another, filling up the demerits of each other; and
F1 score, being the harmonic mean of Precision and
Recall, balances both Precision and Recall by weighing
them equally. Higher the F1 score, better the edge
detector.

• Optimal Dataset Scale (ODS) [18]: A deep learning-
based edge detector generally outputs a probability edge
map, which needs to be thresholded to obtain the binary
edge map. For the case of ODS, a fixed threshold is
applied to the complete dataset, and the corresponding
F1 score is recorded. By applying various thresholds in
this sense, various F1 scores are obtained. Reporting the
ODS measure refers to reporting the maximum value of
the obtained F1 scores. Higher the ODS value, the better
the edge detector.

• Optimal Image Scale (OIS) [18]: Instead of applying
a fixed threshold to the complete dataset, OIS applies
different thresholds to different images (that suits them
best). Reporting the OIS means reporting the aggregate
of maximumF1 scores obtained per image basis. Higher
the OIS value, the better the edge detector.

• Average Precision (AP) [18]: Average Precision is the
mean Precision weighted by the increase in Recall as the
threshold is varied. In figure 12 and 13, it simply denotes
the area under the P-R curve. Higher the AP value, the
better the edge detector.

• Detection Common Rate (DCR) [39]: DCR between two
edge maps A and B gives a normalized measure of
the common edge pixels between them. For the case
where the edge map B is the ground truth edge map,
it boils down to the popular evaluation metric Recall
(Equation 3)

In addition to above metrics, the P-R graph has also been
plotted for BSDS500 dataset [18] and BIPED dataset [20] to
provide the quantitative analysis. Visual comparison results
are provided for qualitative analysis.

B. RESULTS WITH PRISTINE IMAGE
Although the algorithm was designed keeping in mind the
general case of noisy image, it is very important for the
algorithm to work well with the pristine set also. Figure 7
presents the results with pristine images. As can be visually
seen, a lotmore edges are present with the proposed algorithm
as compared to that with CED. TruePositive (TP) & F1 score
improvements further strengthen our visual claims. These
results correspond to a particular (though general) set of
threshold parameters, and the results of both the algorithms
will improve on decreasing the threshold (Subsection IV-D).
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FIGURE 7. Results with pristine images with a particular threshold set.
Top to bottom—Pristine Image, CED, Proposed edge detector
(high-resolution weblink).

C. TWO VERSIONS OF THE PROPOSED SR-TW-CED
How useful an algorithm is depends on the need of the
application at hand. To increase the usefulness of our work,
we present two versions of our algorithm:

1) Version 1 (Default): Edges preferred over Low noise
2) Version 2: Low noise preferred over Edges

Version 1 is used throughout this paper unless otherwise
stated; it prioritizes Edges over Low noise. We also propose
Version 2 for the case when a lower noise is preferred, even
at the cost of losing some edges. For this case, we only
output the Edge Content, ignoring the noise present in the
image. This also results in lower computations. Comparing
visual results of Version 1 with that of Canny in figure 8,
more edges can be seen in 2nd & 4th Capsicum, and 3rd

Capsicum shows far less noise. The increase in TruePositive
(edge pixels) and F1 score is also significant (approx twice).
Comparing Version 2 with that of Version 1, the 3rd Capsicum
shows further less noise, though some edges can be seen
missing at some places. Result of Version 2 is still better than
that of Canny, both qualitatively and quantitatively (approx
50% improvement). All these algorithms are evaluated for the
same set of input parameters.

D. EFFECT OF CHANGING INPUT THRESHOLD
In all the results shown till now in this paper, both the
algorithms—Canny and the proposed SR-TW-CED are fed
with a general but single input parameter set. This section
presents how the results change when the input parameter set
is varied. Figure 9 shows the visual comparative results of

FIGURE 8. Two proposed versions (high-resolution weblink).

Canny (on the left) & proposed SR-TW-CED (on the right)
with decreasing threshold from top to bottom, for the image

VOLUME 10, 2022 11199



D. Dhillon, R. Chouhan: Enhanced Edge Detection Using SR-Guided Threshold Maneuvering and Window Mapping

FIGURE 9. Result with decreasing input threshold (top to bottom).

scene shown in Figure 8. In all these images, the image
on the right always has more edges (specifically 2nd & 4th

Capsicum) and less noise (specifically 1st & 3rd Capsicum).
In case this is not properly visible in the printed/ full-screen
resolution, the reader may zoom and confirm that the black
pixels above the Capsicum are actually the horizontal lines
and edges present in the texture in the background of the input
image (Figure 8). TruePositive&F1 score improvement from
left to right also fortify our visual claims in all these images.
The authors would also like to bring to attention, the case
of extreme values of the input parameter set. If we further
increase the thresholds, the edge map would move towards
all-white i.e. losing all edges; and if we further decrease the
thresholds, the edge map would move towards all-black i.e.
overpowered by noise. Both the cases of very high & very

low input thresholds result in less usable edge maps and are
mostly avoided in practice.

E. COMPARISON WITH OTHER ALGORITHMS
Figure 10 and 11 present results with nine diverse-sized
images (size written on top) from diverse datasets like
SIDD+ [6], PolyU [40], BSDS500 [18], & NIND [41].
The third test image (Smiling Faces) in Figure 10, and
first test image (Building1) in Figure 11 are smaller in
size, and thus, their results are observable without much
zooming-in. In these Figures, we compared our results with
the conventional Canny [3], PLGFM [25], SMED [12],
SE [21], & HED [1]. As SE & HED gives thick grayscale
edges, we processed them further with NMS [3] and
thresholding to obtain thin binary edges. The PLGFM [25]
gives thick binary edges and it does not suggest thinning
of the edges. The proposed algorithm shows promising
results, both qualitatively & quantitatively. Quantitatively, the
‘TruePositive’, ‘F1 score’, & ‘DCR’ are mentioned below
each image in figure 10 & 11. The proposed algorithm
performs better than Canny and SE in all the nine images.
Comparing with HED, the proposed algorithm performs
better in all the nine images except in Smiling Faces image,
where the HED has a better F1 score. Comparing with
PLGFM and SMED, the proposed algorithm performs better
in most of the images but it lacks in TP and DCR for
some images. While the ‘TruePositive’, ‘F1 score’, & ‘DCR’
are mentioned below each image, the visual results are far
more suggestive here than the quantitative scores due to the
following reasons:
• The nature of thresholds used (as input param-
eters) is different in these algorithms, and thus
each cannot be optimally tuned uniformly. E.g. the
deep learning-based algorithm (HED) uses probability-
based threshold, while CED uses amplitude-based
thresholds.

• For diverse datasets, it is difficult to have a uniform
ground truth.

• Some datasets provide the ground truth boundary map;
others need to be evaluated using some methods [42]
(which can be arguable).

• The quality of ground truth data available with different
datasets is different.

It can be seen in the third column of Figure 10 (i.e. the results
of the image Smiling Faces) that the proposed algorithm
maintains a good balance of extracting the texture (from the
cloths) as well as the facial features and rejecting the noisy
background from behind. Further, it can be seen in the first
column of Figure 11 (i.e the results of the image Building1)
that almost all the algorithms struggle with either the broken
edge problem or the noisy structure problem, whereas the
proposed algorithm has mitigated both of these problems
simultaneously. Similar observations can be made with other
images. PLGFM provides thick edges, and is able to extract
edges from low-illuminated areas as well, but it too suffers
from broken edges and noisy structures. Please note that the
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FIGURE 10. Comparative characterization (high-resolution weblink).

results obtained for SE for the last three images in figure 11
contain very distant detected pixels and as a result appear very
faint in this resolution.

Usually the edges are one pixel wide, and the edge
map is binary (Edge or Not Edge) [3], [18]. Nevertheless,
if the application in hand allows wider and grayscale edges,

SE and HED results would look better than what is seen in
Figure 10 & 11.

F. BSDS500 AND BIPED BENCHMARKING
BSDS500 [18] is a contour detection benchmark that
uses a precision-recall (PR) framework along with three
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FIGURE 11. Comparative characterization (high-resolution weblink).

metrics—ODS, OIS, & AP to evaluate various contour
detection algorithms. Similarly, BIPED [20] is a recent
edge-detection benchmarking dataset. Table 1 & Table 2
show that our algorithm has better ODS & OIS than that
of Canny [3]; and Figure 12 & Figure 13 show that the

curve of our algorithm is higher than that of Canny [3], and
thus exhibits improvements over Canny [3] in almost all the
practical range of the input threshold. Our algorithm has a
lower AP score (area under the curve) because it does not
span the lower recall values for the thresholds provided in
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FIGURE 12. BSDS500 benchmarking.

TABLE 1. BSDS500 benchmarking.

TABLE 2. BIPED benchmarking.

the benchmarking datasets. The low-recall and high-precision
area, i.e., the top-left part of the P-R graph, corresponds to the
edge-map having fewer edge pixels. The proposed algorithm
identifies this as a broken edge problem. To mitigate this
problem, the proposed algorithm lowers the threshold, gets
additional edge pixels and thus increases the recall. As per
the BSDS500 [18] (Table 1, Figure 12) & BIPED [20]
(Table 2, Figure 13) benchmarking, though our algorithm
is an improvement over Canny [3], it still underperforms
w.r.t. some of the state-of-the-art deep learning (DL)-based

FIGURE 13. BIPED benchmarking.

algorithms. On BIPED [20] benchmarking, our algorithm
gives the human-level performance (F1 score .79), which is
appreciable considering the fact that it is a non-DL–based
algorithm. It is particularly interesting to note the observa-
tions in the third column (Smiling Faces) of Figure 10, where
HED [1] being one of the high performing algorithms, gives a
better F1 score than ours but lacks in visual quality when the
thin-edge version is considered (Their thick-grayscale-edge
version looks remarkably better than their thin-binary-edge
version).

It is interesting to note the primary differences, both
weaknesses and advantages of the proposed non-DL–based
approach with conventional deep learning-based methods.
The proposed algorithm is a gradient-based approach that
detects edge-pixels exactly at those locations where the
gradient changes, and therefore produces a pixel-level
accurate thin binary edge map. However, a general DL-based
algorithm (such as SE and HED) typically produce a
thick grayscale edge map, and are therefore not implicitly
pixel-level accurate. These algorithms subsequently obtain
thin binary edges by post-processing (such as non max
suppression and thresholding) unrelated to the DL process.
These algorithms are also evaluated in a way that does
not penalize the lack of pixel-level accuracy. For example,
BSDS500, one of the most popular benchmarking dataset
utilizes the concept of corresponding pixel (implemented
through correspondPixels source file [18]), where the two
edge pixels from two edge maps are considered to be
matching even if they are certain distance apart (this distance
is decided by the maxDist parameter). Nevertheless, more
recent DL-based works, such as DexiNed [20], do implicitly
produce thin maps through an intricate and advanced learning
process using a large dataset and outperform the proposed
algorithm (as shown in Table 1& 2). DL-based edge detectors
also consume significant computational resources (GPU,
RAM, memory bandwidth, etc.) to train their networks, and
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require a GPU to find the edge map even for a single
test image. On the contrary, the proposed algorithm is not
intensive on computational resources and can easily be run
on older generation CPUs. The proposed algorithm presents
two diverse versions (one preferring more edges, another
preferring lower noise). Such an easy customization is usually
not available with DL-based algorithms, and one would
need to recreate the whole dataset and retrain the network
even for a minor change in desired application. Further,
DL-based algorithms typically have a tendency to overfit as
per the training dataset and the results could vary when tested
on new images (although this generalization is improving
with time). Since the logic of the proposed algorithm is
built from root up, each step, such as calculations involved,
decision graph followed, procedure of content extraction,
etc. is defined and clearly known to the user. Therefore, the
output can be obtained/predicted almost deterministically.
On the other hand, a DL-based network is more like a black-
box, and the exact process of learning within the network
still requires significantly more clarity even in the current
state of the art. In terms of non-ML– and attribute-based
edge detection approaches, the proposed algorithm shows
noteworthy potential in comparison with the state of the art.

V. CONCLUSION AND FUTURE WORK
An enhanced Canny Edge Detector, which takes the same
input parameter set as that of the Canny, and produces the
edge map with better-connected edges and reduced noise has
been presented and discussed. A detailed analysis of CED
from the SR point-of-view is also presented. The proposed
algorithm is a significant improvement over the CED in
almost all the practical ranges of the input threshold. The
proposed algorithm is designed by modifying the core of the
Canny Edge Detector [3] without any pre/post-processing.
However, this non-inclusion of any pre/post-processing has
created some limitations in the performance of our algorithm.
The proposed algorithm needs to be provided with a threshold
as the input (as in CED [3]); it can not work without any
input threshold. This limitation can be overcome by using the
pre-processing step of an automatic threshold module, like
Otsu’s threshold method [47] which maximizes inter-class
variance or minimizes intra-class variance, or a look-up
table [14] computed based on the estimated noise, or a
2-D entropy based automatic threshold calculator [17], etc.
Noise in the output edge map can be further reduced by
using a denoising module as a post-processing step. Another
limitation that the proposed algorithm has (like most other
EdgeDetectors) is that it is not invariant to illumination; It can
be overcome by developing a method incorporating the learn-
ings from PLGFM [25] (PLGFM is an illumination-invariant
edge detector). The authors have tried to contribute to the
knowledge base of Edge Detection by proposing an improved
edge detector. On BIPED [20] benchmarking dataset, the
proposed algorithm performs at par with the human level
performance (F1 score .79), which is appreciable considering
the fact that it is a non-DL–based algorithm. The future

work includes addressing the limitations of the proposed
algorithm and designing a deep learning network with better
edge detection capabilities.
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