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ABSTRACT (α, β)-Pythagorean fuzzy set is a very efficient way of dealing with uncertainty. In this article,
we have introduced the notions of (α, β)-Pythagorean fuzzy subring and (α, β)-Pythagorean fuzzy ideal of
a ring. Further, we have briefly described various results related to it. Also, we have discussed the level
subring of an (α, β)-Pythagorean fuzzy subring. Moreover, we have studied the direct product and ring
homomorphism of (α, β)-Pythagorean fuzzy subrings.

INDEX TERMS (α, β)-PFS, (α, β)-PFSR, (α, β)-PFID, (α, β)-PFLSR.

I. INTRODUCTION
In classical ring theory, the concepts of subring and ideal
are extremely important. Uncertainty is an unavoidable ele-
ment of our lives. This universe isn’t built on assumptions
or precise measures. It is not always feasible to make a
straight forward decision. We face a significant problem in
dealing with errors in decision-making situations. In 1965,
Zadeh [18] established the concept of a fuzzy set to deal
with ambiguity in real-world situations, breaking the usual
conception of yes or no. Any mapping from a universal set
to [0, 1] is a fuzzy set. As a result, an element’s member-
ship value lies in [0, 1]. In 1971, Rosenfeld [15] was the
first to investigate the concept of ideal and fuzzy subgroup.
Liu [12], [13] investigated various properties of fuzzy ide-
als. Ren [16] looked at fuzzy ideals and quotient fuzzy
rings. Dixit et al. [8] studied various aspects of fuzzy rings.
In 2021, Alghazzawi et al. [1] studied ω-Q-fuzzy subrings.
Gulzar et al. [9] characterized Q-complex fuzzy subrings.
Kausar et al. [11] discussed anti-fuzzy bi-ideals in 2020.
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When it comes to decision-making, assigning membership
values isn’t always adequate. In 1986, Atanassov [2] estab-
lished intuitionistic fuzzy set by assigning non-membership
degree with membership degree. Hur et al. [10] proposed the
idea of an intuitionistic fuzzy ring. Banerjee and Basnet [3]
did more work on intuitionistic fuzzy subrings and intuition-
istic fuzzy ideals. Yager [17] defined Pythagorean fuzzy set in
2013. In comparison to intuitionistic fuzzy sets, Pythagorean
fuzzy set presents a cutting-edge method for modelling ambi-
guity and uncertainty with great precision and accuracy.
Consider a point with membership grades (a, 0.8, 0.6). Here
0.82 + 0.62 = 1, so it is a Pythagorean membership
grade. However 0.8 + 0.6 = 1.4, then it is not an intu-
itionistic membership grade. The collection of Pythagorean
membership grades is bigger than intuitionistic membership
grades, which is very important in decision-making problems.
Bhunia et al. [5] proposed Pythagorean fuzzy subgroups in
2021. several results related to Pythagorean fuzzy sets and
Pythagorean fuzzy subgroups were provided by [7], [14].

In 2021, Bhunia [4] and Ghorai began studying
(α, β)-Pythagorean fuzzy sets. Imposing the constraints α
and β we can make a non-Pythagorean fuzzy set to a
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Pythagorean fuzzy set. α and β gives more flexibility to col-
lect data. When both intuitionistic fuzzy set and Pythagorean
fuzzy set fails then (α, β)-Pythagorean fuzzy sets come
into play. They explained that (α, β)-Pythagorean fuzzy
sets are more precise than intuitionistic fuzzy sets and
Pythagorean fuzzy sets. They established the concept of an
(α, β)-Pythagorean fuzzy subgroup and demonstrated several
properties of it. In 2021, Lagrange’s theorem is also proved
by Bhunia et al. [6] in (α, β)-Pythagorean fuzzy subgroup.
The benefits of (α, β)-Pythagorean fuzzy sets and the

intention to explore fuzzy rings in (α, β)-Pythagorean fuzzy
sets is the main motive of this research. The following are the
objectives of this manuscript:

1) To define the notion of an (α, β)-Pythagorean fuzzy
subring and (α, β)-Pythagorean fuzzy ideal of a ring

2) To investigate certain fundamental properties of
(α, β)-Pythagorean fuzzy subrings and (α, β)-
Pythagorean fuzzy ideals

3) To describe (α, β)-Pythagorean fuzzy level subring of
a ring

4) To discuss the direct product and ring homomorphism
of (α, β)-Pythagorean fuzzy subring.

The following is a summary of the contribution of this
paper: Section III review some key definitions and ideas.
We develop the idea of (α, β)-Pythagorean fuzzy subrings
and (α, β)-Pythagorean fuzzy ideals in Section IV. Section V
deals with (α, β)-Pythagorean fuzzy level subring and its
properties. In Section VI, we describe the direct product and
ring homomorphism of (α, β)-Pythagorean fuzzy subring.
In Section VII, we come to a conclusion.

II. LIST OF ABBREVIATIONS
IFS - Intuitionistic fuzzy set.
PFS - Pythagorean fuzzy set.
(α, β)-PFS - (α, β)-Pythagorean fuzzy set.
IFSR - Intuitionistic fuzzy subring.
IFID - Intuitionistic fuzzy ideal.
(α, β)-PFS - (α, β)-Pythagorean fuzzy set.
(α, β)-PFSR - (α, β)-Pythagorean fuzzy subring.
(α, β)-PFID - (α, β)-Pythagorean fuzzy ideal.
(α, β)-PFLS - (α, β)-Pythagorean fuzzy level subset.
(α, β)-PFLSR - (α, β)-Pythagorean fuzzy level subring.
(α, β)-PFLID - (α, β)-Pythagorean fuzzy level ideal.

III. PRELIMINARIES
This section introduces several key terminology and
concepts.
Definition 1 [2]: An intuitionistic fuzzy set (IFS) I of a

universal set W is of the form I = {(w, µ(w), ν(w))|w ∈ W },
where 0 ≤ µ(w) + ν(w) ≤ 1. Here, µ(w), ν(w) ∈ [0, 1] are
membership degree and non-membership degree of w ∈ W
respectively.
Definition 2 [3]: Assume a ring (W ,+, ·) have an IFS I =
{(w, µ(w), ν(w))|w ∈ W }, I is referred as intuitionistic fuzzy
subring (IFSR) of W if

1) µ(w1 − w2) ≥ µ(w1) ∧ µ(w2) and ν(w1 − w2) ≤
ν(w1) ∨ ν(w2) ∀w1,w2 ∈ W

2) µ(w1 ·w2) ≥ µ(w1)∧µ(w2) and ν(w1 ·w2) ≤ ν(w1)∨
ν(w2) ∀w1,w2 ∈ W.

Definition 3 [17]: A Pythagorean fuzzy set (PFS) ψ of an
universal set W is of the formψ = {(w, µ(w), ν(w))|w ∈ W },
where 0 ≤ µ2(w)+ ν2(w) ≤ 1.
Definition 4 [4]: An (α, β)-Pythagorean fuzzy set (PFS)

ψ∗ of an universal set W is of the form ψ∗ =

{(w, µα(w), νβ (w))|w ∈ W }, where µα(w) = µ(w) ∧ α,
νβ (w) = ν(w) ∨ β and 0 ≤ (µα(w))2 +

(
νβ (w)

)2
≤ 1. Here,

α, β ∈ [0, 1] with 0 ≤ α2 + β2 ≤ 1.
Proposition 1 [4]: Let ψ∗1 = {(w, µ

α
1 (w), ν

β

1 (w))|w ∈ W }
and ψ∗2 = {(w, µ

α
2 (w), ν

β

2 (w))|w ∈ W } be two (α, β)-PFSs
in W . Then

1) ψ∗1 ∪ ψ
∗

2 = {(w, µ
α
1 (w) ∨ µ

α
2 (w), ν

β

1 (w) ∧ ν
β

2 (w))|
w ∈ W }

2) ψ∗1 ∩ ψ
∗

2 = {(w, µ
α
1 (w) ∧ µ

α
2 (w), ν

β

1 (w) ∨ ν
β

2 (w))|
w ∈ W }

3) ψ∗1 ⊆ ψ∗2 if µ
α
1 (w) ≤ µ

α
2 (w) and ν

β

1 (w) ≥ ν
β

2 (w) for
all w ∈ W

4) ψ∗1 = ψ∗2 if µ
α
1 (w) = µα2 (w) and ν

β

1 (w) = ν
β

2 (w) for
all w ∈ W.

Definition 5 [4]: Let ψ∗ = (µα, νβ ) be an (α, β)-PFS
of an universal set W . Then ψ∗(θ,τ ) = {w ∈ W |µα(w) ≥
θ and νβ (w) ≤ τ } is called an (α, β)-Pythagorean fuzzy level
subset (PFLS) of ψ∗, where θ, τ ∈ [0, 1].
Proposition 2 [4]: Letψ∗1 = (µα1 , ν

β

1 ) andψ
∗

2 = (µα2 , ν
β

2 )
be two (α, β)-PFSs of a set W . Then for ε, τ , θ and δ ∈ [0, 1],

1) ε ≤ θ , τ ≤ δ ⇒ ψ∗(θ,τ ) ⊆ ψ
∗

(ε,δ)
2) ψ∗1 ⊆ ψ

∗

2 ⇒ ψ∗1(θ,τ ) ⊆ ψ
∗

2(θ,τ ).

Proposition 3 [6]: Letψ∗1 = (µα1 , ν
β

1 ) andψ
∗

2 = (µα2 , ν
β

2 )
be two (α, β)-PFSs on W1 and W2 respectively. Let r be a
mapping from W1 to W2. Then r(ψ∗1 ) is an (α, β)-PFS on W2

and defined by r(ψ∗1 )(w2) = (r(µα1 )(w2), r(ν
β

1 )(w2)) for all
w2 ∈ W2, where

r(µα1 )(w2) =


∨
{
µα1 (w1)|w1 ∈ W1 and r(w1) = w2

}
,

when r−1(w2) 6= ∅
0, elsewhere

and

r(νβ1 )(w2) =


∧

{
ν
β

1 (w1)|w1 ∈ W1 and r(w1) = w2

}
,

when r−1(w2) 6= ∅
1, elsewhere.

Also, r−1(ψ∗2 ) is an (α, β)-PFS on W1 and defined
by r−1(ψ∗2 )(w1) = (r−1(µα2 )(w1), r−1(ν

β

2 )(w1)) for all
w1 ∈ W1, where (r−1(µα2 ))(w1) = (µα2 (r(w1)) and
(r−1(νβ2 ))(w1) = (νβ2 (r(w1)).

IV. (α, β)-PFSR AND (α, β)-PFID
Now, (α, β)-PFSR and (α, β)-PFID of ringswill be discussed.
Definition 6: Assume (W ,+, ·) is a ring and ψ∗ =

(µα, νβ ) is an (α, β)-PFS of W . The ring (W ,+, ·) is then
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said to have an (α, β)-Pythagorean fuzzy subring (PFSR) ψ∗

if
1) µα(w1−w2) ≥ µα(w1)∧µα(w2) and νβ (w1−w2) ≤

νβ (w1) ∨ νβ (w2) for all w1,w2 ∈ W
2) µα(w1 · w2) ≥ µα(w1) ∧ µα(w2) and νβ (w1 · w2) ≤

νβ (w1) ∨ νβ (w2) for all w1,w2 ∈ W.
Example 1: Take the ring (Z,+, ·). Consider, ψ∗ =

(µα, νβ ) is an (α, β)-PFS of the ring (Z,+, ·), where ψ∗ =
(µα, νβ ) is defined by

µα(z) =


0.91, when z = 0
0.63, when z ∈ 2Z− {0}
0.82, elsewhere

and

νβ (z) =


0.16, when z = {0}
0.32, when z ∈ 2Z− {0}
0.27, elsewhere.

Clearly, the ring (Z,+, ·) have an (α, β)-PFSR ψ∗ =

(µα, νβ ).
Definition 7: Assume (W ,+, ·) is a ring and ψ∗ =

(µα, νβ ) is an (α, β)-PFS of W . The ring (W ,+, ·) is then
said to have an (α, β)-Pythagorean fuzzy ideal (PFID) ψ∗ if

1) µα(w1−w2) ≥ µα(w1)∧µα(w2) and νβ (w1−w2) ≤
νβ (w1) ∨ νβ (w2) for all w1,w2 ∈ W

2) µα(w1 · w2) ≥ µα(w1) ∨ µα(w2) and νβ (w1 · w2) ≤
νβ (w1) ∧ νβ (w2) for all w1,w2 ∈ W.

Example 2: Take the ring (Z9,+9, ·9). Consider, ψ∗ =
(µα, νβ ) is an (α, β)-PFS of the ring (Z9,+9, ·9), where
ψ∗ = (µα, νβ ) is defined by

µα(w) =


0.93, when w = 0
0.56, when w ∈ {3, 6}
0.22, elsewhere

and

νβ (w) =


0.12, when w = {0}
0.39, when w ∈ {3, 6}
0.67, elsewhere.

Clearly, we can check that ψ∗ = (µα, νβ ) is an
(α, β)-PFID of the ring (Z9,+9, ·9).
In a ring, every ideal is a subring of that ring, however the

opposite may not be true. As for the example, for the ring
(Q,+, ·), (Z,+, ·) is a subring of Q but not an ideal of Q.

Now, we will establish a relation between (α, β)-PFID and
(α, β)-PFSR of a ring.
Theorem 1: Every (α, β)-PFID of a ring is an (α, β)-PFSR

of that ring.
Proof: Assume ψ∗ = (µα, νβ ) is an (α, β)-PFID of

a ring (W ,+, ·). Then µα(w1 − w2) ≥ µα(w1) ∧ µα(w2),
νβ (w1−w2) ≤ νβ (w1)∨νβ (w2) andµα(w1 ·w2) ≥ µα(w1)∨
µα(w2), νβ (w1 · w2) ≤ νβ (w1) ∧ νβ (w2) for all w1,w2 ∈ W .
To prove ψ∗ = (µα, νβ ) is an (α, β)-PFSR of the ring

(W ,+, ·), we need to show that µα(w1 − w2) ≥ µα

(w1)∧µα(w2), νβ (w1−w2) ≤ νβ (w1)∨ νβ (w2) and µα(w1 ·

w2) ≥ µα(w1)∧µα(w2), νβ (w1 ·w2) ≤ νβ (w1)∨ νβ (w2) for
all w1,w2 ∈ W .
The first two condition of (α, β)-PFSR is automatically

satisfied. Now, many case will arise for last two condition.
We will study some cases

Case 1: Assume µα(w1) > µα(w2) and νβ (w1) > νβ (w2)
for all w1,w2 ∈ W .
Then µα(w1 · w2) ≥ µα(w1) ∨ µα(w2) = µα(w1) >

µα(w2) = µα(w1) ∧ µα(w2).
Therefore µα(w1 · w2) ≥ µα(w1) ∧ µα(w2) for all w1,

w2 ∈ W .
Also, νβ (w1 · w2) ≤ νβ (w1) ∧ νβ (w2) = νβ (w2) <

νβ (w1) = νβ (w1) ∨ νβ (w2).
Therefore νβ (w1 · w2) ≤ νβ (w1) ∨ νβ (w2) for all w1,

w2 ∈ W .
Case 2: Assume µα(w1) < µα(w2) and νβ (w1) < νβ (w2)

for all w1,w2 ∈ W .
Then µα(w1 · w2) ≥ µα(w1) ∨ µα(w2) = µα(w2) >

µα(w1) = µα(w1) ∧ µα(w2).
Therefore µα(w1 · w2) ≥ µα(w1) ∧ µα(w2) for all w1,

w2 ∈ W .
Also, νβ (w1 · w2) ≤ νβ (w1) ∧ νβ (w2) = νβ (w1) <

νβ (w2) = νβ (w1) ∨ νβ (w2).
Therefore νβ (w1 · w2) ≤ νβ (w1) ∨ νβ (w2) for all w1,

w2 ∈ W .
Case 3: Assume µα(w1) = µα(w2) and νβ (w1) = νβ (w2)

for all w1,w2 ∈ W .
Then µα(w1 · w2) ≥ µα(w1) ∨ µα(w2) = µα(w2) =

µα(w1) = µα(w1) ∧ µα(w2).
Therefore µα(w1 · w2) ≥ µα(w1) ∧ µα(w2) for all w1,

w2 ∈ W .
Also, νβ (w1 · w2) ≤ νβ (w1) ∧ νβ (w2) = νβ (w1) =

νβ (w2) = νβ (w1) ∨ νβ (w2).
Therefore νβ (w1 · w2) ≤ νβ (w1) ∨ νβ (w2) for all w1,

w2 ∈ W .
Considering all the possibilities and using the same tech-

nique, we can simply verify that µα(w1 · w2) ≥ µα(w1) ∧
µα(w2) and νβ (w1 · w2) ≤ νβ (w1) ∨ νβ (w2) for all
w1,w2 ∈ W . Thus ψ∗ = (µα, νβ ) is an (α, β)-PFSR of
the ring (W ,+, ·). Hence every (α, β)-PFID of a ring is an
(α, β)-PFSR of that ring. �
Example 3: In Example 1, take the (α, β)-PFSR ψ∗ of the

ring (Z,+, ·).
Now, we take two element z1 = 2 and z2 = 3.

Then µα(2) = 0.63, νβ (2) = 0.32, µα(3) = 0.82 and
νβ (3) = 0.27.
Therefore µα(2) ∧ µα(3) = 0.63, µα(2) ∨ µα(3) = 0.82,

νβ (2) ∧ νβ (3) = 0.27 and νβ (2) ∨ νβ (3) = 0.32.
So, µα(3− 2) = µα(1) = 0.82 > 0.63 = µα(2) ∧ µα(3),

νβ (3 − 2) = νβ (1) = 0.27 < 0.32 = νβ (2) ∨ νβ (3).
But, µα(3 · 2) = µα(6) = 0.63 � 0.82 = µα(2) ∨ µα(3),
νβ (3·2) = νβ (6) = 0.32 � 0.27 = νβ (2)∧νβ (3). This shows
that, ψ∗ violate the condition of (α, β)-PFID of a ring.
Therefore,ψ∗ = (µα, νβ ) is not an (α, β)-PFID of the ring

(Z,+, ·).
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Remark 1: Every (α, β)-PFID of a ring is an (α, β)-PFSR
of that ring, however the opposite statement is not true.
Proposition 4: Assume ψ∗ = (µα, νβ ) is an (α, β)-PFSR

of a ring (W ,+, ·). Then
1) µα(0) ≥ µα(w1) and νβ (0) ≤ νβ (w1) for all w1 ∈ W
2) µα(−w1) = µα(w1) and νβ (−w1) = νβ (w1) for all

w1 ∈ W
3) µα(w1+w2) ≥ µα(w1)∧µα(w2) and νβ (w1+w2) ≤

νβ (w1) ∨ νβ (w2) for all w1,w2 ∈ W.
Proof: Since, the ring (W ,+, ·) have an (α, β)-PFSR

ψ∗ = (µα, νβ ), µα(w1 − w2) ≥ µα(w1) ∧ µα(w2) and
νβ (w1 − w2) ≤ νβ (w1) ∨ νβ (w2) for all w1,w2 ∈ W .
1) µα(0) = µα(w1−w1) ≥ µα(w1)∧µα(w1) = µα(w1).

So, µα(0) ≥ µα(w1) for all w1 ∈ W .
Also, νβ (0) = νβ (w1 − w1) ≤ νβ (w1) ∨ νβ (w1) =
νβ (w1). Therefore νβ (0) ≤ νβ (w1) for all w1 ∈ W1,
where 0 is the additive identity ofW .

2) µα(−w1) = µα(0 − w1) ≥ µα(0) ∧ µα(w1) =
µα(w1) and νβ (−w1) = νβ (0 − w1) ≤ νβ (0) ∨
νβ (w1) = νβ (w1). Therefore µα(−w1) ≥ µα(w1) and
νβ (−w1) ≤ νβ (w1).
Again, µα(w1) = µα(−(−w1)) ≥ µα(−w1)
and νβ (w1) = νβ (−(−w1)) ≤ νβ (−w1).
Hence µα(−w1) = µα(w1) and νβ (−w1) = νβ (w1)
for all w1 ∈ W , where (−w1) is the additive inverse of
w1 in W .

3) µα(w1 + w2) = µα(w1 − (−w2)) ≥ µα(w1) ∧
µα(−w2) = µα(w1) ∧ µα(w2) and νβ (w1 + w2) =
νβ (w1 − (−w2)) ≤ νβ (w1) ∨ νβ (−w2) = νβ (w1) ∨
νβ (w2).
Therefore µα(w1 + w2) ≥ µα(w1) ∧ µα(w2)
and νβ (w1 + w2) ≤ νβ (w1) ∨ νβ (w2) for all
w1,w2 ∈ W .

�
Remark 2: If ψ∗ = (µα, νβ ) is an (α, β)-PFID of a ring

(W ,+, ·), all the properties of an (α, β)-PFSR in Proposition
4.1 also hold for the (α, β)-PFID ψ∗ = (µα, νβ ).
Proposition 5: Assume ψ∗ = (µα, νβ ) is an (α, β)-PFSR

of a ring (W ,+, ·). Then
1) µα(kw1) ≥ µα(w1) and νβ (kw1) ≤ νβ (w1) for all

w1 ∈ W, k ∈ Z
2) µα(wk1) ≥ µ

α(w1) and νβ (wk1) ≤ ν
β (w1) for all w1 ∈

W, k ∈ Z.
Proof: Since, the ring (W ,+, ·) have an (α, β)-PFSR

ψ∗ = (µα, νβ ), µα(w1 − w2) ≥ µα(w1) ∧ µα(w2), νβ (w1 −

w2) ≤ νβ (w1)∨νβ (w2), µα(w1 ·w2) ≥ µα(w1)∧µα(w2) and
νβ (w1 · w2) ≤ νβ (w1) ∨ νβ (w2) for all w1,w2 ∈ W .
1) By Proposition 4, we have µα(kw1) = µα(w1 + w1 +

· · · + w1) (k times)
≥ µα(w1) ∧ µα(w1) ∧ · · · ∧ µα(w1) (k times)
= µα(w1).
Also, νβ (kw1) = νβ (w1 + w1 + · · · + w1) (k times)
≤ νβ (w1) ∨ νβ (w1) ∨ · · · ∨ νβ (w1) (k times)
= νβ (w1).
Therefore µα(kw1) ≥ µα(w1) and νβ (kw1) ≤ νβ (w1)
for all w1 ∈ W , k ∈ Z.

2) Now, µα(wk1) = µ
α(w1 · w1 · . . . · w1) (k times)

≥ µα(w1) ∧ µα(w1) ∧ · · · ∧ µα(w1) (k times)
= µα(w1).
Also, νβ (wk1) = ν

β (w1 · w1 · . . . · w1) (k times)
≤ νβ (w1) ∨ νβ (w1) ∨ · · · ∨ νβ (w1) (k times)
= νβ (w1).
Therefore µα(wk1) ≥ µ

α(w1) and νβ (wk1) ≤ ν
β (w1) for

all w1 ∈ W , k ∈ Z.
�

Proposition 6: Let ψ∗ = (µα, νβ ) be an (α, β)-PFSR of
a ring (W ,+, ·). If µα(w1 − w2) = µα(0) and νβ (w1 −

w2) = νβ (0), then µα(w1) = µα(w2) and νβ (w1) = νβ (w2)
respectively.

Proof: Since the ring (W ,+, ·) have an (α, β)-PFSR
ψ∗ = (µα, νβ ), µα(w1 − w2) ≥ µα(w1) ∧ µα(w2), νβ (w1 −

w2) ≤ νβ (w1)∨νβ (w2), µα(w1 ·w2) ≥ µα(w1)∧µα(w2) and
νβ (w1 · w2) ≤ νβ (w1) ∨ νβ (w2) for all w1,w2 ∈ W .
Now, by proposition 4, we have

µα(w1) = µα(w1 − w2 + w2)

≥ µα(w1 − w2) ∧ µα(w2)

= µα(0) ∧ µα(w2)

= µα(w2)

By replacing w1 with w2 in above relation, we get µα(w2) ≥
µα(w1). Since w1,w2 are arbitrary, µα(w1) = µα(w2) for all
w1,w2 ∈ W .
Again, by proposition 4, we have

νβ (w1) = νβ (w1 − w2 + w2)

≤ νβ (w1 − w2) ∨ νβ (w2)

= να(0) ∨ νβ (w2)

= νβ (w2)

Similarly, we can show that νβ (w2) ≤ νβ (w1). As w1,w2 are
arbitrary, νβ (w1) = νβ (w2) for all w1,w2 ∈ W . �
Proposition 7: Let a commutative ring with unity (CRU)

(W ,+, ·) have an (α, β)-PFID ψ∗ = (µα, νβ ). Then
1) µα(1) ≤ µα(w1) and νβ (1) ≥ νβ (w1) for all w1 ∈ W,

where 1 is the multiplicative identity of W
2) µα(w1) = µα(w−11 ) = µα(1) and νβ (w1) =

νβ (w−11 ) = νβ (1) for all w1 ∈ W, where w−11 is the
multiplicative inverse of w1 in W .
Proof:

1) Since the CRU (W ,+, ·) have an (α, β)-PFID ψ∗ =

(µα, νβ ), µα(w1 ·w2) ≥ µα(w1)∨µα(w2) and νβ (w1 ·

w2) ≤ νβ (w1) ∧ νβ (w2) for all w1,w2 ∈ W .
Therefore µα(w1 · w2) ≥ µα(w1) and µα(w1 · w2) ≥
µα(w2). Also, νβ (w1 ·w2) ≤ νβ (w1) and νβ (w1 ·w2) ≤
νβ (w2).
So, µα(w1) = µα(w1 · 1) ≥ µα(1), νβ (w1) = νβ (w1 ·

1) ≤ νβ (1) ∀w1 ∈ W , where 1 is the multiplicative
identity ofW .

2) Now,µα(1) = µα(w1·w
−1
1 ) ≥ µα(w1)∨µα(w

−1
1 ). This

shows that, µα(1) ≥ µα(w1) and µα(1) ≥ µα(w−11 ).

VOLUME 10, 2022 11051



S. Bhunia et al.: On Algebraic Attributes of (α, β)-PFSRs and (α, β)-PFIDs of Rings

Also, by previous result we get µα(w1) ≥ µα(1) for all
w1 ∈ W .
Thus µα(w1) = µα(w

−1
1 ) = µα(1) ∀w1 ∈ W .

Again, νβ (1) = νβ (w1·w
−1
1 ) ≤ νβ (w1)∧νβ (w

−1
1 ). This

present that νβ (1) ≤ νβ (w1) and νβ (1) ≤ νβ (w−11 ).
Also, we have νβ (w1) ≤ νβ (1) for all w1 ∈ W .
Therefore νβ (w1) = νβ (w

−1
1 ) = νβ (1) for all w1 ∈ W ,

where w−11 is the multiplicative inverse of w1 in W .
�

Theorem 2: If ψ∗ = (µα, νβ ) is an (α, β)-PFID of a ring
(W ,+, ·), then P = {w ∈ W |µα(w) = µα(0), νβ (w) =
νβ (0)} is an ideal of the ring (W ,+, ·).

Proof: Clearly, P is a non-empty subset ofW as 0 ∈ P.
Let w1,w2 be two elements of P. Then µα(w1) =

µα(0), νβ (w1) = νβ (0), µα(w2) = µα(0), and νβ (w2) =
νβ (0).
Now,µα(w1−w2) ≥ µα(w1)∧µα(w2) = µα(0)∧µα(0) =

µα(0). That is µα(w1 − w2) ≥ µα(0).
Again, νβ (w1−w2) ≤ νβ (w1)∨νβ (w2) = νβ (0)∨νβ (0) =

νβ (0). So, νβ (w1 − w2) ≤ νβ (0).
By Proposition 4, we have µα(0) ≥ µα(w1 − w2) and

νβ (w1 − w2) ≥ νβ (0).
Thus µα(w1 − w2) = µα(0) and νβ (w1 − w2) = νβ (0).

Therefore w1 − w2 ∈ P.
Let w ∈ W ,w1 ∈ P.
Thenµα(w·w1) ≥ µα(w)∨µα(w1). Thereforeµα(w·w1) ≥

µα(w1) = µα(0). Similarly, we can verify that νβ (w · w1) ≤
νβ (0).
By Proposition 4, we have µα(w ·w1) ≤ µα(0) and νβ (w ·

w1) ≥ νβ (0). Thereforeµα(w ·w1) = µα(0) and νβ (w ·w1) =
νβ (0). So, w.w1 ∈ P. Similarly, we can verify that w1.w ∈ P.
Hence P is an ideal of the ring (W ,+, ·). �
Theorem 3: Intersection of any two (α, β)-PFSR of a ring

is an (α, β)-PFSR of that ring.
Proof: Let ψ∗1 = (µα1 , ν

β

1 ) and ψ
∗

2 = (µα2 , ν
β

2 ) be two
(α, β)-PFSR of a ring (W ,+, ·). Assume ψ∗ = (µα, νβ )
is the intersection of ψ∗1 and ψ∗2 . That is ψ

∗
= ψ∗1 ∩ ψ

∗

2 .
Therefore µα(w1) = µα1 (w1) ∧ µα2 (w1) and νβ (w1) =
ν
β

1 (w1) ∨ ν
β

2 (w1) for all w1 ∈ W .
Let w1,w2 be any two elements ofW . Now,

µα(w1 − w2) = µα1 (w1 − w2) ∧ µα2 (w1 − w2)

≥ (µα1 (w1) ∧ µα1 (w2)) ∧ (µα2 (w1) ∧ µα2 (w2))

= (µα1 (w1) ∧ µα2 (w1)) ∧ (µα1 (w2) ∧ µα2 (w2))

= µα(w1) ∧ µα(w2)

Also,

νβ (w1 − w2) = ν
β

1 (w1 − w2) ∨ ν
β

2 (w1 − w2)

≤ (νβ1 (w1) ∨ ν
β

1 (w2)) ∨ (νβ2 (w1) ∨ ν
β

2 (w2))

= (νβ1 (w1) ∨ ν
β

2 (w1)) ∨ (νβ1 (w2) ∨ ν
β

2 (w2))

= νβ (w1) ∨ νβ (w2)

Therefore µα(w1 − w2) ≥ µα(w1)∧ µα(w2) and νβ (w1 −

w2) ≤ νβ (w1) ∨ νβ (w2).

Again, µα(w1 · w2) = µα1 (w1 · w2) ∧ µα2 (w1 · w2) ≥
(µα1 (w1) ∧ µα1 (w2)) ∧ (µα2 (w1) ∧ µα2 (w2)) = (µα1 (w1) ∧
µα2 (w1)) ∧ (µα1 (w2) ∧ µα2 (w2)) = µα(w1) ∧ µα(w2).
Also, νβ (w1 ·w2) = ν

β

1 (w1 ·w2)∨ν
β

2 (w1 ·w2) ≤ (νβ1 (w1)∨
ν
β

1 (w2))∨(ν
β

2 (w1)∨ν
β

2 (w2)) = (νβ1 (w1)∨ν
β

2 (w1))∨(ν
β

1 (w2)∨
ν
β

2 (w2)) = νβ (w1) ∨ νβ (w2).
Thus µα(w1 · w2) ≥ µα(w1) ∧ µα(w2) and νβ (w1 · w2) ≤

νβ (w1) ∨ νβ (w2).
Therefore ψ∗ = (µα, νβ ) is an (α, β)-PFSR of the ring

(W ,+, ·). �
Corollary 1: Intersection of the family of (α, β)-PFSR of

a ring is an (α, β)-PFSR of that ring.
Theorem 4: Let ψ∗1 = (µα1 , ν

β

1 ) and ψ
∗

2 = (µα2 , ν
β

2 ) be
two (α, β)-PFID of a ring (W ,+, ·). Then ψ∗1 ∩ ψ

∗

2 is an
(α, β)-PFID of that ring.

Proof: Let ψ∗ = (µα, νβ ) be the intersection of ψ∗1 =
(µα1 , ν

β

1 ) and ψ
∗

2 = (µα2 , ν
β

2 ). Then µ
α(w) = µα1 (w)∧ µ

α
2 (w)

and νβ (w) = νβ1 (w) ∨ ν
β

2 (w) for all w ∈ W .
Let w1,w2 be two arbitrary elements ofW . Then,

µα(w1 − w2) = µα1 (w1 − w2) ∧ µα2 (w1 − w2)

≥ (µα1 (w1) ∧ µα1 (w2)) ∧ (µα2 (w1) ∧ µα2 (w2))

= (µα1 (w1) ∧ µα2 (w1)) ∧ (µα1 (w2) ∧ µα2 (w2))

= µα(w1) ∧ µα(w2)

Also,

νβ (w1 − w2) = ν
β

1 (w1 − w2) ∨ ν
β

2 (w1 − w2)

≤ (νβ1 (w1) ∨ ν
β

1 (w2)) ∨ (νβ2 (w1) ∨ ν
β

2 (w2))

= (νβ1 (w1) ∨ ν
β

2 (w1)) ∨ (νβ1 (w2) ∨ ν
β

2 (w2))

= νβ (w1) ∨ νβ (w2)

Therefore µα(w1 − w2) ≥ µα(w1)∧ µα(w2) and νβ (w1 −

w2) ≤ νβ (w1) ∨ νβ (w2).
Again,

µα(w1 · w2) = µα1 (w1 · w2) ∧ µα2 (w1 · w2)

≥ (µα1 (w1) ∨ µα1 (w2)) ∧ (µα2 (w1) ∨ µα2 (w2))

= (µα1 (w1) ∧ µα2 (w1)) ∨ (µα1 (w2) ∧ µα2 (w2))

= µα(w1) ∨ µα(w2)

Also,

νβ (w1 · w2) = ν
β

1 (w1 · w2) ∨ ν
β

2 (w1 · w2)

≤ (νβ1 (w1) ∧ ν
β

1 (w2)) ∨ (νβ2 (w1) ∧ ν
β

2 (w2))

= (νβ1 (w1) ∨ ν
β

2 (w1)) ∧ (νβ1 (w2) ∨ ν
β

2 (w2))

= νβ (w1) ∧ νβ (w2)

Therefore µα(w1 · w2) ≥ µα(w1) ∨ µα(w2) and νβ (w1 ·

w2) ≤ νβ (w1) ∧ νβ (w2) for all w1,w2 ∈ W .
Hence ψ∗ = (µα, νβ ) is an (α, β)-PFID of the ring

(W ,+, ·). �
Theorem 5: If a ring (W ,+, ·) have an IFSR I = (µ, ν),

ψ∗ = (µα, νβ ) is an (α, β)-PFSR of the ring (W ,+, ·).
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Proof: Since the ring (W ,+, ·) have an IFSR I =
(µ, ν), µ(w1 − w2) ≥ µ(w1) ∧ µ(w2), ν(w1 − w2) ≤
ν(w1)∨ ν(w2), µ(w1 ·w2) ≥ µ(w1)∧µ(w2) and ν(w1 ·w2) ≤
ν(w1) ∨ ν(w2) for all w1,w2 ∈ W .

We will prove this theorem by studying several cases.

1) Let µ(w1) > µ(w2) and ν(w1) > ν(w2) for w1,

w2 ∈ W . Then µα(w1) ≥ µα(w2) and νβ (w1) ≥
νβ (w2), where α, β ∈ [0, 1].
Now, µ(w1 − w2) ≥ µ(w1) ∧ µ(w2) = µ(w2).
So, µα(w1 − w2) ≥ µα(w2) = µαw1) ∧ µα(w2).
Also, µ(w1 · w2) ≥ µ(w1) ∧ µ(w2) = µ(W2). There-
fore µα(w1 · w2) ≥ µα(w2) = µα(w1) ∧ µα(w2).
Again, ν(w1 − w2) ≤ ν(w1) ∨ ν(w2) = ν(w1). This
implies that νβ (w1−w2) ≤ νβ (w1) = νβ (w1)∨νβ (w2).
Also, ν(w1 · w2) ≤ ν(w1) ∨ ν(w2) = ν(w1). Therefore
νβ (w1 · w2) ≤ νβ (w1) = νβ (w1) ∨ νβ (w2).

2) Let µ(w1) < µ(w2) and ν(w1) < ν(w2) for w1,w2 ∈

W . So,µα(w1) ≤ µα(w2) and νβ (w1) ≤ νβ (w2), where
α, β ∈ [0, 1].
Now, µ(w1 − w2) ≥ µ(w1) ∧ µ(w2) = µ(w1).
So, µα(w1 − w2) ≥ µα(w1) = µαw1) ∧ µα(w2).
Also, µ(w1 · w2) ≥ µ(w1) ∧ µ(w2) = µ(w1). There-
fore µα(w1 · w2) ≥ µα(w1) = µα(w1) ∧ µα(w2).
Again, ν(w1 − w2) ≤ ν(w1) ∨ ν(w2) = ν(w2). This
implies that νβ (w1−w2) ≤ νβ (w2) = νβ (w1)∨νβ (w2).
Also, ν(w1 · w2) ≤ ν(w1) ∨ ν(w2) = ν(w2). Therefore
νβ (w1 · w2) ≤ νβ (w2) = νβ (w1) ∨ νβ (w2).

3) Let µ(w1) = µ(w2) and ν(w1) = ν(w2) for w1,

w2 ∈ W . So, µα(w1) = µα(w2) and νβ (w1) = νβ (w2),
where α, β ∈ [0, 1].
Now,µ(w1−w2) ≥ µ(w1)∧µ(w2) = µ(w1) = µ(w2).
So, µα(w1 − w2) ≥ µα(w1) = µα(w2) = µαw1) ∧
µα(w2).
Also, µ(w1 · w2) ≥ µ(w1) ∧ µ(w2) = µ(w1) =
µ(w2). Therefore µα(w1 · w2) ≥ µα(w1) = µα(w2) =
µα(w1) ∧ µα(w2).
Again, ν(w1−w2) ≤ ν(w1)∨ ν(w2) = ν(w1) = ν(w2).
This implies that νβ (w1 − w2) ≤ νβ (w2) = νβ (w1) =
νβ (w1) ∨ νβ (w2).
Also, ν(w1 · w2) ≤ ν(w1) ∨ ν(w2) = ν(w1) = ν(w2).
Therefore νβ (w1 ·w2) ≤ νβ (w1) = νβ (w2) = νβ (w1)∨
νβ (w2).

Proceeding in the similar way by considering all the cases,
we get µα(w1 − w2) ≥ µα(w1) ∧ µα(w2), νβ (w1 − w2) ≤
νβ (w1)∨ νβ (w2), µα(w1 · w2) ≥ µ(w1)∧µ(w2) and νβ (w1 ·

w2) ≤ νβ (w1) ∨ νβ (w2) for all w1,w2 ∈ W . Hence the ring
(W ,+, ·) have an (α, β)-PFSR ψ∗ = (µα, νβ ). �

V. LEVEL SUBRING OF (α, β)-PFSR
This section will elaborate (α, β)-PFLSR and it’s properties.
Theorem 6: Assume a ring (W ,+, ·) have an (α, β)-PFSR

ψ∗ = (µα, νβ ), the (α, β)-PFLS ψ∗(θ,τ ) forms a subring of
(W ,+, ·), where θ ≤ µα(0) and τ ≥ νβ (0).

Proof: We have, ψ∗(θ,τ ) = {w1 ∈ W |µα(w1) ≥
θ and νβ (w1) ≤ τ }.

As 0 ∈ ψ∗(θ,τ ), clearly ψ
∗

(θ,τ ) is non empty.
To show, ψ∗(θ,τ ) is a subring of (W ,+, ·), we need to verify

that forw1,w2 ∈ ψ
∗

(θ,τ ),w1−w2 ∈ ψ
∗

(θ,τ ) andw1·w2 ∈ ψ
∗

(θ,τ ).
Let us take w1,w2 ∈ ψ

∗

(θ,τ ). Then µ
α(w1) ≥ θ , νβ (w1) ≤

τ , µα(w2) ≥ θ , νβ (w2) ≤ τ .
Since the ring (W ,+, ·) have an (α, β)-PFSR ψ∗ =

(µα, νβ ), µα(w1 − w2) ≥ µα(w1) ∧ µα(w2)) ≥ θ ∧ θ = θ

and νβ (w1 − w2) ≤ νβ (w1) ∨ νβ (w2) ≤ τ ∨ τ = τ .
Therefore, µα(w1 − w2) ≥ θ and νβ (w1 − w2) ≤ τ . So,

w1 − w2 ∈ ψ
∗

(θ,τ ).
Also, µα(w1 · w2) ≥ µα(w1) ∧ µα(w2)) ≥ θ ∧ θ = θ and

νβ (w1 · w2) ≤ νβ (w1) ∨ νβ (w2) ≤ τ ∨ τ = τ .
Thusµα(w1·w2) ≥ θ and νβ (w1·w2) ≤ τ . So,w1·w2 ∈ W .

Hence ψ∗(θ,τ ) is a subring of the ring (W ,+, ·). �
Definition 8: The subring ψ∗(θ,τ ) of the ring (W ,+, ·) is

called (α, β)-Pythagorean fuzzy level subring (PFLSR) ofψ∗.
Theorem 7: Assume a ring (W ,+, ·) have an (α, β)-PFID

ψ∗ = (µα, νβ ), the (α, β)-PFLS ψ∗(θ,τ ) forms an ideal of the
ring (W ,+, ·), where θ ≤ µα(0) and τ ≥ νβ (0).

Proof: Here ψ∗(θ,τ ) = {w1 ∈ W |µα(w1) ≥
θ and νβ (w1) ≤ τ }. Clearlyψ∗(θ,τ ) is non empty, as 0 ∈ ψ∗(θ,τ ).

To show, the ring (W ,+, ·) have an ideal ψ∗(θ,τ ), we need
to present that w1 − w2 ∈ ψ

∗

(θ,τ ) for w1,w2 ∈ ψ
∗

(θ,τ ) and
w1 · w2 ∈ ψ

∗

(θ,τ ) for w1 ∈ ψ
∗

(θ,τ ), w2 ∈ W .
Assume w1,w2 ∈ ψ∗(θ,τ ), µ

α(w1) ≥ θ , νβ (w1) ≤
τ , µα(w2) ≥ θ , νβ (w2) ≤ τ .
Since, the ring (W ,+, ·) have an (α, β)-PFID ψ∗ =

(µα, νβ ), µα(w1 − w2) ≥ µα(w1) ∧ µα(w2)) ≥ θ ∧ θ = θ

and νβ (w1 − w2) ≤ νβ (w1) ∨ νβ (w2) ≤ τ ∨ τ = τ .
Therefore, µα(w1 − w2) ≥ θ and νβ (w1 − w2) ≤ τ . So,

w1 − w2 ∈ ψ
∗

(θ,τ ).
Now assume that, w1 ∈ ψ

∗

(θ,τ ) and w2 ∈ W .
Then µα(w1 ·w2) ≥ µα(w1)∨µα(w2)) ≥ µα(w1) ≥ θ and

νβ (w1.w2) ≤ νβ (w1) ∧ νβ (w2) ≤ νβ (w1) ≤ τ .
Thus µα(w1 ·w2) ≥ θ and νβ (w1 ·w2) ≤ τ . Consequently,

w1 · w2 ∈ W .
Hence the ring (W ,+, ·) have an ideal ψ∗(θ,τ ). �
Definition 9: The ideal ψ∗(θ,τ ) of (W ,+, ·) is called

(α, β)-Pythagorean fuzzy level ideal (PFLID) of the
(α, β)-PFID ψ∗.
Theorem 8: Assume a ring (W ,+, ·) have an (α, β)-PFS

ψ∗ = (µα, νβ ), ψ∗ = (µα, νβ ) is (α, β)-PFSR of (W ,+, ·)
if all (α, β)-PFLS ψ∗(θ,τ ) forms a subring of (W ,+, ·), where
θ ≤ µα(0), τ ≥ νβ (0).

Proof: Here ψ∗ = (µα, νβ ) is an (α, β)-PFS ofW .
Letw1,w2 ∈ W . Also assume thatµα(w1) = θ1,µα(w2) =

θ2 with θ1 < θ2 and νβ (w1) = τ1, νβ (w2) = τ2 with τ1 > τ2.
Therefore, w1 ∈ ψ

∗

(θ1,τ1)
and w2 ∈ ψ

∗

(θ2,τ2)
.

As θ1 < θ2 and τ1 > τ2, then by Proposition 2, we have
ψ∗(θ2,τ2)

⊆ ψ∗(θ1,τ1)
. Thus w2 ∈ ψ

∗

(θ1,τ1)
.

Now, w1 ∈ ψ
∗

(θ1,τ1)
and w2 ∈ ψ

∗

(θ1,τ1)
.

Since, ψ∗(θ1,τ1) is a subring of (W ,+, ·), w1−w2 ∈ ψ
∗

(θ1,τ1)
and w1 · w2 ∈ ψ

∗

(θ1,τ1)
.

Therefore,µα(w1−w2) ≥ θ1 = θ1∧θ2 = µα(w1)∧µα(w2)
and νβ (w1 − w2) ≤ τ1 = τ1 ∨ τ2 = νβ (w1) ∨ νβ (w2).
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So, µα(w1 − w2) ≥ µα(w1)∧µα(w2) and νβ (w1 − w2) ≤
νβ (w1) ∨ νβ (w2).
Again, µα(w1 · w2) ≥ θ1 = θ1 ∧ θ2 = µα(w1) ∧ µα(w2)

and νβ (w1 · w2) ≤ τ1 = τ1 ∨ τ2 = νβ (w1) ∨ νβ (w2).
Thus µα(w1 · w2) ≥ µα(w1) ∧ µα(w2) and νβ (w1 · w2) ≤

νβ (w1) ∨ νβ (w2).
Since, w1,w2 are random elements of W , µα(w1 − w2) ≥

µα(w1)∧µα(w2), νβ (w1−w2) ≤ νβ (w1)∨νβ (w2) andµα(w1·

w2) ≥ µα(w1)∧µα(w2), νβ (w1 ·w2) ≤ νβ (w1)∨ νβ (w2) for
all w1,w2 ∈ W .
Hence the ring (W ,+, ·) have an (α, β)-PFSR ψ∗. �
Corollary 2: If all (α, β)-PFLS ψ∗(θ,τ ) of an (α, β)-PFS

ψ∗ = (µα, νβ ) is an ideal of the ring (W ,+, ·), then ψ∗ =
(µα, νβ ) is an (α, β)-PFID of the ring (W ,+, ·), where θ ≤
µα(0) and τ ≥ νβ (0).

VI. DIRECT PRODUCT AND RING HOMOMORPHISM OF
(α, β)-PFSR
Definition 10: Let ψ∗1 = (µα1 , ν

β

1 ) and ψ
∗

2 = (µα2 , ν
β

2 )
be two (α, β)-PFS of rings (W1,+, ·) and (W2,+, ·)
respectively. The direct product of ψ∗1 and ψ

∗

2 is referred as
ψ∗1

⊗
ψ∗2 and presented by (ψ

∗

1
⊗
ψ∗2 )(w1,w2) = {µα1 (w1)∧

µα2 (w2), ν
β

1 (w1) ∨ ν
β

2 (w2)}, where (w1,w2) ∈ W1 ×W2.
Theorem 9: Letψ∗1 = (µα1 , ν

β

1 ) andψ
∗

2 = (µα2 , ν
β

2 ) be two
(α, β)-PFSR of rings (W1,+, ·) and (W2,+, ·) respectively.
Then the direct product ψ∗1

⊗
ψ∗2 is an (α, β)-PFSR of the

ring W1 ×W2.
Proof: Letψ∗ = (µα, νβ ) be the direct product ofψ∗1 =

(µα1 , ν
β

1 ) and ψ
∗

2 = (µα2 , ν
β

2 ). That is ψ
∗
= ψ∗1

⊗
ψ∗2 .

We have, (ψ∗1
⊗
ψ∗2 )(w1,w2) = {µα1 (w1) ∧ µα2 (w2),

ν
β

1 (w1) ∨ ν
β

2 (w2)}, where (w1,w2) ∈ W1 × W2. There-
fore µα(w1,w2) = µα1 (w1) ∧ µα2 (w2) and νβ (w1,w2) =
ν
β

1 (w1) ∨ ν
β

2 (w2).
Let (w1,w2) and (w3,w4) be any two elements ofW1×W2.

Then,

µα((w1,w2)-(w3,w4))

= µα((w1 − w3), (w2 − w4))

= µα1 (w1 − w3) ∧ µα2 (w2 − w4)

≥ (µα1 (w1) ∧ µα1 (w3)) ∧ (µα2 (w2) ∧ µα2 (w4))

= (µα1 (w1) ∧ µα2 (w2)) ∧ (µα1 (w3) ∧ µα2 (w4))

= µα(w1,w2) ∧ µα(w3,w4).

Also,

νβ ((w1,w2)-(w3,w4))

= νβ ((w1 − w3), (w2 − w4))

= ν
β

1 (w1 − w3) ∨ ν
β

2 (w2 − w4)

≤ (νβ1 (w1) ∨ ν
β

1 (w3)) ∨ (νβ2 (w2) ∨ ν
β

2 (w4))

= (νβ1 (w1) ∨ ν
β

2 (w2)) ∨ (νβ1 (w3) ∨ ν
β

2 (w4))

= νβ (w1,w2) ∨ νβ (w3,w4).

Therefore µα((w1,w2)-(w3,w4)) ≥ µα(w1,w2) ∧
µα(w3,w4) and νβ ((w1,w2)-(w3,w4)) ≤ νβ (w1,w2) ∨
νβ (w3,w4).
Again,

µα((w1,w2) · (w3,w4))
= µα((w1 · w3), (w2 · w4))
= µα1 (w1 · w3) ∧ µα2 (w2 · w4)
≥ (µα1 (w1) ∧ µα1 (w3)) ∧ (µα2 (w2) ∧ µα2 (w4))
= (µα1 (w1) ∧ µα2 (w2)) ∧ (µα1 (w3) ∧ µα2 (w4))
= µα(w1,w2) ∧ µα(w3,w4).

Also,

νβ ((w1,w2).(w3,w4))
= νβ ((w1 · w3), (w2 · w4))
= ν

β

1 (w1 · w3) ∨ ν
β

2 (w2 · w4)

≤ (νβ1 (w1) ∨ ν
β

1 (w3)) ∨ (νβ2 (w2) ∨ ν
β

2 (w4))

= (νβ1 (w1) ∨ ν
β

2 (w2)) ∨ (νβ1 (w3) ∨ ν
β

2 (w4))
= νβ (w1,w2) ∨ νβ (w3,w4).

Thus µα((w1,w2) · (w3,w4)) ≥ µα(w1,w2) ∧ µα(w3,w4)
and νβ ((w1,w2) · (w3,w4)) ≤ νβ (w1,w2) ∨ νβ (w3,w4).

Hence the direct product ψ∗1
⊗
ψ∗2 is an (α, β)-PFSR of

the ring S1 × S2. �
Corollary 3: Let ψ∗1 = (µα1 , ν

β

1 ) and ψ
∗

2 = (µα2 , ν
β

2 )
be two (α, β)-PFID of rings (W1,+, ·) and (W2,+, ·)
respectively. Then the direct product ψ∗1

⊗
ψ∗2 is an

(α, β)-PFID of the ring W1 ×W2.
Theorem 10: Let (W1,+, ·) and (W2,+, ·) be two rings

and ψ∗ = (µα, νβ ) is an (α, β)-PFSR of the ring (W1,+, ·).
If r : W1→ W2 is a surjective ring homomorphism, r(ψ∗) is
an (α, β)-PFSR of the ring (W2,+, ·).

Proof: Here r(ψ∗)(w) = (r(µα)(w), r(νβ )(w)) for all
w ∈ W2.
Since r : W1 → W2 is a surjective ring homomorphism,

r(W1) = W2.
Let w3,w4 ∈ W2. Then w3 = r(w1) and w4 = r(w2) for

some w1,w2 ∈ W1.
To show, r(ψ∗) is an (α, β)-PFSR of the ring (W2,+, ·),

we need to show that r(µα)(w3 − w4) ≥ r(µα)(w3) ∧
r(µα)(w4), r(νβ )(w3 − w4) ≤ r(νβ )(w3) ∨ r(νβ )(w4) and
r(µα)(w3 · w4) ≥ r(µα)(w3) ∧ r(µα)(w4), r(νβ )(w3 · w4) ≤
r(νβ )(w3) ∨ r(νβ )(w4).

Now,

r(µα)(w3 − w4)
= ∨

{
µα(w1 − w2)|w1,w2 ∈ W1, r(w1) = w3, r(w2) = w4

}
≥ ∨

{
µα(w1) ∧ µα(w2)|r(w1) = w3, r(w2) = w4

}
=
(
∨
{
µα(w1)|w1 ∈ W1 and r(w1) = w3

})
∧
(
∨
{
µα(w2)|w2 ∈ W1 and r(w2) = w4

})
= r(µα)(w3) ∧ r(µα)(w4).

Also,

r(νβ )(w2 − w4)
= ∧

{
νβ (w1 − w2)|w1,w2 ∈ W1 and r(w1)
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= w3, r(w2) = w4}

≤ ∧
{
νβ (w1) ∨ νβ (w2)|w1,w2 ∈ W1 and r(w1)

= w3, r(w2) = w4}

=
(
∧
{
µα(w1)|w1 ∈ W1 and r(w1) = w3

})
∨
(
∧
{
µα(w2)|w2 ∈ W1 and r(w2) = w4

})
= r(νβ )(w3) ∨ r(νβ )(w4).

Therefore, r(µα)(w3 − w4) ≥ r(µα)(w3) ∧ r(µα)(w4) and
r(νβ )(w3 − w4) ≤ r(νβ )(w3) ∨ r(νβ )(w4).

Similarly, we can prove that r(µα)(w3 ·w4) ≥ r(µα)(w3)∧
r(µα)(w4) and r(νβ )(w3 · w4) ≤ r(νβ )(w3) ∨ r(νβ )(w4).
Hence r(ψ∗) is an (α, β)-PFSR of the ring (W2,+, ·). �
Corollary 4: Assume (W1,+, ·) and (W2,+, ·) are two

rings and ψ∗ = (µα, νβ ) is an (α, β)-PFID of the ring
(W1,+, ·). If r : W1 → W2 is a surjective ring homomor-
phism, r(ψ∗) is an (α, β)-PFID of the ring (W2,+, ·).
Theorem 11: Let (W1,+, ·) and (W2,+, ·) be two rings

and ψ∗ = (µα, νβ ) is an (α, β)-PFSR of the ring (W2,+, ·).
If r : W1 → W2 is a bijective ring homomorphism, r−1(ψ∗)
is an (α, β)-PFSR of the ring (W1,+, ·).

Proof: Here r−1(ψ∗)(w1) = (r−1(µα)(w1), r−1(νβ )
(w1)) for all w1 ∈ W1. Let w1,w2 ∈ W1.
Now,

r−1(µα)(w1 − w2) = µα (r(w1 − w2))

= µα (r(w1)− r(w2))

≥ µα(r(w1)) ∧ µα(r(w2))

= r−1(µα)(w1) ∧ r−1(µα)(w2).

Therefore r−1(µα)(w1 − w2) ≥ r−1(µα)(w1) ∧
r−1(µα)(w2) for all w1,w2 ∈ W1.
Similarly, one can prove that r−1(νβ )(w1 − w2) ≤

r−1(νβ )(w1) ∨ r−1(νβ )(w2) ∀w1,w2 ∈ W1.
Again,

r−1(µα)(w1 · w2) = µα (r(w1 · w2))

= µα (r(w1) · r(w2))

≥ µα(r(w1)) ∧ µα(r(w2))

= r−1(µα)(w1) ∧ r−1(µα)(w2).

Therefore r−1(µα)(w1 ·w2) ≥ r−1(µα)(w1)∧r−1(µα)(w2)
∀w1,w2 ∈ W1.
Similarly, one can prove that r−1(νβ )(w1 · w2) ≤

r−1(νβ )(w1) ∨ r−1(νβ )(w2) for all w1,w2 ∈ W1.
Hence r−1(ψ∗) is an (α, β)-PFSR of the ring (W1,+, ·). �
Corollary 5: Assume (W1,+, ·) and (W2,+, ·) are two

rings and ψ∗ = (µα, νβ ) is an (α, β)-PFID of the ring
(W2,+, ·). If r : W1→ W2 is a bijective ring homomorphism,
r−1(ψ∗) is an (α, β)-PFID of the ring (W1,+, ·).

VII. CONCLUSION
This paper initiated the study of (α, β)-PFSRs and
(α, β)-PFIDs of any ring. A relationship between (α, β)-PFSR
and (α, β)-PFID has been established. We have proved that
every IFSR of a ring is an (α, β)-PFSR of that ring. We have
briefly described the concept of level subring of (α, β)-PFSR.

In addition, we have elaborated the (α, β)-PFSR’s direct
product. Furthermore, we looked into the impact of ring
homomorphism on (α, β)-PFSR. We will continue to work
on the classification of (α, β)-PFID’s of a ring in the future.
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