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ABSTRACT Scene graph generation (SGG) aims to detect objects and their relationships in an image,
thereby enabling a detailed understanding of a complex scene for various real-world applications. In SGG
applications such as robot vision, it is important to correctly detect all objects without recognizing any
object as another kind of object or ignoring it. However, previous studies on SGG do not consider unknown
objects whose classes are unseen in training. Consequently, current SGG methods wrongly classify them as
known object classes or overlook them. In this paper, we propose a new problem named ‘‘open-set SGG’’
with unknown objects, focusing on detecting even unknown objects and their relationships. Specifically,
we formally define this new problem and propose an evaluation protocol, including an extended dataset
with unknown objects and novel evaluation metrics designed for the open-set setting. We also build baseline
methods by employing and extending existing SGG methods and compare them through experiments to
establish the current baseline performance of open-set SGG. Finally, we discuss the limitations of the current
SGG methodology in the open-set setting and point out future research directions.

INDEX TERMS Scene graph generation, open-set, object detection.

I. INTRODUCTION
Scene graphs are detailed descriptions of scenes by graphs
consisting of objects as vertices and their relationships as
edges [1]. Recently, the prediction of such a graph from
an image [2] has been studied, which enables automated
scene graph generation (SGG) from an image captured in the
real world and thereby facilitates a detailed understanding of
complex scenes. SGG has a wide range of applications such
as image retrieval [1], visual question answering [3], human-
robot interaction [4], and robot navigation [5].

For obtaining the complex mapping from an image to its
scene graph, SGG methods rely on deep learning driven by
big data, which uses a deep neural network as a prediction
model and estimates its parameters from a large number of
training images with ground-truth scene graphs. However,
due to the difficulty of high-quality manual annotation [6],
existing SGG datasets are limited in terms of the variety of
the object classes with usable labels for training [2]. The
difficulty results in the presence of unknown objects, which
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are absent in the training data. If such an object is present
in the testing phase, the current SGG methods either classify
it into one of the known object classes or completely fail to
detect it by treating it as a part of the background, as shown in
Fig. 1a. In practice, misclassified or overlooked objects lead
to incorrect scene understanding and cause serious problems
in applications; for example, if a robot recognizes an object
as the different kinds of objects, it may take an inappropriate
action on the object, or if it is unaware of the existence of
the object, it may even exhibit dangerous behavior. Although
such a problem setting of handling unseen and untargeted
classes has been referred to as open-set [7] and addressed in
tasks such as image recognition and object detection, it has
never been tackled in the literature of SGG. It involves the
detection of relationships as well as objects.

In this paper, we address the problem of open-set SGG
with unknown objects. To the best of our knowledge, this
is the first study on such a problem. This task predicts a
scene graph where unknown objects are correctly localized
and classified as ‘‘unknown’’, rather than classifying them as
one of the known classes or ignoring them as background,
as shown in Fig. 1b. In addition, this enables the detection
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FIGURE 1. (Left) An example image. Solid and dotted red boxes denote
known and unknown objects, respectively. (Right) Scene graphs for the
image that should be predicted by (a) closed-set scene graph generation
and (b) open-set scene graph generation. Green boxes denote the novel
parts of the proposed open-set problem compared with the previous
closed-set problem. Red and blue circles denote objects and
relationships, respectively.

of relationships involving unknown objects, which previous
studies have completely ignored. Specifically, we first pro-
vide a formal definition of the open-set SGG problem. Then,
we propose an evaluation protocol, including a scene graph
dataset with unknown objects. We construct the dataset from
an existing large-scale dataset by defining unknown object
classes and splitting a sufficient number of training images
without unknown objects. Also, we propose novel evaluation
metrics to quantitatively measure the open-set performance
of SGG, focusing on the effect of unknown objects in both
object and relationship detection. Furthermore, we develop
baseline open-set SGG methods by modifying existing SGG
methods for the open-set setting, introducing model-agnostic
unknown detection by thresholding classification scores.
Through extensive experiments based on the proposed proto-
col, we compare these methods and present initial evaluation
results of the new problem, thereby establishing the baseline
performance of open-set SGG and demonstrating the limita-
tions of the current SGG methodology to be overcome in the
future. The proposed open-set SGG extends the applicability
of SGG in the real world, where the existence of unknown
objects is inevitable.

Our contributions in this paper are summarized as follows:
• We propose the new problem of open-set SGG with
unknown objects and provide its formal definition
(Section III-A).

• We propose an evaluation protocol of open-set SGG,
including an extended dataset (Section III-B), the
low-frequency-first unknown-class selection scheme for
splitting training and testing data, and novel evalua-
tion metrics (Section III-C) named open-set recalls and
open-set object/relationship counts.

• We develop multiple baseline methods of open-set
SGG by employing representative SGG methods and
extending them to unknown-aware versions with model-
agnostic unknown detection (Section IV-A), which is
simple yet effective as demonstrated experimentally.

• We demonstrate the current performance of open-set
SGG by comparing the baseline methods through exten-
sive experiments based on the proposed evaluation

protocol (Section IV-C), discussing the limitations of
the current SGG methodology, and pointing out future
research directions (Section V).

• Wewill make our implementation (Section IV-B) for the
dataset preparation, baseline methods, and experiments
publicly available upon publication as a benchmark of
open-set SGG to facilitate future research.

II. RELATED WORK
A. SCENE GRAPH GENERATION
Scene graphs provide a more detailed description of scenes
than image recognition (image-wise object classification)
and object detection (localization and region-wise classifi-
cation), detecting not only individual objects but also their
relationships [1]. First, we recall the definition of closed-set
SGG, i.e., the previous problem setting that considers known
objects only. Let K be a set of known object classes. Given
an RGB image I ∈ RW×H×3, where W ,H ∈ N+ are its
width and height, respectively, object detection, which is a
subproblem of SGG, aims to localize and classify each i-th
object by predicting bounding box bi = (xi, yi,wi, hi) ∈ R4,
which are the horizontal and vertical center locations, width,
and height of the bounding box, respectively, and object class
oi ∈ K. SGG further detects each l-th relationship for object
pair (il, jl) by predicting relationship class rl ∈ C, where
C is the set of relationship classes. The goal of closed-set
SGG is to build a model that can predict these bounding
boxes and classes for all objects and predict relationships
in the given image, i.e., a mapping from I to label T =
({bi, oi}ni=1, {il, jl, rl}

m
l=1), where n,m ∈ N+ are the numbers

of objects and relationships, respectively. This is typically
achieved by data-driven learning using pairs of images and
ground-truth labels as training data.

The most widely-used SGG dataset is Visual Genome
(VG) [6], which is a large-scale dataset consisting of images
from object detection datasets such as MS COCO [8] and
labels made by crowdsourcing-based annotation. The major-
ity of SGG studies [9]–[14] also employ the preprocessing
proposed for the early SGG method named iterative message
passing (IMP) [2], which removes noisy labels inVG and then
randomly splits images into training and testing data.

As large-scale datasets such as VG have become available,
many SGG methods have employed the modern deep-
learning approach, and various models have been pro-
posed [2], [9]–[12], [15]–[18]. These models make full use
of the continuously evolving methodology of deep neural
networks consisting of various components, e.g., convolu-
tion [17], graph convolution [10], long short-term mem-
ory [9], and transformers [18], resulting in quite different
network architectures among models. Since the selection of
the best model depends on the types of targeted scenes and
individual applications, we do not aim to build a specific
model for open-set SGG in this paper.

Apart from models, various SGG techniques have been
proposed, e.g., losses [11], [14] and learning strategies [13],
[19], aiming at improved performance regardless of model.
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These topics are orthogonal to our open-set SGG, whose
focus is on dealing with unknown objects rather than improv-
ing closed-set performance. Applying these techniques to the
open-set setting is out of the scope of this paper.

While we consider the open-set setting of SGG for the first
time, previous SGG studies addressed related topics called
few-shot and zero-shot learning [20], [21]. These settings in
the context of SGG are different from our open-set SGG since
they aim to detect relationships that involve rarely-seen or
unseen combinations of seen object classes that are present
in training data. e.g., predicting the ‘‘stand on’’ relationship
between the ‘‘elephant’’ and ‘‘street’’ objects when all these
classes appear in the training data but their combination
does not [22]. Instead, we deal with unseen object classes
themselves in our open-set SGG setting. We naturally handle
unseen class combinations in this setting since any class com-
binations involving unknown classes are necessarily unseen
in training. Meanwhile, we do not separately consider the
previously-addressed case, i.e., unseen combinations of seen
classes only, since it requires a specialized train-test data
split. Although there is a recent study [23] that claims to
address ‘‘open-set SGG’’, its problem setting is closer to
zero-shot learning in the non-SGG literature, e.g., image
recognition and object detection [24], [25]. It attempts to
classify individual unseen classes by associating them with
seen classes using external knowledge such as language
information. In contrast, our problem setting of open-set
SGG is consistent with those of open-set recognition and
detection described in Section II-B, i.e., we do not distinguish
within unknown objects but aim to separate them from known
classes (technically by assigning their instances to a special
single ‘‘unknown’’ class) without the need of additional
information.

SGG has been further extended using additional data, e.g.,
language information such as captions [22], [26], temporal
information from videos [27]–[29], and 3D spatial informa-
tion from depth images or point clouds [4], [5], [30]–[33].
Although the ability to handle unknown objects is also impor-
tant in these augmented problem settings, we focus on the
open-set generalization of the standard single-image SGG
problem, leaving these advanced topics for future research.

B. OPEN-SET OBJECT DETECTION
Open-set image recognition [34] is a relatively new research
topic that aims to deal with unknown classes in image-
wise classification [7]. It typically consists of a conventional
closed-set recognition part and an unknown detection part,
and the unknown detection part is technically similar to
anomaly detection [35] and novelty detection [36] in rejecting
unknown classes, although open-set recognition also classi-
fies known objects in the closed-set recognition part. While
early studies employed traditional learning techniques such
as the support vector machine [37], [38], motivated by recent
advancements in closed-set recognition using deep learn-
ing, deep neural networks have become popular in open-set
recognition [39], [40]. Recently, the open-set methodology of

image-wise classification has been extended to region-wise
classification after localization, thereby initiating the problem
of open-set object detection [41]–[44].

The main difference of the proposed open-set SGG prob-
lem from the open-set object detection is that SGG classifies
all objects and their relationships simultaneously, consider-
ing their contextual dependencies. Thus, we present novel
experimental results for relationship-aware open-set object
detection and relationship detection, both of which have not
been evaluated by the previous studies. In addition, unlike
a recent evaluation study [43] on open-set detection, we
compare several baselinemethods, including unknown-aware
extensions of existing methods. Although more sophisticated
unknown detection techniques have been proposed for open-
set recognition [39], [40] and object detection [44], we leave
integration of such advanced techniques with state-of-the-art
SGG methods as a future research topic.

Another important difference from object detection is that
SGG needs a specialized dataset with ground-truth relation-
ship labels for training and testing. Thus, we cannot reuse
the open-set detection datasets with unknown objects used
in the previous studies, nor follow their dataset construction
scheme [43], [44], which relied on the availability of multiple
large-scale datasets with mutually exclusive class definitions.
Instead, we propose a frequency-based class selection scheme
for defining unknown classes, which enables us to split train-
ing images without unknown classes while maintaining suf-
ficient training data as part of our novel evaluation protocol
for open-set SGG.

Open-set problems have been further extended to open-
world problems [44]–[46], where unknown classes incremen-
tally turn into new known classes. Extending open-set SGG
to open-world is an interesting but advanced topic, thus being
out of the scope of this work.

The differences between the proposed open-set SGG com-
pared with closed-set SGG and open-set object detection are
summarized in Table 1. This table highlights the novelty of
this work.

III. OPEN-SET SCENE GRAPH GENERATION
A. PROBLEM FORMULATION
In closed-set SGG, if the assumption oi ∈ K is violated,
i.e., if an object does not belong to any known class in K
is present in an image I , either (1) the model will classify
it to one of the known classes, or (2) the model will treat
it as background and not detect it as an object. This has
not been regarded as a failure in previous studies. On the
other hand, in this study, we consider that the prediction
for an unknown object has failed if (1) all predicted objects
overlapping with it are classified into known classes. We also
consider so if (2) no predicted objects overlap with it. Here,
we assume that the ground-truth label of the unknown object
is available. Such a failure in object detection also has a
negative impact on relationship detection since the prediction
of relationship classes is typically conditioned on predicted
object classes [9].
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TABLE 1. Difference of problems addressed in this study and previous studies in terms of detectable entities.

Now, we provide the formal definition of open-set SGG
by extending that of the closed-set SGG. In open-set SGG,
we also have a set of unknown object classes U , which is
excluded from the known classes, i.e., K ∩ U = ∅, and
each object class may be either known or unknown, i.e.,
oi ∈ K ∪ U . This is the essential difference from the closed-
set setting. By the definition of the open-set recognition
setting [7], any object of the unknown classes cannot appear
in training images, i.e., the model cannot see objects of the
unknown classes in training and thus cannot learn how to
classify objects into these classes. Hence, we do not include
the individual unknown classes in the target classes of object
classification and aim to assign objects of any unknown
classes to the special single class ‘‘unknown’’ in testing. This
class assignment is typically achieved by introducing some
training-free mechanisms of unknown detection to the model,
which is only enabled in testing. Moreover, in open-set SGG,
the object pair of each relationship consists of two known
objects (as in closed-set SGG), one known object and one
unknown object, or two unknown objects. This new problem
formulation allows us to tackle the issues of the closed-set
SGG in the presence of unknown objects, i.e., wrong classi-
fication and failure in detection.

B. DATASET
In order to bypass the difficulty of large-scale annotation from
scratch and to naturally extend the previous methodology
of closed-set SGG such as noise-label removal and known-
class selection to the open-set setting, we make full use of
the existing data by employing the combination of the VG
dataset and the IMP preprocessing, introducing unknown
objects to it. Specifically, we alter the IMP preprocessing to
select unknown object classes and then extract images with-
out unknown objects for training, which is a requirement of
the open-set setting. To avoid using noisy class labels, we first
discard low-frequency classes by selecting the most frequent
1,500 object classes in terms of the number of objects in VG
(after removing small or overlapping objects in the original
IMP preprocessing). This results in at least 100 objects per
class. Among them, we use the same 150 object classes as in
IMP as known object classes to facilitate comparison with the
previous closed-set setting, and we select unknown classes
from the other 1,350 classes.

The issue here is that an image must belong to testing
data if it contains any objects belonging to unknown classes;
otherwise, a model would learn to treat unknown objects
as background since they have no bounding box labels in
training data. Such violation of the open-set assumption leads
to low performance for unknown objects in testing. How-
ever, a random selection of unknown classes may assign

most images in the dataset to testing, leading to unsuccessful
training due to insufficient data. Indeed, as shown in Fig. 2,
the number of testing images rapidly grows as we randomly
add classes to the unknown set, leaving almost no training
images. Note that previous studies on open-set object detec-
tion did not face this issue, since they could combine multiple
datasets with mutually exclusive class definitions to ensure
that images from one dataset do not contain the classes from
the others [43], [44], while we do not have other large-scale
datasets like VG to be combined.

To overcome this issue, we propose to select unknown
classes from low-frequency classes, which results in almost
linear correspondence between the number of unknown
object classes and that of testing images, as shown in Fig. 3.
We name this the low-frequency-first unknown-class selec-
tion scheme. This enables us to easily control the ratio
between the numbers of training and testing images by that
of known and unknown classes. Here, we approximate the
ratio of the original IMP split (the image splitting scheme of
the VG dataset employed by the IMP preprocessing), i.e., 7:3
between training and testing, by selecting 30% of the lowest
frequency classes for 406 unknown classes from the 1,350
classes.

After defining known and unknown classes, we remove
the object whose classes are neither known nor unknown by
dropping their bounding boxes and also remove their relation-
ships from each image. Then, we also remove the images that
consequently have no objects or relationships, which would
not contribute much to SGG training, following previous
studies [10], [13]. Other parts of the IMP preprocessing, e.g.,
removing invalid images in VG and selecting 50 relationship
classes, are unchanged.

C. METRICS
1) CLOSED-/OPEN-SET RECALLS
For quantitative SGG evaluation, recall-based metrics are
often used. They count correctly-detected ground-truth rela-
tionships in each image. Specifically, we use the following
types of commonly-used recall-based metrics that perform
prediction differently [22]:

SGCls (scene graph classification) is a recall of the predic-
tion of object classes and relationship classes given
ground-truth bounding boxes.

SGDet(scene graph detection) is a recall of the prediction
of bounding boxes along with the classes without
using any ground-truth labels of bounding boxes
nor classes.

We simply refer to the collection of metrics of these two
types as recalls in this paper. Note that we do not use Pred-
Cls (predicate classification), another common SGG metric,
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FIGURE 2. The number of unknown object classes vs. the total number of
testing images (i.e., images with any objects of unknown classes) when
unknown classes are selected randomly. The mean number of images
over 10 trials is plotted with its standard deviation represented by the
gray area.

FIGURE 3. The number of unknown object classes vs. the total number of
testing images when unknown classes are selected from low frequency
classes.

since it needs the support of ground-truth object class labels
in relationship detection, which is generally nontrivial for
unknown classes and requires model-dependent modifica-
tions (e.g., when class-wise embeddings are needed [9], [12]).
Also, note that, by following the previous SGG studies [2],
we do not use precision metrics for SGG evaluation. This is
because they may penalize the detection of unlabeled objects
and relationships in VG, whose annotation is incomplete due
to the limitation of crowdsourcing and yield uninterpretable
metric values.

To compute a specific recall metric, we count each
ground-truth relationship where it is correctly localized and
classified. That is, it has at least one predicted relation-
ship whose two corresponding bounding boxes overlap with
the ground-truth boxes respectively with intersection over
union (IoU) over 0.5 and whose two object and one relation-
ship classes match the ground-truth classes. Note that in the
case of SGCls, all predicted relationships are estimated using
the ground-truth bounding boxes, and thus all ground-truth
relationships are always correctly localized. In addition,
we only consider top-K predicted relationships sorted by the
product of the classification scores corresponding to the three
classes in each relationship and denote each recall-based
metric by its type suffixedwith the K value, e.g., SGDet@100
when K = 100.

In our evaluation protocol, we adapt each recall metric to
the open-set setting and consider the following two versions:

The closed-setversion ignores ground-truth unknown objects
and does not count the relationships involving them.

This is equivalent to the recall-based metric used in
previous closed-set SGG studies.

The open-setversion regards all unknown classes as the
single ‘‘unknown’’ class and treats it in the same
manner as individual known classes when matching
ground-truth and predicted object classes.

By comparing these two versions, we can see the effect of
unknown objects in SGG and highlight problems in previous
evaluation protocols. Note that, while the closed-set recalls
have been extensively used in previous studies on SGG, the
open-set recalls are a novel collection of evaluation metrics
proposed in this paper, which is designed specifically for the
new problem of open-set SGG.

2) OPEN-SET OBJECT/RELATIONSHIP COUNTS
In addition to these metrics as a natural extension of previous
closed-set SGG, we also propose recall-like metrics designed
for detailed analysis of object and relationships detection in
open-set SGG with unknown objects, inspired by previous
studies in open-set object detection [41], [43], [44]. As in
the case of the recall-based metrics, we count ground-truth
objects or relationships in each image. For the first of the two
metric collections that we propose, we count ground-truth
objects while distinguishing whether each of them belongs to
(0) known or (1) unknown classes (where we enumerate these
cases using the number of unknown objects to be consistent
with the relationship-counting metrics described below) and
whether its prediction is

(a) correct: the ground-truth object is correctly localized
and classified (possibly into the single ‘‘unknown’’
class) by a predicted object. Here, we define the cor-
rect localization and classification for objects in the
same manner as object detection. That is, for correct
localization, the predicted object must overlap with
the ground-truth object with IoU over 0.5. For correct
classification, the overlapping object, or if multiple
overlapping predicted objects exist, at least one of them
must have the same class as the ground-truth object.

(b) wrong: it is correctly localized by one ormore predicted
objects but not correctly classified by any of them.

(c) background: it is not correctly localized by any pre-
dicted objects.

We also consider only top-K predicted objects sorted by
object classification scores. By considering all possible
combinations of the two ground-truth categories (0/1) and
the three prediction categories (correct/wrong/background),
we obtain six scores in total. We denote each count-based
metric by the combination of two categories, e.g.,
‘‘0-correct’’ for known and correctly-classified objects and
‘‘1-background’’ for unknown and undetected objects. Also,
we call the proposed collection of these six count-based
metrics open-set object counts (OSOC), which are suffixed
by an actual K value, e.g., OSOC@100. We note that the
number of unknown objects classified as known (‘‘1-wrong’’)
coincides with absolute open-set error proposed for open-set
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object detection [41], which was also used in the recent
study proposing a state-of-the-art open-set object detection
method [44].Meanwhile, we do not use precision-likemetrics
such as another open-set detection metric called wilderness
ratio [43] since they are not suitable to the sparsely annotated
VG dataset as described above.

Similarly, we count the number of ground-truth relation-
ships by distinguishing the number of unknown objects that
are involved in it, i.e., (0) zero, (1) one, or (2) two, and
whether its prediction is (a) correct (correctly localized and
classified), (b) wrong (correctly localized but not correctly
classified), or (c) background (not detected). Here, the defi-
nition of the correct localization and classification of relation-
ships, as well as the top-K selection, are the same as SGDet.
We call the collection of the resulting nine metrics open-set
relationship counts (OSRC).

IV. EXPERIMENTS
A. BASELINE METHODS
To establish the baseline for the new problem of open-set
SGG, we evaluated several different SGG methods in our
experiments. More specifically, we compared the follow-
ing representative models originally proposed for closed-set
SGG:

Freq [9]is a simple model that predicts relationship classes
by using their frequencies given object classes.
It takes the object classes of each pair predicted by
object detection and returns the most probable rela-
tionship class given them by referring to the object-
conditioned relationship-class distribution learned
from training data. It is called a strong baseline [10]
because it often achieves surprisingly high perfor-
mance without using other information to classify
relationships.

IMP [2]is the model of one of the earliest SGG methods.
It uses iterative message passing on image-wise
graphs to predict both object and relationship
classes in consideration of their context. Though it
is relatively simple, its performance is reportedly
comparable to more recent models [29].

VCTree [12] is a recent model that uses dynamic tree
structures to perform context-dependent message
passing while considering hierarchical relation-
ships of objects. This model has been employed
in more recent studies that focus on SGG tech-
niques other than models, including losses and
learning strategies, to achieve state-of-the-art
performance [13], [14].

For a fair comparison, we fixed the network architecture
other than the relationship detection part of these models.
In particular, for the object detection part, which precedes
the relationship detection part and predicts bounding boxes
and object classes, we employed Faster R-CNN [47] as in
the majority of SGG studies [9], [13]. It has been known that
the two-stage design of Faster R-CNN is advantageous for

open-set object detection [43] since its first region-proposal
stage relies only on class-agnostic objectness, thereby being
able to localize unknown objects similar to the objects in
the training data. The relationship detection part may further
update the outputs of the object detection part, depending on
models, and yields final outputs, i.e., bounding boxes, object
classes, and relationship classes. The objects and relation-
ships are ordered by classification scores for these classes.

Furthermore, we built an unknown-aware version of each
previous method by introducing a simple technique for
unknown object detection, thereby enabling the measure-
ment of the baseline performance of unknown-aware SGG.
This also enables detection of the relationships of unknown
objects without further modification to models, exploiting the
similarity of known and unknown objects. By noticing that
classification scores represent the confidence of being known
classes, we applied thresholding to the class-wise scores of
each predicted object, and if the scores for all classes were
below a threshold, we updated the object class to the single
‘‘unknown’’ class. Note that this thresholding was not applied
in training since the open-set setting assumes that unknown
objects are only present in testing. Also, note that similar
thresholding techniques have been widely used in open-set
image recognition and object detection [34], [37], [38], [40],
[44], although they relied on more complicated strategies
for score calculation, etc., which are out of scope of this
paper. We denote the new unknown-detecting version of each
previous method with suffix ‘‘+’’, e.g., Freq+.

Given the VG dataset with unknown objects described in
Section III-B, we trained each model using the training data
and evaluated it quantitatively by computing the metrics in
Section III-C over the testing data. Here, we performed
prediction by the two versions for each of the three models,
thereby comparing six baseline methods. In addition, we per-
formed qualitative evaluation by visualizing predicted scene
graphs on several images.

B. IMPLEMENTATION
We employed the publicly-available implementation1 of a
previous study on closed-set SGG [13], which supports
multiple SGG models, including the above-mentioned ones
and several metrics such as SGCls and SGDet. Note that
the unbiasing technique, which was the main focus of the
previous study [13], was not used since it is orthogonal
to our study. We modified the code of this implementa-
tion to support the thresholding-based unknown detection
described in Section IV-A and the proposed open-set met-
rics in Section III-C. This implementation also depends on
the VG dataset, which is publicly-available.2 Additionally,
to introduce unknown objects to the dataset as described in
Section III-B, we modified the code of the implementation3

1https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch/tree/
master/maskrcnn_benchmark

2https://visualgenome.org
3https://github.com/danfeiX/scene-graph-TF-release
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of IMP [2], whose preprocessing is also assumed by the main
implementation [13]. We also modified the IMP code for the
visualization mentioned in Section IV-A.

For the hyperparameters of the previous methods,
we reused the default values in the implementation [13].
Meanwhile, we tuned the only hyperparameter introduced in
this study, which is the threshold value for each unknown-
detecting method. Specifically, we optimized open-set
SGDet@100 over validation data, which were split from the
training images by selecting additional unknown classes in
the same manner as the testing data in Section III-B. Note
that the closed-set version of this metric is also used for
validation for early stopping, etc. in the implementation [13].
Here, we set the ratio between the numbers of training and
validation images to 6:1 and performed a grid search over
the threshold values from 0.1 to 0.9 with stride 0.1, based on
the fact that scores are bounded in [0, 1]. After validation,
we retrained the method using the original training data,
including the validation data, to maximize the amount of
training data. Then, we tested it with the best threshold value.

C. RESULTS
1) CLOSED-/OPEN-SET RECALLS
First, we show the quantitative results of the previous metrics,
i.e., closed-set recalls, computed over the testing data of our
new training-testing data split of the VG dataset for each
previous closed-set method, in Table 2. Here, we computed
each metric for each image and averaged over all images
in the testing data while using the same K values 20, 50,
and 100 as previous studies [13], [14]. We can see that the
metric values are close to previously-reported results [13] for
the original split defined by the IMP preprocessing, where
unknown objects were not considered, indicating that our new
split of the VG dataset itself does not affect the closed-set
performance so much.
TABLE 2. Closed-set recalls.

Next, we show the results measured by the proposed new
metrics, i.e., open-set recalls, in Table 3. Here, we compare
both the original versions of the previous methods and their
unknown-detecting versions (denoted by the suffix ‘‘+’’).
We first observe that the scores of the original methods were
significantly lower than those in the closed-set setting in
Table 2. This result reveals the limitation of the closed-set
SGG evaluation protocols used in previous studies for open-
set SGG, i.e., they can yield unrealistically high-performance
scores in the presence of unknown objects, which is often
the case in practice and thus problematic in applications.
We believe that our new open-set evaluation protocol better
reflects the real-world performance of SGG. Another obser-
vation is that each method’s performance could be improved
consistently for all metrics when the thresholding-based

TABLE 3. Open-set recalls. The ‘‘+’’ suffix indicates the methods with
thresholding-based unknown detection.

unknown detection was enabled. Thus, despite being simple,
the thresholding technique can be effectively used to build
baseline methods of open-set SGG by turning any closed-set
method into an unknown-aware version.

Overall, the methods based on the VCTree model achieved
the highest performance in both the closed- and open-set
settings, although our open-set methodology proposed in this
paper is orthogonal to models and can be applied to any newer
methods.

2) OPEN-SET OBJECT/RELATIONSHIP COUNTS
To perform a quantitative analysis of open-set SGG in more
detail, we invoke another collection of new metrics, i.e.,
OSOC. Similar to recalls, each count-based metric was com-
puted for each image and averaged over all testing images.
We show a plot of the results only where K is equal to
100 in Fig. 4, as we observed that other K values yielded
similar results. From this plot, we can clearly see that each
unknown-aware version successfully recovered a significant
proportion of the unknown objects (areas of ‘‘1-correct’’ of
the ‘‘+’’-suffixed methods) that were wrongly classified to
any known classes by their original versions (‘‘1-wrong’’
areas of the non-suffixed methods). This demonstrates the
effectiveness of the simple thresholding-based unknown
detection in dealing with unknown objects in SGG. Mean-
while, the unknown-aware versions slightly reduced the num-
ber of correctly-classified known objects (‘‘0-correct’’). This
result can be considered as a side effect of the unknown detec-
tion, suggesting room for improvement. We also observe that
the simple thresholding could not recover undetected objects,
which were treated as background (‘‘1-background’’). Over-
coming this limitation requires the redesign of the object
detection part of each model, thereby being another future
research direction.

We also plot the results of OSRC@100 in Fig. 5. We first
observe that all the original methods without unknown detec-
tion could not detect most ground-truth relationships and
treated them as background (‘‘0/1/2-background’’), confirm-
ing the well-known difficulty of SGG compared with object
detection. Consequently, their unknown-detecting versions,
which can only change the object classes in detected relation-
ships, could not improve so much. Still, these methods, espe-
cially VCTree+, managed to fix some wrongly-classified
unknown objects (‘‘1-correct’’ and ‘‘2-correct’’). Expanding
these areas of successful predictions is a main future issue of
open-set SGG to go beyond the baseline established in this
paper.
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FIGURE 4. Open-set object counts@100. The ‘‘+’’ suffix indicates the
methods with thresholding-based unknown detection. The ‘‘0-’’ and ‘‘1-’’
prefixes indicates known and unknown ground-truth objects, respectively.

FIGURE 5. Open-set relationship counts@100. The ‘‘+’’ suffix indicates
the methods with thresholding-based unknown detection. The ‘‘0-’’, ‘‘1-’’,
and ‘‘2-’’ prefixes indicates the number of unknown objects in each
ground-truth relationship.

3) VISUALIZATION
For qualitative evaluation, we visualize the ground-truth
and predicted scene graphs on examples of testing images
in Figs. 6 to 8. Here, we show the predictions by the
best-performing model in Section IV-C1, i.e., VCTree+. Fol-
lowing the IMP visualization [2], we show each predicted
relationship only if both of its objects overlap with any
ground-truth relationships, similarly to recall metrics such as
SGDet. Here, to avoid cluttered visualization while focusing
on open-set-specific factors, we consider only ground-truth
relationships with any unknown object. Note that the object
indices (e.g., ‘‘1’’ of ‘‘unknown1’’) in these figures are added
just for the purpose of explanation and did not exist neither
in ground-truth nor predicted graphs.

FIGURE 6. Visualization of scene graphs for a testing image. (top)
Ground-truth scene graph. (bottom) Predicted scene graph by VCTree+.

FIGURE 7. Visualization of scene graphs for a testing image. (top)
Ground-truth scene graph. (bottom) Predicted scene graph by VCTree+.

In Fig. 6, the unknown-awaremethod successfully detected
the keyboard object, along with its ‘‘on’’ relationship with
the ‘‘desk’’ object. Meanwhile, the PC object (‘‘unknown4’’
in the ground truth) under the desk could not be detected,
which is the limitation of the current thresholding-based
unknown detection that cannot recover the objects treated
as background, as discussed in Section IV-C2. In Fig. 7,
the method succeeded in detecting relationships involv-
ing an unknown object (‘‘unknown0’’ and ‘‘unknown1’’ in
the ground truth and prediction, respectively), where the
‘‘man’’ and his ‘‘hand’’ are ‘‘holding’’ it. Here, the method
could also find the reversed relationship that the object is
‘‘in’’ the ‘‘hand’’. Meanwhile, the ‘‘woman’’ was wrongly
classified as ‘‘unknown’’, which explains the side effect
of the unknown detection, i.e., the decreased number of
correctly-classified known objects (the ‘‘0-correct’’ metric)
observed in Section IV-C2. In Fig. 8, the unknown object
(‘‘unknown5’’ and ‘‘unknown0’’, respectively) on the ‘‘build-
ing’’ wall was detected, but the relationship between the
unknown object and the ‘‘building’’ object was predicted
as ‘‘on’’ instead of the true class ‘‘in front of’’, which is
semantically not critically wrong but still affects the perfor-
mancemeasured bymetrics such as SGDet. This kind of class
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FIGURE 8. Visualization of scene graphs for a testing image.
(top) Ground-truth scene graph. (bottom) Predicted scene graph.

ambiguity is also an issue in closed-set SGG and has been
addressed in recent studies [13], [14], [48], and may also be
of interest in the future research of open-set SGG.

V. CONCLUSION
Previous SGG studies have ignored the existence of unknown
objects, and thus the real-world performance of SGGhas been
limited. In this paper, we addressed the new problem of open-
set SGG, which allows us to detect unknown objects and
also relationships involving them. Specifically, we formalized
the problem and proposed an evaluation protocol including a
dataset and metrics. We also presented the first experimental
results on open-set SGG by comparing original and modified
versions of previous methods to establish the baseline of
open-set SGG. We believe that these contributions facilitate
future researches in this unexplored yet important problem
and also extend the applicability of SGG to various real-world
scenarios.

Finally, we point out several future research directions of
open-set SGG. While we employed the simple thresholding
technique to build the baseline of unknown-aware versions,
various unknown detection techniques have been proposed
for open-set image recognition and object detection [38],
[40], [44]. By appropriately combining these techniques with
open-set SGG, we will be able to enhance unknown object
detection and thereby relationship detection, hopefully deal-
ing with the issues observed in Section IV, i.e., known objects
classified into the ‘‘unknown’’ class and completely unde-
tected objects. Meanwhile, importing the actively-developed
techniques of conventional closed-set SGG into open-set
SGG, e.g., network architectures, losses, and learning tech-
niques, which are orthogonal to this study, is also impor-
tant to enhance the performance against both known and
unknown objects. Among them, we believe that techniques
to deal with the ambiguity of relationship classes [13], [14],
[48], which we observed in Section IV-C3, are particu-
larly beneficial for open-set SGG. Although relationships
have relatively less variety compared with objects, allowing
unknown relationship classes as a further generalization of

open-set SGG may also help mitigate difficulties due to
ambiguous annotations inherent in large-scale SGG datasets.
Inspired by attribute-based zero-shot learning [24], the use
of object attributes, which are already available in datasets
like VG [6] but currently unexploited for SGG, may be useful
in the classification of unknown objects e.g. by distinguish-
ing unknown classes using their common visual attributes.
Recent advancements in the use of 3D-spatial and temporal
information [31]–[33] may further benefit open-set SGG tar-
geted at real-world applications such as robot navigation.
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