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ABSTRACT Source code search plays an important role in software development, e.g. for exploratory
development or opportunistic reuse of existing code from a code base. Often, exploration of different
implementations with the same functionality is needed for tasks like automated software transplantation,
software diversification, and software repair. Code clones, which are syntactically or semantically similar
code fragments, are perfect candidates for such tasks. Searching for code clones involves a given search query
to retrieve the relevant code fragments. We propose a novel approach called Clone-Seeker that focuses on
utilizing clone class features in retrieving code clones. For this purpose, we generate metadata for each
code clone in the form of a natural language document. The metadata includes a pre-processed list of
identifiers from the code clones augmented with a list of keywords indicating the semantics of the code
clone. This keyword list can be extracted from a manually annotated general description of the clone class,
or automatically generated from the source code of the entire clone class. This approach helps developers
to perform code clone search based on a search query written either as source code terms, or as natural
language. With various experiments, we show that (1) Clone-Seeker is effective in finding clones from
BigCloneBench dataset by applying code queries and natural language queries; 2) Clone-Seeker has a higher
recall when searching for semantic code clones (i.e., Type-4) in BigCloneBench than the state-of-the-art; 3)
Clone-Seeker is a generalized technique as it is effective in finding clones in Project CodeNet dataset by
applying code queries and natural language queries. 4) Clone-Seeker with manual annotation outperforms
other variants in finding clones on the basis of natural language queries.

INDEX TERMS Annotation, code clone, code clone search, keyword extraction, information retrieval.

I. INTRODUCTION
Software plays a central role in society, touching billions of
lives on a daily basis. Writing and maintaining source code
is a core activity for software developers, who aim to provide
reliable and functional software [1]. One of the challenges
a software developer faces when writing new code is to
find out how to implement a certain functionality (e.g., how
to implement quick sort) [2]. The implementation of such
functionality might already be realized by other developers
and can be reused rather than written from scratch. Over the
years, a huge number of open source and industrial software
systems have been developed and the source code of these
systems is typically stored in source code repositories such
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as GitHub. This source code can be treated as an important
reusable asset for developers [3].

Many software development and maintenance tasks rely
on effective code search [4] to find the source code related
to a specific functionality. In modern software development,
developers often refer to web search engines in order to search
for code examples from large amounts of online resources
such as GitHub, online tutorials, technology blogs, API doc-
uments, social media posts, etc. [5], [6]. Indeed, code search
is an integral part of software development; developers spend
up to 19% of their development time on code search [7]. Simi-
larly, studies have even revealed that more than 60% of devel-
opers search for source code examples every day [8], [9].

Source code examples or code fragments can help devel-
opers understand how others addressed the similar prob-
lems [10]–[15] and can serve as a basis for writing new
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programs [16], [17]. These code examples can accelerate
the development process [18] and increase the product qual-
ity [19]. A working code example can be considered for both
learning and pragmatic reuse. Such working code examples
can spawn a wide range of applications, varying from API
usage (e.g., how to use the JFreeChart library1 to display
a chart in Java) to basic algorithmic problems (e.g., how
to implement quick sort). An ideal working code example
should be concise, complete, self-contained, and easy to
understand and reuse. Code clones can be considered as the
ideal code examples as they are more stable and possess less
risk than new development [20]–[22].

Code clones are usually categorized as Type-1, Type-2,
Type-3 and Type-4 [23]–[26] clones, based on their level
of similarity with each other. Type-1 clones are same code
fragments, except for dissimilarities in comments, layout,
and whitespace. Type-2 clones refer to same code frag-
ments, except for dissimilarities in literal values and identifier
names, in addition to Type-1 clone dissimilarities. Type-3
clones are syntactically similar code fragments with differ-
ences in their statements. Such fragments can contain addi-
tions, modifications and/or removals to their statements with
respect to each other, in addition to the changes allowed for
Type-1/-2 clones. Type-4 clones are also known as seman-
tic clones, which have similar functional behavior, even
if the syntax of the code is different. Type-3 and Type-
4 clones are further categorized into four sub-categories
based on their syntactic similarity: Very Strongly Type 3
(VST3) with a similarity in range of 90% (inclusive) to 100%,
Strongly Type 3 (ST3): 70–90%, Moderately Type 3 (MT3):
50–70%, and Weakly Type 3/Type 4 (WT3/4):0-50% in Big-
CloneBench [27], [28]. Developers often need to search for
these code clones to improve their code [2] for address-
ing software engineering challenges such as software diver-
sification [29], software repair [30], and even automated
software transplantation [31]. According to Kapser and God-
frey [20], code clones are helpful in exploratory development,
where one wishes to rapidly develop a new feature using a
clone-and-own approach, and not necessarily unify (refactor,
parameterize, etc. ) the existing clones. Hence, such a cloning
approach allows flexibility and increased productivity in an
opportunistic programming scenario.

However, searching for code clones (or code fragments in
general) is challenging, because there is only a small chance
(10-15%) that developers would guess the exact words used
in the code [32] and use them in their query. Similarly, source
code is structured non-linearly; this makes it difficult to be
read in a linear fashion like normal text, and be searched
effectively. There are several other factors which depends
on the effectiveness of code search such as quantity of data,
quality of the indices [2], [33], search technique, query, and
metadata (also known as natural language document). Often
it is difficult for a developer to formulate an accurate query
to express what is really in her/his mind, especially when the

1https://www.jfree.org/jfreechart/

maintainer and the original developer are not the same person.
When a query performs poorly, it has to be reformulated. But
the words used in a query may be different from those that
have similar semantics in the source code, i.e., the synonyms,
which will affect the accuracy of code search results. For
example, in Java, the programming concept ‘‘array’’ does not
match with its syntactic representation of ‘‘[ ].’’ Code search
engines can more effectively assist developers over the search
query, if such semantic mappings exist. Similarly, there are
two types of code search engines. One is known as code-
to-code search engine, which accepts code fragments from
users, and recommends syntactically or semantically similar
code fragments found in a target code base [2]. The other
one is known as natural-language-to-code search engine,
which accepts natural language terms and recommends code
fragments from a target code base that closely match those
terms. Implementing any of these search engines can be
challenging, and recently a number of techniques have been
proposed to address the weaknesses of existing code search
techniques [34]–[36].

We found that the accuracy of existing code search tools are
often unsatisfactory in retrieving Type-4 (semantic) clones,
with the recall for Type-4 clones reported by the state-of-the-
art clone detectors and clone search approaches is as low as
17% [37]. In this work, we tackle the problem of effective
code-to-code search, particularly for Type-4 clone methods.
We evaluate the effectiveness of our technique by using natu-
ral language queries as well. We propose a number of differ-
ent approaches to represent metadata for each clone method
to enable accurate and efficient retrieval. Our experiments
show that the accurate representation of clone methods in
terms of metadata increases the effectiveness of code search.
Specifically, we have made the following contribution.

1) We present a novel approach called Clone-Seeker,
which builds a natural language document of each
clone method by combining important keywords of
each clone method with keywords extracted from a
general description of the clone class, annotated either
manually or automatically to assist developers in per-
forming code-to-code search and natural language
query search.

2) We have performed extensive empirical evaluation of
our approach to assess the accuracy on two pub-
licly available datasets, BigCloneBench [27], [28] and
Project CodeNet [38].

II. RELATED WORK
In this section, we present related work covering different
search techniques applied in the field of software engineering.
Moreover, we also discuss different type of available clone
datasets.

A. CODE SEARCH TECHNIQUES
To the best of our knowledge, no previous technique has
explored the effect of utilizing clone class features in
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searching for clone methods. However, there are several
approaches in the literature focusing on different aspects of
effective code search such as query refinement, quality of
indices and search technique. We discuss these approaches
in this section.

Several techniques for code search have been devised,
which focus on query refinement and query expansion.
For example, Hill et al. [34] reformulate queries with natu-
ral language phrasal representations of method signatures.
Haiduc et al. [36] proposed to reformulate queries based on
machine learning. They trained amachine learningmodel that
automatically recommends a reformulation strategy based on
the query properties. Lu et al. [39] proposed to extend a
query with synonyms generated from WordNet. However,
Sridhara et al. [40] observed that automatically expanding a
query with inappropriate synonyms may produce even worse
results than not expanding the query.

There is also a substantial volume of work that takes into
account code characteristics for code search. For example,
Mcmillan et al. [41] proposed Portfolio, a code search engine
that combines keyword matching with PageRank to return a
chain of functions. Lv et al. [3] proposed CodeHow, a code
search tool that incorporates an extended Boolean model and
API matching. Ponzanelli et al. [42] introduced an approach
that automatically retrieves pertinent discussions from Stack
Overflow, given a context in the IDE. Li et al. [43] presented
RACS, a code search framework for JavaScript that considers
relationships (e.g., sequencing, condition, and callback rela-
tionships) among the invoked API methods.

Our approach is quite similar to the idea of Software
Bertillonage [44], which is a signature based matching tech-
nique. It focuses on the reduction of search space, when
trying to locate a software entity within bytecode. Our tech-
nique works in a similar way, as it also reduces the search
space by representing each clone method with metadata.
However, our technique helps developers to perform code
clone search based on a search query written either as source
code terms, or as natural language instead of locating an
entity within bytecode. In other related work, researchers
proposed representing code snippet in the form of metadata
or natural language document or signature and applied dif-
ferent search techniques such as information retrieval, neural
networks, and joint models. For example, Sachdev et al. [45]
investigated the use of natural language processing and
information retrieval techniques to carry out natural lan-
guage search directly over source code. They represented
code snippet in the form of natural language document to
make the retrieval of code effective. Kim et al. [2] proposed
FACOY, which is an effective code-to-code search engine for
finding semantically similar code fragments in large code
bases. FACOY took a code snippet as the input query and
retrieves semantically similar code snippets from the cor-
pus. They conducted their study on a comprehensive dataset
collected from GitHub and StackOverflow websites. They
replaced GitHub-based code index with IJaDataset to make
FaCoY search only code fragments in the specified dataset.

Bajracharya et al. [46] presented a framework, named as
Sourcerer, for performing code search over open–source
projects available on the Internet. Sourcerer worked by
extracting keywords and fine–grained structural features
from source code, and searching for similar code using the
text search engine Apache Lucene.2 Ragkhitwetsagul and
Krinke [37] incorporated a multi-representation technique
named as Siamese, corresponding to four clone types, to rep-
resent an indexed corpus of code. They improved the query
quality by leveraging the knowledge of token frequency in
the codebase, and finally re-rank the searched candidate code
based on the TF-IDF weighting method. Ahou et al. [47]
proposed Lancer, a context-aware code to-code recommend-
ing tool. Lancer used a Library-Sensitive Language Model
and a BERT model to recommend relevant code samples
in real-time based on the incomplete code. Various other
search methodologies [1], [48], [49] existed, which jointly
embedded code snippets and natural language descriptions
into a high-dimensional vector space, in such a way that code
snippet and its corresponding description had a similar vector
representation.

B. CLONE DATASETS
There are several popular clone related datasets, which can be
used for clone search. These datasets include BigCloneBench
(BCB) [27], [28], Project CodeNet (PCN) [38], SeSaMe [50],
Pedagogical programming Open Judge (POJ-104) [51] and
Google Code Jam(GCJ) [52]. BigCloneBench dataset con-
tains references of clone methods belonging to different func-
tionality types that exist in IJaDataset. SeSaMa contains clone
method pairs, which are mined from 11 open source reposito-
ries. PCN, POJ-104 and GCJ are mined through online judge
websites. These datasets consist of several problems, where
each problem has multiple solutions submitted by students.
Each solution is contained in a single file, and all files belong-
ing to the same problem are syntactically or semantically
equivalent to each other as they are attempting to solve the
same problem. These datasets do not contain non-clone parts,
because the whole file is considered to be a clone of the other
files. However, in BigCloneBench and SeSama, clones are at
the method level only.

III. OUR METHODOLOGY FOR CODE CLONE SEARCH
In this section, we outline our methodology for Clone-
Seeker,3 which focuses on utilizing clone class features in
retrieving code clones, given a search query. The effective-
ness of code clone search relies on multiple factors such as
search technique, quality of the search query, and its relation-
ship to the text contained in the software artifacts (metadata,
i.e. natural language document). We believe that utilizing
clone class features should also be considered as an important
factor, which can help in performing effective code clone
search. For this purpose, we first apply pre-processing steps

2https://lucene.apache.org/
3Code and dataset is accessible from link https://www.win.tue.nl/∼

mhammad/Clone-Seeker/cloneseeker.html
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to extract identifiers from each clone method. Afterwards,
we present twoways to annotate clone classes with keywords:
manual and automatic. Finally, we augment the annotated
keywords of clone classes with clone method identifiers to
build a natural language document of each clone method.
Figure 1 displays a pictorial representation of our methodol-
ogy. The top portion displays how our search corpus is built
from a dataset, whereas the bottom portion displays how the
search results are retrieved from Clone-Seeker. We elaborate
the details of our approach in the following sections.

A. DATASET SELECTION
We build our search corpus from IJaDataset clone methods
referenced by BigCloneBench [27], [28]. BigCloneBench is
the largest clone benchmark dataset, with over 8 million
manually validated clone method pairs in IJaDataset 2.0.4

IJaDataset, in turn, is a large Java repository with 2.3 million
source files (365 MLOC) from 25,000 open-source projects.
BigCloneBench contains references to both syntactic and
semantic method clones, and keeps the references of starting
and ending lines for those clones. In forming this benchmark,
the authors used pattern-based heuristics for identifying the
methods that potentially implement a given common func-
tionality. These methods were manually annotated as true or
false positives of the given functionality by the judges. All
true positives of a functionality were grouped as a clone class,
such that a clone class of size n contains n(n−1)

2 clone pairs.
Currently, BigCloneBench contains clones corresponding to
43 distinct functionalities (i.e. clone classes).

B. IDENTIFIER EXTRACTION
Identifiers are an important source of domain information and
can often serve as a starting point in many program compre-
hension tasks [39], [53]. We follow similar pre-processing
steps to extract identifiers from each clone method as defined
by Lu et al. [39] (see Step A1 in Figure 1). First, we extract
starting and ending line references of a total of 14,922 true
positive clone methods (Extraction). Next, we trace them in
the IJaDataset files, by following their references from the
BigCloneBench dataset, and put them in our search corpus
list (Tracing). Afterwards, we normalize each clone method
code by removing the Java reserved keywords, constant val-
ues, whitespaces, extra lines, comments, as well as perform
tokenization (Normalization). We use the Javalang5 Python
library for tokenization, which contains a lexer and parser for
the Java 8 programming language. We do not use comments
as they have been reported to be non-reliable and inconsis-
tent source for extracting natural language document [54],
[55]. Similarly, software projects can be poorly documented.
We are unable to know the extent to which each comment
accurately describes its associated clone method. For exam-
ple, a number of comments can be outdated with regard to the
code that they describe. Moreover, we found some comments
of clone methods in IJaDataset written in other languages,

4https://sites.google.com/site/asegsecold/projects/seclone
5https://github.com/c2nes/javalang

whereas our methodology focuses only on English queries.
After tokenization, we perform snake case and camel case
splitting of identifiers to separate words (Splitting). We also
eliminate single characters (Single Character Elimination)
and apply stemming (Stemming). Stemming helps inmapping
the related words to the same stem or root word, which
can help in retrieving semantic code clones effectively. This
finally produces a flat list of keywords representing each
clone method.

C. ANNOTATING CODE CLONES
Data annotation is a process of labeling the data available in
various formats like text, video or images [56]. It is expected
to play a major role in enhancing product recommendations,
relevant search engine results, computer vision, speech recog-
nition, chatbots, and more. We apply annotation techniques
to best describe the core functionality of each clone class in
the BigCloneBench dataset. The purpose of annotating clone
classes is to assist in retrieving clone methods, when a code-
to-code search or a natural language query is applied. Anno-
tation can be performed manually or automatically (Step A2
in Figure 1), the details of which are described as follows.

1) METHOD 1: MANUAL ANNOTATION
Manual annotation is a process of labeling or annotating any
data by humans. The approach is popular owing to its benefits
such as accuracy, high level of integrity, need for minimal
administration of data annotation efforts, and a higher chance
of discovering intriguing insights pertaining to the data as
compared to automatic annotation techniques, which can be
later integrated into an algorithm. However, manual annota-
tion is more expensive and time-consuming. Nowadays, there
are many key players offering exclusive products and services
in the market,6 to manually annotate a huge bulk of data.
BigCloneBench dataset is a manually created and validated

dataset, which also contains annotations, i.e. the description
of each clone class in natural language terms. To use in
this paper, we manually changed the description slightly
by removing bullet points, correcting spelling mistakes, and
making the sentence structure more readable (Step A3b in
Figure 1). Table 1 displays the resulting list of clone class
descriptions used in our experiments. Afterwards, we per-
formed several pre-processing steps such as removing spaces,
single characters, and stop-words, and performed stemming
in order to get a flat list of words (Word Extraction) per clone
class.

2) METHOD 2: AUTOMATIC ANNOTATION
The second approach that we adopt to annotate clone classes
involves automatically extracting keywords. Keywords are a
subset of words or phrases from a document that can describe
concepts or topics covered in the document [57], [58]. They
are commonly used to annotate articles or other documents,

6https://aimultiple.com/data-annotation-service
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FIGURE 1. Clone-seeker methodology and applying search query.

and are essential for the categorization and fast retrieval of
such items in digital libraries [59].

Automatic keyword extraction (also known as keyword
detection or keyword analysis) is the process of selecting
words and phrases from a text document that can best describe
the core sentiment of the document without any human
intervention depending on the model [57], [58]. It is a text
analysis technique that automatically extracts the most used
and most important (with respect to certain criteria, to be
elaborated later in this section) words and expressions from
text. It helps to summarize the content of texts, recognize
the main topics discussed, and automatically create a com-
pressed version of a text that provides useful information for
the users.

Keyword extraction simplifies the task of finding relevant
words and phrases within unstructured text. There are various
methodologies to extract keywords such as word frequency,
word degree, TF-IDF and RAKE [60]. We follow a simple
approach known as word frequency or naive counting [61],
in which we identify the list of words that repeat the most
within a set of natural language documents of clone methods.
Various researchers [62]–[66] in the past have adopted this
methodology for tagging. It is considered to be the most
effective starting point for understanding a text [67]. We have
adopted this method as a proof of concept for our approach
(Step A3c in Figure 1). It can be useful for identifying recur-
rent terms in a set of clone methods belonging to a clone
class, and eventually finding out the most common words in

the whole clone class. More advanced approaches are to be
investigated in future work.

D. AUGMENTATION OF IDENTIFIERS WITH ANNOTATED
KEYWORDS
We augment (Step A4 in Figure 1) the list of words from
the identifier extraction process (Section III-B) with the ones
extracted from the clone class annotations (Section III-C) and
build a natural language document (i.e. metadata) mapped to
each clonemethod (Step A5 in Figure 1).We hypothesize that
the augmentation will help in retrieving clone methods effec-
tively when a search query is applied. For further illustration,
we explain how the natural language document of a ‘‘Copy
File’’ clone method has been built in Table 2, by merging
the identifier keywords with the annotation words. Annotated
words are highlighted with blue color.

E. FORMULATING A SEARCH QUERY
There are two ways to formulate a search query; one is to
enter some code fragment as a query, and the other is to
write keywords in natural language to find relevant code
fragments. Our approach can help in retrieving clonemethods
in both these forms. For the first case, i.e. code-to-code
search, we perform the pre-processing steps on the search
query in the form of a codemethod, as mentioned in Identifier
Extraction (see Section III-B and Step B2a in Figure 1). In the
second case, we perform the pre-processing steps for Word
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TABLE 1. Manual annotation of clone classes for BigCloneBench dataset.

Extraction, in order to get a flat list of words (Step B2b in
Figure 1).

F. SEARCH METHODOLOGY
Information Retrieval (IR) techniques have been successfully
applied to address various software engineering tasks, includ-
ing concept/feature/concern location, impact analysis, code
retrieval and reuse, bug triage, refactoring and restructuring,
reverse engineering, and defect prediction [68]. IR tech-
niques, in general, are used to discover the significant doc-
uments in a large collection of documents, which match the
user’s query. They mainly aim for identifying the information
relevant to the user requirements in a given scenario. An IR-

based code retrieval method in particular usually extracts a set
of keywords from a query and then searches for the keywords
in code repositories [69].

We apply an IR technique (Step B3 in Figure 1) to retrieve
the top-10 results from the search corpus that match the
natural language query. The selected IR technique is based
on Term Frequency-Inverse Document Frequency (TF-IDF)
word embeddings for retrieving the clone methods most sim-
ilar to the query [70]. TF-IDF is a technique often used in
IR and text mining. According to a survey in 2015, 70%
of text-based recommendation systems for digital libraries
use TF–IDF [71]. TF-IDF uses a weighting scheme which
assigns each term in a document a weight corresponding to
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TABLE 2. Building the natural language document (NLD) of the ‘‘Copy File’’ clone method with annotation techniques.

its term frequency and inverse document frequency. In our
context, TF-IDF looks at the term overlap, i.e. the number
of shared tokens between the two clone methods in question
(and also how important/significant those tokens are in the
clone methods). We use TF-IDF with unigrams as terms to
transform clone methods into numeric vectors. These vec-
tors can in turn easily be compared by quickly calculat-
ing their cosine similarities. If a term appears frequently in
a clone method’s natural language document, that term is
likely important in that method. The frequency of a term is
simply the number of times that a term appears in a clone
method. However, if a term appears frequently in many clone
methods’ natural language document, that term is likely less
important generally. To factor this, we use the IDF measure.
IDF is the logarithmically-scaled fraction of clone methods
in the corpus in which the term appears. The terms with
higher weight scores (high TF and IDF) are considered to be
more important. We first transform clone methods existing in
the search corpus and the pre-processed query into TF-IDF
vectors using the formula in Equation 1.

TF − IDF(i, j) = (1+ log(TF(i, j)). log(
J

DF(i)
) (1)

where TF(i, j) is the count of occurrences of feature i in
clone method j, and DF(i) is the number of clone methods in
which feature i exists. J is the total number of clone methods.
For the retrieval, we generate a normalized TF-IDF sparse
vector from a given query, and then take its dot product with
the feature matrix. Given that all vectors are normalized, the
result yields the cosine similarity between the query vector of
the query and of every clone method. Afterwards, we return
the list of all the clone methods, ranked by their cosine
similarities to the query vector.

IV. EMPIRICAL EVALUATION
We present empirical results in this section to validate the
effectiveness of our approach. We evaluate Clone-Seeker
by formulating the search query in two ways: by source
code and by natural language terms. For the first case,
we evaluate the effectiveness of our proposed approach by

retrieving code clones when a code query is applied. For
the second case, we evaluate the effectiveness using natu-
ral language queries. We describe the design of different
assessment scenarios for Clone-Seeker and report on the eval-
uation results. Our primary evaluation is based on the Big-
CloneBench dataset. However, we also perform experiments
on the Project CodeNet dataset, to evaluate the generalizabil-
ity of our approach. We perform statistical analysis of our
empirical results in terms ofWilcoxon rank sum test. It is used
to test that a distribution is symmetric about some hypothe-
sized value by utilizing magnitudes of the differences [72].
We compare our experimental result of code to code search
for BigCloneBench dataset with previous techniques. For
other experiments, there is no related work to directly com-
pare our results against. We performed the pre-processing
steps on a Toshiba laptop with Windows 10, 2.6 GHz Intel
Core i5 CPU and 16 GB RAM, and the empirical evalua-
tion on SurfSara and TU/e HPC Cluster. It took 18 minutes
and 15 seconds to complete the pre-processing steps for
all the variants of Clone-Seeker for BigCloneBench dataset.
Similarly, it took 10 minutes and 43 seconds to complete
the pre-processing steps for all the variants of Clone-Seeker
for Project CodeNet dataset. Moreover, we also measured
the average time taken by each query on the same laptop,
in retrieving code clones for all Clone-Seeker variants on
BigCloneBench (BCB) and Project CodeNet (PCN) datasets
(see Table 3). The time differed in terms of the number
of tokens exist in a search corpus. The results in Table 3
shows that the query usually took more time in retrieving
code clones for Clone-Seeker (Manual) strategy as compared
to others. Specifically, our experiments aim to address the
following research questions:

1) RQ1: What is the effectiveness of Clone-Seeker in
finding clones among BigCloneBench dataset, based
on code-to-code search?

2) RQ2: How relevant are code examples found by
Clone-Seeker compared to other code-to-code search
engines?
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TABLE 3. Average time taken for retrieval for all clone-seeker variants on
the basis of code-to-code and natural-language-to-code search.

3) RQ3: What is the effectiveness of Clone-Seeker in
finding clones among BigCloneBench dataset, based
on natural language queries to code search?

4) RQ4: Does Clone-Seeker generalize to other datasets
in finding clones using code query?

5) RQ5: Does Clone-Seeker generalize to other datasets
in finding clones using natural language query?

A. RQ1: FINDING CODE CLONES USING CODE-TO-CODE
SEARCH IN BigCloneBench DATASET
1) EXPERIMENT DESIGN
In this section, we evaluate the performance of Clone-Seeker
against BigCloneBench dataset in a scenario for searching
by code. Given that BigCloneBench consists of clone classes
each having a set of clone methods (i.e. references to Java
methods in IJaDataSet), we process each individual clone
method to be used in a code-to-code query. For each clone
method cinput , we first extract the identifiers from the source
code following the steps mentioned in Section III-B. Using
this flat list of identifiers as the query to Clone-Seeker,
we search for the most similar natural language documents
as developed in Section III-D. These natural language doc-
uments links to resulting code methods (ck..lres ) in IJaDataset.
Since the most similar code methods are already labelled and
referenced in BigCloneBench (cm..nref ) in the corresponding
clone class, we check whether the pairs (cinput , cires) coincide
with any (cinput , c

j
ref ). Afterwards, we investigate the top-

10 retrieved results and calculate the precision, which is the
number of ground-truth answers hit on average in the Top@k
returned for a query using a Precision@k metric defined as
follows:

Precision@k =
1
|Q|

i=1∑
|Q|

|relevanti,k |
k

(2)

where relevanti,k represents the relevant search results for
query i in the top k returned results, and Q is a set of
queries. Precision shows the relevance of the returned results
to the queries with respect to the ground-truth answers; the
higher the value, the more relevant the results are. Moreover,
we measure the Mean Reciprocal Rank (MRR) scores [2],
[73], which is the average of the reciprocal ranks of results
of a set of queries Q. The reciprocal rank of a query is the
inverse of the rank of the first hit result. It is used, when user is
interested in considering only the first hit. MRR is calculated

by using the following formula:

MRR =
1
|Q|

i=1∑
|Q|

1
ranki

(3)

where ranki refers to the rank position of the first relevant
result for the i-th test input method. The higher the MRR
value is, the better the code search performs. Table 4 shows
the evaluation results in terms of MRR and precision of
different approaches for each query in the benchmark.

We evaluate three different approaches as the annotation
strategy: (1) Manual Annotation and (2) Automatic Annota-
tion, as described in Section III-C, as well as (3) Baseline.
In Baseline, we do not provide any annotation (Step A3a in
Figure 1), and just consider a flat list of pre-processed key-
words as described in Section III-B. We aim for assessing the
impact of adding annotations on the accuracy of code-to-code
search. In order to annotate each clone class automatically
with a set of words, we retrieve the top-k most recurrent
words list by applying different threshold values for k such
as 5, 10, 15, and 20. Then, we calculate MRR and Precision
after performing the augmentation step (see Section III-D).
We notice that with threshold t = 5, precision performs
best among other values. Therefore we choose the top-5 most
recurrent keywords for our remaining experiments related to
BigCloneBench dataset.

2) RESULTS
The overall approach we propose leads to reasonable results
in retrieving clone methods against specified pre-processed
clone code queries. Table 4 presents the results in terms of
MRR, Precision@1, Precision@3, Precision@5, and Preci-
sion@10. We notice that by adding more meta tokens as part
of manual or automatic annotation in the natural language
document has incurred minor differences as compared to
baseline on the performance of code-to-code search. We have
performed Wilcoxon rank sum test to statistically compare
MRR and Precision values of different variants of Clone-
Seeker. The larger the p-value from the significance level
(α = 0.05), indicates the higher the chance is to accept the
null-hypothesis (H0) and reject the alternate-hypothesis (H1),
and vice-versa.

We compare Clone-Seeker (Automatic) with Clone-Seeker
(Manual), which indicates that Clone-Seeker (Manual) is
not significantly different than Clone-Seeker (Automatic)
(H0:CManual = CAutomatic, H1:CManual 6= CAutomatic, p =
0.18). Similarly, when the same test was performed to com-
pare Clone-Seeker (Baseline) with Clone-Seeker (Manual),
the differencewas again found to be not significantly different
(H0:CBaseline = CManual ,H1:CBaseline 6= CManual , p= 0.460).
We further notice that Clone-Seeker (Automatic) does not
achieve significantly better scores as compared to Clone-
Seeker (Baseline) (H0:CAutomatic = CBaseline,H1:CAutomatic 6=
CBaseline, p = 0.06). This points out that there is still room
to explore different annotation techniques, which can signif-
icantly outperform baseline.
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TABLE 4. MRR and precision of finding code clones using code-to-code
search in BigCloneBench dataset.

More annotation strategies need to be
explored, which can considerably perform
better than Clone-Seeker (Baseline) in

terms of code query is applied.

B. RQ2: COMPARISON WITH CODE SEARCH ENGINES
In this section, we demonstrate the effectiveness of
Clone-Seeker by comparing its performance with other code
search engines on the basis of recall.

1) EXPERIMENT DESIGN
We evaluate Clone-Seeker against BigCloneBench dataset
in a scenario for searching by code. We compare recall of
our search approach with state-of-the-art clone detector and
search approaches presented by [2], [37].

In BigCloneBench, clone pairs are assigned a type based
on the criteria in [74]. Type-1 and Type-2 clone pairs are
classified according to the classical definitions given in [2],
[37]. Moreover, Type-3 and Type-4 clones are divided into
four sub-categories according to their syntactical similarity:
Very Strongly Type 3 (VST3), Strongly Type 3 (ST3), Mod-
erately Type 3 (MT3), and Weakly Type 3/Type 4 (WT3/4).
Each clone pair (unless it is Type 1 or 2) is identified as one of
the four types if its similarity score falls into a specific range;
VST3: [90%, 100%), ST3: [70%, 90%), MT3: [50%, 70%),
and WT3/4: [0%, 50%). We compute the recall of different
variants of Clone-Seeker following the definition proposed
in the original benchmark of BigCloneBench [27].

Recall =
D ∩ Btc
Btc

(4)

where Btc is the set of all true clone pairs in BigCloneBench,
and D is the set of clone pairs found by Clone-Seeker.
We compare the performance of Clone-Seeker with the other
approaches reported in [2], [37]. For fairness in comparison,
we choose the same configuration of retrieving the top-900
natural language documents, which are mapped to their asso-
ciated clone methods. Similarly, we choose clone methods
having at least 6 lines and 50 tokens in length, a standard
measure to consider clones for benchmarking [2].

2) RESULTS
Table 5 depicts the recall scores for our approach with dif-
ferent annotation strategies: Clone-Seeker (Baseline), Clone-
Seeker (Manual), and Clone-Seeker (Automatic). Recall
scores are summarized per clone type with the categories

introduced above. Since for Clone-Seeker we are reproducing
the experiments performed in [2], [37], [74], we directly
report in the same table all the results that the authors have
obtained on the benchmark for their own approaches such
as Siamese, FaCoY and state-of-the-art code clone detec-
tors including NiCaD [75], iClones [76], SourcererCC [74],
CCFinderX [77], and Deckard [78].

Our goal, as outlined in Section I, is to build Clone-Seeker
as a code-to-code search engine capable of finding Type-4
clones. Nevertheless, for a comprehensive evaluation of the
added value of the strategies implemented in our approach,
we provide the comparative results of recall values across all
clone types. Overall, we notice that the recall performance of
Clone-Seeker (Automatic) is better than Clone-Seeker (Base-
line) and Clone-Seeker (Manual) across all clone types. The
three Clone-Seeker variants produce the highest recall values
for Type-4 clones compared to the other related approaches.
This depicts that utilizing TF-IDF as search technique and
building metadata with the help of identifiers works well
in retrieving relevant clone methods. We do not observe
significant difference in recall performance between variants
of Clone-Seeker with annotation and Clone-Seeker (Base-
line). This means that there might still be room for improve-
ment in terms of annotation strategies, to be investigated in
the future. With 59% recall for semantic clones (WT3/T4),
Clone-Seeker (Manual) achieves the best performance score
in the literature.

Clone-Seeker variants outperform the
state-of-the-art clone detector and search
approaches in terms of retrieving semantic

clones (Type-4).

C. RQ3: FINDING CODE CLONES USING NATURAL
LANGUAGE QUERY IN BigCloneBench DATASET
In this section, we demonstrate the effectiveness of
Clone-Seeker by applying natural language queries (natural-
language-to-code search). These queries have been collected
from Stack-Overflow.7 Stack Overflow is a popular online
programming community, where programmers ask ques-
tions about programming problems and give answers. The
website has been found to be useful for software devel-
opment [55], [79] and also valuable for educational pur-
poses [80]. On Stack Overflow, each conversation contains
a question and a list of answers. The answer frequently
contains at least one code snippet as a solution to the question
asked. Sometimes, the question itself also contains a code
snippet. This usually indicates that a developer asks for either
a more optimized solution than the one he posts or wishes to
discuss some problem in the code.We demonstrate how clone
methods are retrieved based on a natural language query with
the help of an example (Table 6). Suppose that a developer
is interested in searching for clone methods implementing
the ‘‘Copy file from source to destination’’ functionality. The
natural language query is first pre-processed and words are

7https://stackoverflow.com/
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TABLE 5. Recall scores(%) for clone-seeker and other related approaches on BigCloneBench.

extracted as explained in Section III-C1. Then, this flat list
of words is fed into Clone-Seeker (Manual), which generates
top-3 most similar natural language documents on the basis
of TF-IDF scores, which are mentioned in Table 6. Manual
annotation is highlighted with blue color in the natural lan-
guage documents. Nevertheless, these documents are mapped
to their associated clone methods, which are finally presented
to the user. We can see in Table 6 that top- 1st retrieved clone
method not contain any terms related to ‘‘copy file’’ in the
source code. But, because of manual annotation, it helps in
retrieving this clone method, when natural language query is
applied.

1) EXPERIMENT DESIGN
The main aim of this experiment is to assess whether our
methodology can help in retrieving clone methods using a
natural language query. In this experiment, we compare the
search results obtained from the three annotation strategies in
Clone-Seeker: Baseline, Manual Annotation, and Automatic
Annotation, as described in Section III-C.
We build a benchmark of 43 queries belonging to the func-

tionality types (clone classes) in BigCloneBench. We follow
guidelines of traditional peer-review methodology [81] to
build a benchmark. It has been used as a learning process
to improve the quality of computer programs for at least
30 years [82]. We type in the keywords belonging to each
clone class in the Stack Overflow website and search for
the relevant post queries. The queries are manually selected
based on following requirements from Stack Overflow: (1)
the associated post is related to ‘‘Java,’’ (2) the post contains
the solution of the question answered, (3) the post includes a
code snippet belonging to one of the mentioned functionality
types in BigCloneBench, and (4) first author identifies the
posts and the second author verifies them. The results are
finally reported once a consensus is reached. The full list of
the 43 selected queries can be found in Table 7. We do not
claim that our list of queries is comprehensive, but at least it
should be a good starting point. We invite other researchers
to extend this list.

To evaluate search effectiveness, we feed Clone-Seeker
with benchmark queries belonging to different clone
classes after applying pre-processing steps as mentioned
in Section III-C (Word Extraction). Then, we inspect the
top-10 results retrieved from search corpus, as built from
BigCloneBench references and IJaDataset in Section III-D
by identifying their clone classes. Afterwards, we calculate
MRR and precision of different approaches for each query in
the benchmark (Table 8).

2) RESULTS
The overall approach we propose leads to promising results
in retrieving clone methods against specified natural lan-
guage queries. Table 8 presents a comparison between Clone-
Seeker (Baseline), Clone-Seeker (Manual), and Clone-Seeker
(Automatic) in terms of average MRR, Precision@1, Preci-
sion@5, and Precision@10. Overall, we notice that Clone-
Seeker (Manual) achieves better MRR and precision as
compared to Clone-Seeker (Automatic) and Clone-Seeker
(Baseline) and in both cases, it was found to be statisti-
cally outperformed as it supports the alternate-hypothesis
(H0:CManual <= CAutomatic, H1:CManual > CAutomatic, p
<.00001) and (H0:CManual <= CBaseline, H1:CManual >

CBaseline, p <.00001). We further notice that Clone-Seeker
(Automatic) does not achieve significantly better scores as
compared to Clone-Seeker (Baseline) (H0:CAutomatic <=

CBaseline,H1:CAutomatic > CBaseline, p=.42074). This requires
further investigation to come up with a better annotation
strategy, which can outperform baseline.

Clone-Seeker (Manual) outperforms other
variants in general, as manually annotated

terms quite resembles with natural
language queries.

D. RQ4: GENERALIZABILITY OF CLONE-SEEKER IN
FINDING CODE CLONES USING CODE AS A QUERY
1) EXPERIMENT DESIGN
In previous sections, we have introduced the fundamen-
tal techniques and evaluated them with respect to multiple
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TABLE 6. Example of retrieving relevant clone methods using natural language query.

aspects by focusing on BigCloneBench dataset. This gives a
strong foundation on the feasibility of using our approach.

However, it is possible to conduct our study on other
clone related datasets. In order to assess the generalizability
of our methodology on another dataset, we choose Project
CodeNet dataset. The Project CodeNet dataset consists of
a very large collection of metadata, source files and doc-
umentation. It is a recently introduced benchmark, which
can be used to perform several software engineering tasks
such as summarization, completion, code search, and as well
as code-to-code translation. It is mined from online judge
websites such as AIZU Online Judge8 and AtCoder.9 These
websites offer programmers an opportunity to test their skills
by posing programming problems in the form of courses or

8https://onlinejudge.u-aizu.ac.jp/home
9https://atcoder.jp/

contests. Users submit their solution, which is then judged
by an automatic review mechanism. The outcome is reported
back to the user.

It has several benchmarks available in different languages
such as Java, C++, Python etc. We select Java programming
benchmark, which contains 250 set of problems. These prob-
lems are either representing a puzzle or a generic problem.
Each problem contains 300 sample solution files, which are
syntactically or semantically similar to each other. After-
wards, we manually analyze the nature of each problem
and filter down those problems that are generic in nature
by ensuring that their solutions in Java programming lan-
guage arewell discussed by developers over StackOverflow10

and GeeksForGeeks11 websites. We choose GeeksForGeeks,

10https://stackoverflow.com/
11https://www.geeksforgeeks.org/

11706 VOLUME 10, 2022



M. Hammad et al.: Clone-Seeker: Effective Code Clone Search Using Annotations

TABLE 7. Benchmark queries to evaluate clone-seeker variants on BigCloneBench dataset.

as for some problems, we find better aligned solutions com-
pared to StackOverflow. This filtering helps us in building a
benchmark of natural language queries (Table 9) to evaluate
our approach later on in (Section IV-E). Finally, we get a list
of 46 generic problems (Table 11).
We generate three different types of search corpus by

applying pre-processing steps mentioned in Section III,
namely Clone-Seeker (Manual), Clone-Seeker (Automatic)
and Clone-Seeker (Baseline). To build a search corpus for
manual annotation, we use the clone class descriptions men-
tioned in Table 9. Similarly, we apply the same strategy
mentioned in Section IV-A1, to annotate search corpus auto-
matically.We observe that with threshold t = 5, overall MRR
and precision works best among other values. Therefore,
we select the top-5 most recurrent keywords for our rest of
the experiments related to the Project CodeNet dataset.

2) RESULTS
Our proposed approach produces reasonable results in
retrieving clone methods against pre-processed clone method
queries. Table 10 presents the results in terms of MRR, and

precision (P@k) with threshold values for k such as 1, 3, 5,
and 10.We statistically compareMRR and precision of all the
Clone-Seeker variants and the result was found to be not sta-
tistically different among all cases (H0:CManual = CAutomatic,
H1:CManual 6= CAutomatic, p= 0.06), (H0:CManual = CBaseline,
H1:CManual 6= CBaseline, p = 0.06), (H0:CAutomatic =
CBaseline, H1:CAutomatic 6= CBaseline, p = 0.06). Hence, one
might need to come up with better annotation strategies to
outperform the baseline for code-to-code search in terms of
MRR and precision.

Better annotation techniques need to be
explored which can significantly

outperform Clone-Seeker (Baseline)
approach for code-to-code query.

E. RQ5: GENERALIZABILITY OF CLONE-SEEKER IN
FINDING CODE CLONES USING NATURAL LANGUAGE
QUERY
1) EXPERIMENTAL DESIGN
The main aim of this experiment is to prove the general-
izability of our approach in retrieving clone methods using
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TABLE 8. Evaluation results of natural language queries in terms of MRR(%) and precision (P@k) on BigCloneBench dataset.

a natural language query. In this experiment, we perform
a similar experiment as done in Section IV-C, this time on
the Project CodeNet dataset. We compare the search results
obtained from the three annotation strategies in Clone-Seeker
(Baseline), Clone-Seeker (Manual), and Clone-Seeker (Auto-
matic), as described in Section III-C.
We build a benchmark of 46 queries belonging to each

generic problem or clone class existing in the Project
CodeNet dataset. The full list of 46 selected solutions can be
found in Table 11, as described in Section IV-D1. We eval-
uate the effectiveness of the search by feeding Clone-Seeker
with benchmark queries belonging to different clone classes
after applying the pre-processing steps as mentioned in
Section III-C (Word Extraction). Then, we investigate the
top-10 results retrieved from search corpus, as built from the
Project CodeNet dataset in Section III-D by identifying their
clone classes. Finally, we calculate the MRR and precision of
different Clone-Seeker variants for each query in the bench-
mark (Table 12).

2) RESULTS
We present a comparison between Clone-Seeker (Baseline),
Clone-Seeker (Manual), and Clone-Seeker (Automatic) in
terms of average MRR, and Precision@1, Precision@5, and
Precision@10 (Table 12). Overall, we notice that Clone-
Seeker (Manual) outperforms Clone-Seeker (Automatic) and
Clone-Seeker (Baseline) in terms of both MRR and pre-
cision and in both cases, it was found to be statisti-
cally outperformed as it supports the alternate-hypothesis
(H0:CManual <= CAutomatic, H1:CManual > CAutomatic, p
<.00001) and (H0:CManual <= CBaseline, H1:CManual >

CBaseline, p <.00001). This is due to the fact that manual
annotation and natural language queries are both human-
written. So, by having manually annotated terms at the start
of each natural language document increases the probability
of retrieving similar clone methods, when natural language
queries are applied. In contrast to this, Clone-Seeker (Auto-
matic) does not perform well, because automatic annotated
terms do not well resemble with the natural language queries,

11708 VOLUME 10, 2022



M. Hammad et al.: Clone-Seeker: Effective Code Clone Search Using Annotations

TABLE 9. Manual annotation of clone classes for Project CodeNet dataset.

which lowers the effectiveness of retrieving similar clone
methods and values are found to be very similar with Clone-
Seeker (Baseline).

Overall Clone-Seeker (Manual) performs
the best among other variants, because
manually annotated terms increase the
probability of retrieving similar clone

methods, when a natural language query is
applied.

V. DISCUSSION
With various experiments, we show that our methodology can
work effectively in retrieving code clones using code and nat-
ural language queries. We primarily conduct our experiments
by using the BigCloneBench dataset. However, we also prove
that ourmethodology is generalizable to a considerable extent
by conducting experiments on the Project CodeNet dataset.
We observe that Clone-Seeker (Manual) outperforms other
variants in terms of MRR and precision based on natural

TABLE 10. MRR and precision of finding code clones using code-to-code
search in Project CodeNet dataset.

language to code search. This is because both manual annota-
tions and natural language queries are human-written, and the
chances of overlapping terms are increased, which helps in
retrieving similar clone methods effectively. Regarding code
to code search, we achieve the best recall among state-of-
the art search engine performances. This depicts the effec-
tiveness of our proposed methodology of creating natural
language documents associated with specific clone methods.
However, we do not see much difference in the performance
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TABLE 11. Benchmark queries to evaluate clone-seeker variants on Project CodeNet dataset (‘∗’ = StackOverflow, ‘◦’ = GeeksForGeeks).

of Clone-Seeker variants among each other for code-to-code
search. This requires a more in-depth exploration of dif-
ferent annotation techniques, which can help Clone-Seeker
(Manual) and Clone-Seeker (Automatic) to achieve a better
performance compared to the baseline. Overall, Clone-Seeker
(Baseline) and Clone-Seeker (Automatic) achieve almost the
same performance for both search types, i.e. code-to-code
search and natural-language to code search. This shows that
adding more tokens in terms of automatic annotation does not
improve the search a lot and different annotation techniques
are required to explore in the future.

VI. LIMITATIONS
There are certain limitations of this work, which can be
further explored and mitigated in the future. Clone-Seeker
depends upon a user representing each clone class manu-
ally. A more accurate manually annotated description can be
applied to get more effective results. We only apply limited
threshold values for k , in order to annotate each clone class

automatically with a set of words. We plan to investigate
more threshold values for k such as 1, 2, 3, and 4 etc in the
future. We only apply word counting technique to extract the
keywords automatically. In the future, we plan to investigate
several keyword extraction techniques such as word degree,
TF-IDF (which we use for searching in this work, not for
keyword extraction), and RAKE [60].

We have used limited natural language queries to validate
the effectiveness of Clone-Seeker approaches on the Big-
CloneBench and Project CodeNet datasets. Although these
queries are real-world queries collected from various web-
sites, admittedly they do not cover all types of queries that a
developer may ask. In the future, we plan to reduce this threat
to validity by investigating more queries. Also, although
we have evaluated our approach on the BigCloneBench and
Project CodeNet datasets, more evaluation can be conducted
on other available clone datasets. This way we can have
a more thorough evaluation of the generalizability of our
approach.
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TABLE 12. Evaluation results of stack overflow queries in terms of MRR(%) and precision (P@k) on Project CodeNet dataset.

VII. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel approach of retrieving
clone methods effectively. Our approach can retrieve clone
methods effectively, based on a search query in terms of
source code terms as well as natural language. We apply
different annotation strategies to build metadata (i.e. natu-
ral language document) for clone methods. We successfully
demonstrate the effectiveness of Clone-Seeker approaches
through empirical evaluation on BigCloneBench and Project
CodeNet datasets. We achieve the best recall for Type-4
clones as compared to the state-of-the-art on BigCloneBench
dataset. Similarly, we demonstrate the effectiveness of our
approach by applying natural language queries collected from
various websites. We achieve best performance in terms of
MRR and precision for manual annotation technique on both
datasets.

Whilewe have promising results, ourwork can be extended
in various directions. In this study, our focus is on introducing

an effective technique for retrieving clone methods and clone
files. However, code clones can be of different types and gran-
ularity levels (e.g. simple clones, structural clones, and clones
of other artifact types such as models [25], [83]). We plan to
investigate whether our approach can be used for different
clone types and granularities in the future. We only use the
TF-IDF technique in searching and retrieval as a proof of
concept, however there are several other information retrieval
techniques such as word2vec [84], glove [85], etc., which
can be applied and comparatively evaluated. Similarly, neural
networks can also be applied to build an effective search
approach. Joint neural network models [48] for the natural
language documents and clone methods can be explored to
have effective search results. Moreover, if comments are a
reliable source of information in some particular dataset, then
they can also be utilized in annotating clone classes. This may
help in effectively retrieving clone methods based on search
query.
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