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ABSTRACT Additivemanufacturing (AM) of high-strengthmetals, which is typically based on laser powder
bed fusion (LPBF), can introduce microscopic pores in the AM metal. Pulsed Infrared Thermography (PIT)
offers several advantages for nondestructive imaging of subsurface defects in AM structures because the
method is one-sided, non-contact and scalable to structures of arbitrary size. However, high-resolution PIT
imaging results in the generation of a large volume of thermography data (∼TB), which creates challenges
for the storage and transmission of data. Compression of thermography data requires an approach that
achieves high data compression ratio while preserving weak thermal features corresponding to microscopic
material defects. We investigate thermography data compression using several unsupervised learning (UL)
algorithms, which include Principal Component Analysis (PCA), Independent Component Analysis (ICA),
Exploratory Factor Analysis (EFA), Sparse Dictionary Learning (SDL), and a novel lightweight Thermog-
raphy Compressive Sparse Autoencoder (TCSA). Algorithms are benchmarked using PIT experimental data
obtained from imaging of a stainless steel plate with calibrated porosity defects imprinted with AM process.
For all algorithms, we obtain compression ratio>30 (highest compression of 46 is achieved with TCSA), and
peak signal-to-noise ratio for reconstruction accuracy>73dB. Compared to existing methods, advantages of
UL algorithms include achieving high compression ratio while preserving weak features to allow extraction
of microscopic material defects from images. UL-based methods have general applicability because they are
adaptable to compression of different data types, and allow for memory-efficient training and rapid on-line
augmentation of the model.

INDEX TERMS Pulsed infrared thermography, nondestructive evaluation, unsupervised machine learning,
thermography data compression, compressive neural network, metal additive manufacturing.

I. INTRODUCTION
Additive manufacturing (AM) of metals is an emerging
method for cost-efficient fabrication of low volume complex-
shape structures. In particular, AM provides the option of
manufacturing custom-shape structures from high-strength
superalloys, such as stainless steel 316 and Inconel 718,
which are difficult to machine with conventional methods.

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro Neto .

AM structures with minimal welds, as compared to con-
ventionally produced ones, potentially offer longer service
life in high-temperature corrosive environment of nuclear
reactors [1]. AM of high-strength metals, which have melt-
ing temperatures above 1300◦C, is currently based on Laser
Powder-Bed Fusion (LPBF) method [2]. Because of the
intrinsic features of LPBF, keyhole and lack of fusion micro-
scopic pores can appear in the AM metal [3]. Before deploy-
ment in a nuclear reactor, nondestructive evaluation (NDE)
of an AM structure needs to be performed to identify
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possible flaws. Because long-term behavior of AM met-
als in a nuclear environment is not known, condition of
AM structures needs to be monitored through in-service
NDE inspections.

In principle, X-ray computed tomography (XCT) [4]
can provide high resolution imaging of metals. However,
XCT requires symmetric body of revolution shapes, and
penetration depth is limited to distances on the order of a
centimeter. In addition, XCT imaging resolution and structure
size are inversely proportional. Neutron tomography allows
for longer penetration depth, but has a potential negative side
effect of activating the metal. Ultrasonic NDE is scalable
to arbitrary structure sizes and shapes, but requires direct
contact of an ultrasonic probe with structure surface. Because
of the rough surface finish of AM metals, ultrasonic NDE
also faces challenges. Traditional ultrasonic testing methods
are more sensitive to incomplete penetration infusion defects
in AM materials, and less sensitive to pores and subsurface
defects [5]. Laser ultrasonic inspection performs better in
the detection of pores [6]. However, surface roughness is an
impediment for accurate detection of defects. Eddy current
imaging is frequently used in nuclear reactor in-service NDE
applications because the inductive probes are non-contact
and resilient to the harsh environment. Eddy current testing
has the potential to detect subsurface pores, but measure-
ments could be affected by temperature and surface irregular-
ities [7]. In addition, Eddy current imaging typically requires
time-consuming raster scanning with a single probe. Imaging
with inductive probe arrays suffers from lower resolution,
as compared to single probe imaging.

Pulsed Infrared Thermography (PIT) method offers several
advantages for NDE of subsurface defects in actual AM
metallic structures because the method is non-contact, one-
sided, scalable to arbitrary structure size, and uses megapixel
detector array for imaging [8], [9]. PIT involves rapid deposi-
tion of a heat pulse onmaterial surface, followed by recording
sequential measurement of surface temperature distribution
with fast frame Infrared (IR) camera. As heat diffuses into
the material bulk, thermal resistance of internal pores results
in locally slower heat decay on material surface. Thus, infor-
mation about internal material defects is extracted from the
time-dependent stack of thermography frames. While PIT is
limited to detection of sub-surface pores, these pores aremore
likely to lead to crack formation compared to the internal
ones [10], [11].

Detection of internal microscopic defects with thermal
signatures comparable to camera noise level requires imag-
ing of large structures with spatial resolution on the order
of tens of microns. At each spatial location, hundreds of
frames are acquired with a high-speed IR camera, which
produces volumes of imaging data. Generating a massive
amount of data (∼TB) can overwhelm IR camera storage
capacity, which could limit the amount of imaging during
the in-service inspection. Analysis of NDE data may involve
sharing data sets between remote users located outside of the
nuclear facility. Transferring a large volume of imaging data

over a network could be excessively time-consuming and not
feasible for practical applications. Compression of data for
rapid transmission could remedy this problem. However, the
challenge is to achieve a reasonably high compression ratio
while preserving weak features of interest with amplitudes
close to noise equivalent temperature difference (NETD)
detection limit.

In this paper, we investigate data compression of PIT
images using several unsupervised learning (UL) algorithms.
UL is a subset of machine learning (ML), which aims to
self-discover latent patterns in unlabeled data with minimal
human supervision [12]. The advantage of using UL includes
minimizing the workload to prepare and label the training
dataset. Performance of several UL models is benchmarked
using PIT data obtained from measurements of AM metallic
structurewith imprinted calibrated defects. Note that a similar
problem of rapid processing of a large volume of imaging
data arises during in-situ monitoring of LPBF process with IR
thermography. While thermography data compression meth-
ods discussed in this paper are demonstrated for PIT mea-
surements, thesemethods are general and applicable to in-situ
monitoring applications as well [3], [13], [14].

This paper is organized as follows. Section II provides an
overview of thermography data compression. In Section III,
we describe the PIT system used for imaging of an AM
stainless steel specimen with calibrated imprinted inter-
nal defects. Section IV describes the principles of several
UL algorithms for PIT data compression. Section V bench-
marks the performance of UL algorithms in compression of
PIT images. Section VI contains conclusions of this paper.

II. OVERVIEW OF THERMOGRAPHY DATA
COMPRESSION
Data compression approaches for ultrasonic, Eddy current,
and thermography NDE imaging data have been investi-
gated recently as part of signal processing strategies. Data
compression algorithms considered for ultrasonic NDE appli-
cations include Walsh-Hadamard Transform (WHT), Dis-
crete Cosine Transform (DCT), Discrete Wavelet Transform
(DWT) [15]–[19]. The WHT, which utilizes the unitary and
orthogonal transform is composed of rectangular waveforms,
can be readily implemented with existing libraries of numer-
ical routines. However, this method suffers from low recon-
struction accuracy. The DCT method represents data with a
sum of cosine functions. The DWT method correlates the
input ultrasonic signals with wavelet kernels for data com-
pression. The DCT and DWT methods can achieve a high
compression ratio for ultrasonic data. More recently, machine
learning algorithms, such as Wavelet Packet Transformation
Convolutional Autoencoders (WPTCAE) and UL, have been
used to compress ultrasonic data [20], [21]. The WPTCAE
method uses the wavelet packet transformation for signal
decomposition and sub-band elimination to compress data,
optimized by convolutional autoencoders to find the best
wavelet kernel. The UL method accomplishes data com-
pression by learning principal latent patterns and removing
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redundant information in data. A high compression ratio of
ultrasonic data has been demonstrated through the applica-
tion of machine learning algorithms. In Eddy current imag-
ing, compressive sensing [22] and Principal Component
Analysis (PCA) [23] were used to compress data. Com-
pressed data was subsequently reconstructed, and detection
of subsurface material defects in images of metal plates was
demonstrated [24], [25].

In thermography NDE, a lossless compression algorithm
was developed, which combined multiple coding mecha-
nisms to compress thermographic images with a 6.5 com-
pression ratio [26]. For active thermography, Thermographic
Signal Reconstruction (TSR) method was proposed, which
combined data compression with defect detection [27].
TSR involves curve fitting for temperature transient signals
with a fifth to eighth-degree polynomial on a log-log scale.
Active thermography data was compressed by storing only
the estimated polynomial coefficients for each temperature
signal. Thermographic sequences fitting based on genetic
and differential evolution algorithms were proposed, which
improved compression performance by using few fitting
coefficients to replace temperature signals [28]. However, this
iterative algorithm required a large amount of computation
and a long processing time.

A space/time mapping (STM)-JPEG (Joint Photographic
Experts Group) algorithm was developed to compress pulsed
thermographic data for the detection of subsurface defects in a
polyethylene plate [29]. Data compression was accomplished
by reducing the redundancy in temperature values for each
thermography image. This was achieved by linearly mapping
temperature values in high-bit (14-bit or 16-bit) into the
low-bit (8-bit), followed by further image compression with
JPEG algorithm. The STM-JPEG method resulted in a high
compression ratio ranging from 24 to 55. However, subsur-
face material defects were not detectable in decompressed
thermography images.

An approach based on the virtual wave concept was
developed to estimate specimen thickness from pulsed ther-
mographic data [30]. The virtual wave method uses a local
transformation kernel to convert ‘‘thermal waves’’ (observed
thermographic data) into virtual acoustic waves. Virtual
acoustic waves were analyzed with ultrasound reconstruction
algorithms, such as the frequency domain synthetic aperture
focusing technique, to eliminate the virtual time dimension
for data compression. However, the thermal to ultrasonic
conversion process increased algorithm runtime and poten-
tially led to the loss of information in thermographic images.
This reduced the effectiveness of the virtual wave method for
applications to the detection of weak thermal signals with
amplitude near NETD detection limit, and signal-to-noise
ratio SNR < 1.
A pulse-compression method was developed to detect

defects with step heating thermography using halogen
lamps [31]. Material defects were detected by convolving
the acquired thermograms with a matched filter to estimate
true impulse response. This resulted in increase of SNR,

which led to higher compression of thermography data with-
out loss of information related detection of defects. How-
ever, the drawback of pulse-compression method was that
fidelity of the impulse response reconstruction was affected
by numerical noise. In addition, experimental measurement
of background was required, which increased the complex-
ity of method implementation. As an extension of pulse-
compression method, a barker-coded thermal wave imaging
was proposed to evaluate defects in steel material [32].
A shorter Barker-code (7-bit) was used to process thermo-
grams in the pulse-compression algorithm, which increased
the thermography data compression ratio.

A data-processing algorithm for stepped thermogra-
phy was developed to detect subsurface defects of car-
bon fiber reinforced polymer (CFRP) [33]. This algorithm
outperformed TSR in data compression by using fewer fit
parameters. Newton’s law of cooling was used to compress
thermography images with a 98.88% compression ratio by
fitting transient temperature signals using Gauss-Newton
algorithm. Data compression was implemented by storing
the estimated polynomial coefficients for each temperature
signal. However, when using the reconstructed temperature
matrix, not all material defects were detectable in thermogra-
phy images due to the loss of information in reconstruction.
Additional sixteen matrices with temperature information
and coefficients need to be stored. This increased complexity
of using this algorithm.

An adaptive algorithm was developed based on the lift-
ing discrete wavelet transform with set partitioning embed-
ded blocks to verify the viability of image compression
in Vibrothermography [34], [35]. This algorithm efficiently
orders wavelet coefficients by significance and concentrates
sets with high energy in the transformed domain. This allows
signals with high information to be condensed based on their
energy content. Using this method, thermography images
were compressed with a compression ratio of 14. High recon-
struction accuracy with a mean squared error (MSE) of
13.9 of thermal signals corresponding to material defects was
demonstrated. However, the structures imaged in this study
contained large (mm-size) defects. Compression of images
of structures with microscopic material defects might not be
equally viable.

ML has been used in thermography image analysis for in-
situ monitoring during 3D printing and for non-destructive
evaluation of the structure after manufacturing [36]–[42].
However, to the best of our knowledge, ML and UL, in partic-
ular, has not been used for the compression of thermography
data. In general, ULmethods include clustering analysis [43],
latent variable model learning [44], and neural networks [45].
In clustering analysis, such as k-means clustering and hierar-
chical clustering [43], the approach is to learn latent features
in data, and then cluster samples with similar attributes into
the same group. In the latent variable model learning, such as
the PCA [46], Independent Component Analysis (ICA) [47],
Blind Source Separation (BSS) [48], the approach is to learn
the principal latent patterns in the data by linearly projecting
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FIGURE 1. Schematics of PIT imaging system with data compression and material defects detection in reconstructed image.

data samples into the new representation space. This results
in data dimensionality reduction, where in the new space
few latent patterns can represent most of the information in
data. Therefore, redundant information and random noises
are removed, and few latent patterns can be used to com-
press and reconstruct data sets. In non-linear latent variable
model learning, such as the kernel-PCA [49] and manifold
learning [50], the approach is to learn the non-linear latent
structure in the data and to generate optimized latent pat-
terns to represent data. However, non-linear methods are
time-consuming and require a largememory space to train
non-linear models.

Recently, neural networks (NN) have emerged which learn
the latent representation in datasets by utilizing the multi-
layer perceptron architecture. One popular approach is the
autoencoder [51], which is an unsupervised NN that aims to
learn the principal latent representation in data while main-
taining the maximal similarity between input data and recon-
structed data. The autoencoder consists of an encoder and a
decoder block. The encoder learns to encode the input train-
ing data into a low-dimensional representation. The decoder
learns to reconstruct the data to be as close to the input

data as possible by using compressed representation from the
encoder. There exists several types of autoencoders. In the
regularized autoencoders, the sparse autoencoder enforces
the sparsity constraint in training the neural network [51].
This constraint allows few hidden neurons to be active simul-
taneously to enable the autoencoder to learn principal pat-
terns and richer representation in datasets. The denoising
autoencoder is trained to learn a good representation in the
noisy input data, and then recover the original undistorted
data [52]. The variational autoencoder [53] regularizes the
training process to ensure the latent space has good generative
properties by encoding the input data as a distribution over the
latent space.

The autoencoders have been used for classification, data
augmentation, and data compression [51]. For the lossy image
compression, the recurrent neural network (RNN) [54] and
the optimized compressive autoencoder [55], which uses the
2D convolution and sub-pixel architecture, have been used to
demonstrate data compression benchmarks comparable with
that of JPEG 2000. For the time series data compression,
the Long Short Term Memory (LSTM)-autoencoder [56]
and the temporal convolutional networks [57] have been
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demonstrated to achieve compression ratio and efficient
encodings, which are comparable to those of standard meth-
ods. Compared with standard compression methods, the
autoencoders are more flexible in applications to compres-
sion of various data types. However, autoencoders such as
the LSTM-autoencoder, convolutional autoencoder, or deep-
autoencoder, are computationally expensive.

In this paper, we present a comprehensive bench-
mark study of thermography data compression with UL.
A novel lightweight thermography compressive sparse
autoencoder (TCSA) neural network is proposed, which is
demonstrated to result in a high compression ratio of 46.
Compared with the state-of-the-art methods in thermography
data compression, UL algorithms offer several advantages.
These include achieving high compression ratio with UL,
while preserving weak features to allow extraction of micro-
scopic material defects from images. UL-based methods have
general applicability because they are adaptable to compres-
sion of different data types, and allow for memory-efficient
training and rapid on-line augmentation of the model.

III. PULSED INFRARED THERMOGRAPHY IMAGING OF
CALIBRATED IMPRINTED DEFECTS IN ADDITIVELY
MANUFACTURED METALLIC PLATE
A. PULSED INFRARED THERMAL IMAGING SYSTEM
Schematic representation of PIT imaging system, data com-
pression and analysis of thermography imaging data is shown
in Figure 1. In the PIT imaging method, pulse trigger initiates
a high-energy capacitor discharge through a white light flash
lamp to deposit a heat pulse on the specimen surface. As heat
diffuses into the bulk of the material, the megapixel fast frame
IR camera synchronized to pulse trigger starts recording spec-
imen blackbody radiation. The photo-counts can be converted
into time-resolved images of temperature distribution T(x,y,t)
on the specimen surface. The stack of recorded thermography
images (thermograms data cube) is further processed with
image analyzer unit for data compression, reconstruction, and
detection of material flaws in images.

FIGURE 2. Experimental PIT imaging system laboratory setup.

The photograph of the experimental PIT imaging labora-
tory setup is shown in Figure 2. A white light flash lamp

powered by Balcar ASYM 6400 capacitor source delivers a
thermal pulse of 6.4 kJ/2ms to the specimen surface. Flash
light is collimated with a flat lens. To increase absorption of
heat, the surface of material is usually painted with wash-
able graphite black paint. Imaging is performed with high-
speed mid-wave IR (3-5µm) cooled detector array camera
(FLIR X8501sc) with NETD = 20mK. The X8501sc model
provides a maximum spatial resolution of 1280×1024 pixels
with a frame rate of 181Hz at full window size.

B. IMAGING OF AM METALLIC SPECIMEN WITH
IMPRINTED CALIBRATED DEFECTS
A stainless steel 316 (SS316) plate was fabricated with the
LPBF method using an EOS metal 3D printer. The dimen-
sions of this plate are 76mm × 76mm × 3mm (length ×
width × thickness). A set of calibrated defects containing
un-sintered metallic powder and consisting of hemispheri-
cal porosity regions were imprinted into this SS316 plate.
These defects were imprinted during the fabrication using an
STL (stereolithography) file with a drawing of the pattern of
hemispherical inclusions, which is shown in 3D rendering in
Figure 3(a). Photographs of the front and side view of the
AM printed SS316 plate are shown in Figure 3(b).

FIGURE 3. (a) Rendering of hemispherical porosity defects imprinted in
SS316 plate. (b) Photographs of SS316 plate manufactured with LPBF
method.

The SS316 plate was imaged with a PIT system using
camera settings of 181Hz frame rate and 1280× 1024 pixels
full imaging frame. A total of 1200 frames were acquired for
a total imaging time of approximately 6.6s. The IR camera
was fitted with a 50mm lens and 2.54cm (1in) extender ring to
give an imaging spatial resolution of 25µm/pixel. The imaged
area of the plate was approximately 32mm× 26mm. Imaging
settings were determined through experimental optimization
in the imaging parameters space. The size of the recorded
data cube of 1280 × 1024 × 1200 pixels was 2.93GB on
hard drive storage. To simplify the calculations, a smaller data
cube of 720 × 864 × 1200 pixels was selected, which takes
up 1.39GB of storage memory. The segmented data cube
contains an image of the SS316 plate section with dimensions
18mm × 22mm.
Figure 4(a) shows the drawing with labels indicating diam-

eters and depths of the imprinted defects (distance from the
top of hemisphere to plate surface). The pattern of defects is a
grid with diameters ∅ = 1, 0.75, 0.5, and 0.25mm, and depths
d = 1, 0.75, 0.5 and 0.25mm. Distances between nearest
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defects in both horizontal and vertical directions are 12mm.
Distances from the defects in the last row and last column
to plate edge are 20mm. The diameters of defects decrease
along the horizontal direction from the left to right. Defects
depths increase along the vertical line from top to bottom.
The red wireframe box with dashed lines indicates the target
imaging area (4 defects with diameters ∅ = 1 and 0.75 mm
and depths d = 0.5 and 0.25 mm). Reconstruction of these
defects is shown in Figure 4(d).

Results of imaging the plate with 75keV transmission
X-rays are shown in Figure 4(b). Spatial resolution of X-ray
detector is 30µm. Defects with diameters ∅ = 1 and 0.75mm,
and depths d = 1, 0.75, 0.5, and 0.25mm are visible, while
there is insufficient contrast in the image to observe defects
with diameters ∅ = 0.5 and 0.25mm and depths d = 1,
0.75, 0.5 and 0.25mm. The red wireframe box in Figure 4(b)
indicates location of defects visualized in Figure 4(d).

Figure 4(c) shows an example of a recorded raw thermo-
gram with 720 × 864 pixels. None of the material defects
are visible in the raw recorded PIT data. Visualization
of reconstructed defects in SS316 specimen using previ-
ously developed Neural Learning-Based Blind Source Sep-
aration (NLBSS) algorithm is shown in Figure 4(d) [48].
Four imprinted defects marked with wireframe boxes in
Figures 4(a) and 4(b) are visible in Figure 4(d).

FIGURE 4. (a) Design pattern of imprinted hemispherical defects in SS316
plate (red wireframe box indicates defects visualized in 4(d)). (b) X-ray
transmission image of SS316 plate. (c) Example of recorded raw
thermogram. (d) Defects visualization after processing with NLBSS
algorithm.

IV. UNSUPERVISED LEARNING FOR THERMOGRAPHY
DATA COMPRESSION AND RECONSTRUCTION
Compression of thermography data cube (720× 864× 1200
3D matrix with 16-bit elements described in Section III) was
investigated using several UL models. The UL algorithms
include PCA, ICA, Exploratory Factor Analysis (EFA),

Sparse Dictionary Learning (SDL), and a novel Thermog-
raphy Compressive Sparse Autoencoder (TCSA) NN. The
flowchart of data compression and reconstruction procedure,
which was followed for benchmarking performance of all
UL models, is shown in Figure 5. Each UL model was
trained with observed thermography data until convergence
criteria were met. During training, the thermography data
cube was transformed into a condensed 2D data matrix.
Efficient data compression is achieved by learning princi-
pal features and removing redundant information from data
through training and development of principal dictionaries.
Following compression, data were reconstructed with the
UL model developed during training. Fidelity of data recon-
struction was evaluated by recovering images of defects
with the NLBSS algorithm. Performance of UL models is
benchmarked using data compression ratio, reconstruction
accuracy, training time, reconstruction time, and visibility
of material defects in images processed with the NLBSS
algorithm.

A. PRINCIPAL COMPONENT ANALYSIS (PCA)
The PCA method [23] is used to find latent patterns in
high-dimensional data, and to represent the data with fewer
orthogonal dimensions, which are called principal compo-
nents (PC’s). These PC’s are obtained by maximizing the
variance of training data, and minimizing the MSE between
the original data and reconstructed data. The largest variance
of the data is contained in the first principal component. Each
subsequent PC has incrementally decreasing contribution to
total data variance. In this study, the PCA was trained to
compress thermography data with fewer PC’s by removing
redundant information. The equation used to train the PCA is

θ ′ = argθ ′minE
[(
X − X̂

)2]
(1)

θ ′T θ ′ = I (2)

Equation (1) shows the objective function, which is the
MSE between the observed thermography data X and recon-
structed thermography data X̂ . This function is minimized
to guarantee the reconstruction accuracy and maximize the
variance in each principal component θ ′, which is constrained
to be orthonormal according to Equation (2). During training,
the Lagrange multiplier method [58] is used to iteratively
update the θ ′ to find the minimum of the objective function
subject to Equation (2). If the convergence is not satisfied,
which means that theMSE is not small enough for the desired
criteria, and the θ ′ does not maximize the variance in data,
we will use this θ ′ to initiate another iteration. Otherwise,
we apply the learned PC’s to compress and reconstruct ther-
mography data.

To further optimize memory efficiency and computa-
tion in training, we also trained the Incremental-PCA [59]
model using a mini-batch fashion to compress thermography
data. The Incremental-PCA is flexible enough to dynami-
cally adapt to new patterns in data for in-service NDE and
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FIGURE 5. Flowchart of thermography data compression and reconstruction with UL algorithms and post-processing with NLBSS algorithm.

online AM process monitoring. Incremental-PCA training
was implemented using the singular value decomposition
(SVD) [48] algorithm to find principal latent features in
acquired thermography data. The SVD closely resembles
PCA but suffers less from numerical noise because the covari-
ance matrix does not need to be calculated. Also, dividing the
massive thermography data into batches for training allows
for more memory-efficient training compared to that for reg-
ular PCA, since memory complexity is constant.

B. INDEPENDENT COMPONENT ANALYSIS (ICA)
The ICA method [47] is used to separate multivariate mixed
signals into clusters of independent subcomponents. These
independent subcomponents are trained by maximizing the
non-Gaussian distribution of training data, while ensur-
ing that the subcomponents are uncorrelated. During train-
ing, high dimensional thermography data is clustered into
independent subcomponents with low dimensions. Thermog-
raphy data for a particular measurement can display non-
Gaussian distribution. However, the distribution of the sum of
N temperature measurements approaches Gaussian distribu-
tion as N →∞ regardless of the distribution of each temper-
ature measurement [47]. The ICA is implemented according
to the following equations:

Ŝ = W TX = S (3)

E
{
ŜŜT

}
= I (4)

In Equation (3), X is the matrix of the thermography data,
W is the separation matrix, S and Ŝ represent the source
signals and estimated low-dimensional independent compo-
nents. The separation matrix W is trained to separate data
into low dimensional independent components while max-
imizing the non-Gaussian distribution. The estimated inde-
pendent components are constrained to be uncorrelated by
Equation (4).

Next, we applied the fast fixed-point optimization algo-
rithm to search for the direction that maximizes the
non-Gaussian property in training. This involves finding unit
vector wi, where wTi is the ith row vector of the separa-
tion matrix W , so that the projection wTi X

T maximizes the
non-Gaussian property. Unit vectors wi are updated using
the learning rule to estimate different independent compo-
nents. The non-Gaussian property is measured with Negen-
tropy [47] according to:

O (w) =
[
E
{
G
(
wTXT

)}
− E {G (g)}

]2
(5)

In Equation (5), O(w) is the objective function used to
estimate the Negentropy to measure the non-Gaussian prop-
erty. G is the contrast function used to optimize the training
performance, and g is the Gaussian variable with zero mean
and unity variance. We then apply the Newton-Raphson [60]
method to iteratively update the unit vector w to maxi-
mize the objective function O(w) under the constraint of
Equation (4). Implementation details of the algorithm to
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estimate and update the unit vector w can be found in [47].
If the convergence is satisfied, which occurs when the
vectors w in the current and previous iteration point in the
same direction within a specified tolerance, we use vector w
to estimate the independent component.

C. EXPLORATORY FACTOR ANALYSIS (EFA)
The EFA method [61] is used to find linear transformation of
lower-dimensional latent factors in data by removing redun-
dant information and random noises. The main advantage is
that EFA can model variance in every direction of the input
space independently which adds flexibility in training the
latent factors. In addition, EFA models perform better in the
presence of heteroscedastic noise. In this study, EFA is used
to train the latent factors in measured thermography data. The
flowchart of EFA algorithm is shown in Figure 6. The maxi-
mum likelihood estimation [47] is used as the objective func-
tion, and the expectation-maximization (EM) algorithm [62]
is used to search for the optimal solution for the objective
function. The EM iteration alternates between conducting an
expectation (E) step and a maximization (M) step. In the
E-step, a lower bound function is created to calculate the
expectation of the log-likelihood using the current estimate
for the parameters. The average log-likelihood O(3, 9) and
its estimate Ô(3,9) are given as

O (3,9) =
1
N

[∑
n
log p

(
xn|3,9,µ

)]
(6)

Ô(3,9) = −SUM
[(
33T

+9
)−1

S
]

+ logDET
[(
33T

+9
)−1]

+ C (7)

FIGURE 6. Flowchart of EFA algorithm for data compression.

In Equations (6) and (7), 3 is the factor loading matrix
that contains the latent factors that need to be learned. This
loading matrix maps the thermography data x from the high
dimension into the low dimension for compression. Here9 is
a diagonal matrix that consists of the sensor noise variances,
µ is the mean of data, S is the covariance of data, N is the
number of samples used for training, and C is a constant that
does not depend on 3, 9. The SUM and DET operations
represent the calculation of the sum of diagonal elements
and the determinant of the matrix, respectively.The E-step
function equation is given as

β = 3T
(
33T

+9
)−1

(8)

The M-step updates the parameters by maximizing the
expectation of log-likelihood found in the E-step. The closed-
form update equations are

3′ = SβT
(
I − β3+ βSβT

)−1
(9)

9 ′ = DIAG [S −3βS] (10)

In Equations (9) and (10), 3′, 9 ′ represent the newly
updated parameters, I is the identity matrix, and the operation
DIAG sets the off-diagonal elements of the matrix to zero.
Convergence criterion is satisfied when the fractional change
between the updated average log-likelihood and the one from
the previous iteration is smaller than some specified toler-
ance. Following convergence, learned parameters for estimat-
ing the latent features are used to compress thermography
data.

D. SPARSE DICTIONARY LEARNING (SDL)
The SDL method [63] aims to find the sparse representation
of the multivariate data by using optimized base vectors,
called atoms. The base vectors form a dictionary, which is
learned in training. Compared with PCA and ICA, SDL is
advantageous for sparse representation of thermography data,
since the atoms in the learned dictionary are not required to
be orthogonal. The equation of the objective function to train
the SDL is:

O (D) =
1
2
||X − DR||22 + λ||R||1 (11)

In Equation (11), X ,D, R represent the matrix consisting of
the observed thermography data, the dictionary matrix, and
the representation matrix, respectively. Therefore, DR rep-
resents the reconstructed thermography data. The first term
in Equation (11), which calculates the difference between X
and DR, is the reconstruction loss. The goal is to minimize
this loss to guarantee that the learned dictionary matrix D
provides good representation of the data. The first term in
Equation (11) is calculated using the L2 norm, which is more
stable convergence during training as compared calculations
using L1 norm. In the second term in Equation (11), λ is the
regularization parameter, and L1 norm is used to calculate a
sparse solution for R. In addition, to prevent the dictionary
matrix from reaching arbitrary large values resulting in small
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values in R, values of D are normalized L2 to be less than or
equal to unity. This ensures sparsity and convergence in SDL
training [63].

Next, we applied the matching pursuit algorithm [64] to
optimize the search for the principal latent atoms to rep-
resent the thermography data. In practice, if the dictionary
matrix D includes many vectors, it is computationally diffi-
cult to search for the atoms for sparse representation of data.
Thus, we use the matching pursuit algorithm to iteratively
update the dictionary matrix D and representation matrix R
to yield a sparse representation of matrix X . In the first step
of the algorithm, the atoms are found by searching for the
maximum inner product values of atoms and observed dataX .
These atoms were used to initially reconstruct the matrix X .
In the subsequent steps, the atoms were determined by iter-
atively searching for the maximum inner product between
updated atoms and the residual, which is the reconstruction
loss left after subtracting results of previous iterations. The
convergence criteria are satisfiedwhen the loss is smaller than
specified tolerance. If the convergence criterion is not reached
and the learned dictionary does not reconstruct thermography
data well, we use the dictionary in a current iteration in the
next iteration.

To achieve performance efficiency when training on large
datasets [63], we also trained the SDL model by divid-
ing the acquired thermography data into small batches
(mini-batch-SDL). This stochastic training mechanism scales
up well for large datasets and adopts the incremental learn-
ing [65] method. The incremental learning allows the model
to periodically acquire new information whenever a new
training set becomes available, while preserving the knowl-
edge learned in previous training data sets. Therefore, the
mini-batch-SDL trainingmechanism lowers thememory con-
sumption and computational cost, and is well suited to learn
and compress the dynamic thermography data for in-service
NDE of AM structures.

E. LIGHTWEIGHT THERMOGRAPHY COMPRESSIVE
SPARSE AUTOENCODER (TSA) NEURAL NETWORK
The autoencoder [51] is an unsupervised NN that learns
how to encode and compress data, and then reconstructs
the data using the encoded latent representation. The sparse
autoencoder regularizes the autoencoder NN using the spar-
sity penalty to enhance the compression performance. In this
study, we implement a lightweight thermography compres-
sive sparse autoencoder (TCSA).

Figure 7 shows the schematics of the TCSA architecture.
This NN is fully connected and consists of a 3-layer (1200-
64-26) dense encoder followed by a 3-layer (26-64-1200)
dense decoder architecture. To further enhance performance
in data compression, this NN is optimized by using the resid-
ual connection [66] and LeakyReLu [67] activation.We apply
the L1 normalization as a sparse penalty to regularize out-
puts from the hidden layer. The residual connection acceler-
ates the training speed while improving the accuracy [66].
For TCSA, we apply the residual connection across the

FIGURE 7. TCSA architecture.

bottleneck to directly transmit information on the encoded
latent patterns from the hidden layer of the encoder to the hid-
den layer of the decoder. This enables the decoder to learn the
encoded representation more clearly from the thermography
data. In addition, we benchmarked several activation func-
tions which are commonly used in the autoencoder, such as
ReLu and Sigmoid. Ultimately, we selected the LeakyReLu
as the activation function for the hidden layers, since this
function results in the fastest convergence of TCSA. The
activation function adds non-linear features into the NN to
allow learning complex patterns in data. In addition, for
training optimization, we apply the Adam [68] algorithm to
stochastically optimize the training procedure. The Adam
optimization is computationally efficient and requires little
memory space. Compared with the classical stochastic gradi-
ent descent optimization, which maintains a single learning
rate for all weight updates, the Adam optimization computes
individual adaptive learning rates for different parameters.
Also, the Adam algorithm combines advantages from the
Adaptive Gradient Algorithm and Root Mean Square Prop-
agation [69] by calculating the exponential moving average
of the gradient and the squared average to yield faster con-
vergence during the training. In this study, we trained TCSA
NN using 500 epochs with a batch size of 256 to minimize the
objective function to the desired loss. The loss is measured by
using the MSE. The objective function is calculated as:

Obj = E
[(
X − X̂

)2]
+ λ||H ||1 (12)

In Equation (12), the first term represents the MSE in
calculation of loss between the reconstructed thermography
data X̂ and input thermography dataX . In addition, to regular-
ize the autoencoder to enhance the compression performance,
we add the L1 normalization term scaled by the parame-
ter λ on the activation H , which yields a sparse solution
for the model. Next, the Adam optimization algorithm is
applied to minimize the objective function to reconstruct the
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FIGURE 8. Benchmarking of UL algorithms performance in PIT data compression.

FIGURE 9. Visualization of material defects after NLBSS processing of (a) Original thermography data, and thermography data compressed and recovered
with UL algorithms (b) PCA (c) Incremental-PCA (d) ICA (e) SDL (f) EFA (g) Mini-Batch-SDL (h) TCSA.

thermography data as close to the input data as possible. If the
model does not converge to the desired loss, another iteration
is initialized to continue training the NN.

V. BENCHMARKING OF UNSUPERVISED LEARNING
ALGORITHMS PERFORMANCE
Summary of benchmarking of UL algorithms performance
in compression and reconstruction of thermography data is
shown in Figure 8. Performance is compared on the basis
of compression ratio, memory space saving, reconstruction
accuracy, UL model training time, compression time, and
thermography data reconstruction time. Next to each UL
model, Figure 8 lists the number of principal latent dictio-
naries (e.g., 30 dictionaries for PCA). A higher number of
dictionaries represents better reconstruction but lower com-
pression ratio. Each UL model was trained to obtain the
highest compression ratio using the minimal number of latent
dictionaries. Another constraint was to preserve enough fea-
tures in the data during compression to allow detection of
material defects after processing reconstructed data with the

NLBSS algorithm. The compression ratio is calculated as
the size of the measured thermography data divided by the
size of compressed data. The memory space saving, which
is calculated as the difference between 1 and the reciprocal
of compression ratio, represents the reduction in memory
storage size relative to the original thermography data. All
models achieve compression ratios >30, with corresponding
space saving of >96%.

Reconstruction accuracy is measured with Peak Signal to
Noise Ratio (PSNR), which estimates absolute errors in cal-
culations of similarity between initial and reconstructed after
compression thermography data. The PSNR is calculated as

PSNR = 10 log10

(
MAX2

MSE

)
(13)

In Equation (13), MAX is the maximum value of the
original thermography data represented with 16 bits depth.
MSE is the mean square error between the measured
and reconstructed thermography data. For all UL models,
PSNR > 73. A higher PSNR indicates better reconstruction.
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Training, compression, and reconstruction times were cal-
culated by running UL models on the Intel (R) Core (TM)
i7-8750H, CPU@2.20GHz 2.21GHz computer with NVIDIA
GTX 1070 GPU 16 GB RAM.

Figure 9 shows eight images with material defects visu-
alized after thermography data processing with the NLBSS
algorithm. For reference, Figure 9(a) shows the image of
NLBSS processing of the original thermography data, which
is the same as the image in Figure 4(d). Images 9(b) to
9(h) show images processedwithNLBSS following compres-
sion and reconstruction with PCA, Incremental-PCA, ICA,
SDL, Mini-Batch SDL, and TCSA NN. All four imprinted
material defects visible in Figure 9(a) are also visible in
images of NLBSS processed data after compression and
reconstruction with UL models. Different color schemes
were chosen in the images in Figure 9 to highlight material
defects.

According to the results in Figure 8, PCA outperforms
the other UL models with overall performance across com-
pression ratio, memory space saving, training, compression
and reconstruction times categories. ICA yields the same
data compression ratio, and shorter compression and recon-
struction times, but requires longer training time than PCA.
While incremental-PCA and mini-batch-SDL models have
lower performance metrics, they offer the possibility of rapid
on-line augmentation of the model with additional train-
ing data. The EFA model, which requires the lowest data
compression time, offers the advantage of potentially better
performance in the presence of heteroscedastic noise. When
using the TCSA, we obtained the highest compression ratio
of 46.15 with a space-saving of 97.83%, and fast compres-
sion time. Although TCSA takes the longest time to train in
comparison with other UL models, the training time is faster
compared with most state-of-art NN, such as the deep NNs,
the 1D temporal or the 2D spatial convolutional NNs, and
the LSTM-autoencoder. Training of these NN’s is very time
consuming (takes days to train on the computer used in this
study), and heavily depends on the availability of computing
power (multiple GPUs).

VI. CONCLUSION
In this paper, we have investigated the performance of
UL algorithms for compression of thermography data. Data
compression is an enabling technology for high-resolution
nondestructive imaging of AM structures with PIT, in par-
ticular for in-service NDE applications. Performance of UL
models was benchmarked with data obtained from PIT imag-
ing of AM stainless steel plate with calibrated imprinted
subsurface porosity defects. The benchmarking study
included several existing UL methods, which were adapted
for compression and reconstruction of thermography data,
and a novel lightweight TCSA neural network introduced in
this paper. Compared to existing algorithms for thermography
data compression, UL algorithms allow for flexibility in
model re-training, and are adaptable to the compression of
different data types.

Benchmarking of UL algorithms performance included
comparisons of data compression ratio, reconstruction accu-
racy, model training time, data compression time, and
data reconstruction time. Microscopic subsurface material
defects are not visible in the original thermography images
(data without compression). These defects become visible
after processing the images with the NLBSS algorithm. One
of the main challenges in compression of thermography
images is that low S/N intensity features could be lost during
compression. Therefore, compression performance with UL
algorithms depends on the learned manifolds to preserve
weak features of interest. Compression performance can
be potentially improved by training UL models to learn
non-linear manifolds in the data. However, training nonlin-
ear models is time-consuming and requires large memory
resources.

To evaluate the fidelity of data compression with UL mod-
els, we have demonstrated detection of microscopic cali-
brated material defects in original thermography images, and
reconstructed thermography images following compression.
Microscopic material defects were not readily visibile in
the original recorded thermography images. Processing the
data with NLBSS algorithm was required to visualize these
defects. After compression and decompression of thermog-
raphy data, the same material defects were visualized after
applying NLBSS. All algorithms compress thermography
data with compression ratio >30, with data compression and
reconstruction times on the order of 10s. Overall, PCA and
ICA models show the best performance.

The new TCSA neural network has the highest compres-
sion ratio of 46.15, and a compression time comparable
to that of ICA. This is achieved through nonlinear dimen-
sionality reduction while preserving the features of interest
through the training process. However, TCSA training and
reconstruction times are significantly longer than those of
other algorithms evaluated in this study. Nevertheless, the
training time of TCSA is substantially smaller than that of
other state-of-the-art autoencoders. To address this, memory-
efficient incremental training will be investigated in future
work.

While this paper investigated compression of ex-situ or
NDE thermography data, a similar challenge of big data
compression arises in in-situ AM process monitoring with
thermography. This problem can be potentially addressed
with data compression algorithms investigated in this work,
as will be investigated in future studies.

In summary, the main scientific contributions of this
research are:

1. Comprehensive benchmark study of UL algorithms
to determine the best solutions for thermography data
compression.

2. Demonstration of UL-based high compression ratio and
high reconstruction accuracy of images, sufficient to detect
microscopic subsurface defects in AM metals.

3. Demonstration of novel TCSA NN with a notably high
compression ratio of 46.
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