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ABSTRACT The aim of adaptiveHTTP streaming technology is preserving the best possible video streaming
quality for viewers in heterogeneous network conditions. This can be achieved by making multiple quality
versions of the video available. Switching between versions during playback should be imperceptible and
fluent. The decision about quality-level switching is typically based on network capacity estimation and
buffer occupancy, which predict the risk of stalling. Since quality-level switching and stalling are directly
evident to the user, they are often classified as influence factors of quality of experience (QoE). In this paper,
we observe different network capacity estimators and buffer behavior in limited network conditions and study
how the estimators predict QoE. The challenges of variable bitrate (VBR)-encoded video are considered.
We also propose two new estimators to predict QoE. One compares segment fetch time to segment playback
time, while the other explores the difference of throughput and average download rate. As segment duration
may influence HTTP adaptive streaming (HAS) playback in unstable conditions, the findings are tested with
four segment lengths. Moreover, streaming quality is analyzed in a testbed using two popular web players
to reveal possible effects of the players’ features.

INDEX TERMS Adaptive algorithm, HTTP adaptive streaming, network capacity estimators, player
performance, streaming media, quality of service, quality of experience.

I. INTRODUCTION
The high global Internet penetration rate has enabled the mas-
sive growth of streaming video on demand (SVoD) services.
Cisco [1] has predicted that Internet video usage will reach
82 percent of global Internet traffic by 2022. The main actors
in the video delivery chain are content providers, content
delivery network (CDN) operators, Internet service providers
(ISPs), and application designers [2]. Although these parties
have their own criteria for developing services, the quality of
experience (QoE) of the end user is their common interest for
customer satisfaction. ITU-T FG IPTV [3] defines QoE as
‘‘the overall acceptability of an application or service, as per-
ceived subjectively by the end user’’. QoE is subjective and
depends on a user’s experiences and context. QoE data can be
collected from test environments involving humans. There are
also standardized models like ITU-T P.1203 recommendation
for assessing the QoE of HAS.

Before delivering a video, the content provider makes
decisions about encoding and compression that affect video
quality. The aim of on-demand streaming is to transmit and
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display the stored video with the best quality possible from
the user point of view. The transmission channel has char-
acteristics like the available bandwidth, packet loss, delay,
and jitter, which can affect QoE. Video transmission in the
network is controlled by the rules defined by streaming and
transmission protocols. Since the 2010s, HAS technology has
overtaken the streaming protocol field. In HAS, all requests
are done via HTTP on port 80, similar to plain web browsing.
Thus, the streaming traffic is capable of traversing firewalls
and proxy servers. HAS does not need a persistent connection
between the server and player, and it can utilize existing
content delivery networks. No special streaming servers are
needed. In practice, the four following HAS technologies
currently share the market: Apple’s HTTP Live Streaming
(HLS), Microsoft Smooth Streaming (MSS), Adobe’s HTTP
Dynamic Streaming (HDS), and MPEG’s Dynamic Adaptive
Streaming over HTTP (DASH or MPEG-DASH). DASH is
the first HTTP-based adaptive bitrate streaming solution that
is an international standard. In this paper, HLS is used, since
it is the most widely-used streaming protocol.

In HAS technology, the video is encoded into multiple
quality versions. Furthermore, each quality version is divided
into sections of few seconds called segments. Using HTTP
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GET messages, the client requests each segment separately.
Segmentation reduces network wastage compared with tra-
ditional progressive downloads, where the entire video is
downloaded with a single request. Switching the quality level
is possible in segment boundaries because quality levels are
segmented evenly. If the streaming conditions change, the
client can request the next segment in a different quality than
used for the previous one. While downloading segments, the
client collects and monitors the data needed to evaluate the
streaming conditions. Collected data can include the observed
throughput for each segment, buffer occupancy information,
and possibly, the central processing unit (CPU) load. By com-
bining and analyzing the collected data, the network condi-
tions and system capacity are assessed. The goal is detecting
the limits where the current bitrate should be switched higher
or lower to better match prevailing streaming conditions.
The choice between bitrate options is based on estimated
streaming conditions and adaptation logic. The adaptation
logic includes the rules that define how conservatively or
aggressively the bitrate is changed. In addition to the adap-
tation logic, buffering strategies and segment duration may
affect the streaming quality in fluctuating network conditions.
Buffering strategies help optimize playback performance by
trying to prevent stalling, but at the same time, enabling fast
startup and minimizing data wastage.

A typical segment duration is between 2 and 10 seconds.
Apple recommends the target duration of a segment to be
6 seconds [4]. Short segments enable faster reactions to
changing streaming conditions because the segment duration
defines the bitrate switching interval. Every segment must
start with an I-frame, and this lowers the encoding efficiency
compared with the same bitrate videos with fewer I-frames.
Requesting each segment separately causes a higher over-
head compared with traditional streaming protocols. While
the overhead can be decreased by lengthening the segment
duration, longer segments may increase the initial delay.

Like other streaming techniques, HAS is vulnerable to
network interference. Various factors affect delivery effi-
ciency in packet-switched networks; such factors include the
available bandwidth; network congestion; bit errors; capacity
restrictions on the client; data processing on the media server,
routers or switches; and interference in the transmission
medium. HAS faces extra challenges because it uses TCP as
the transmission protocol. TCP performs best with a steady
stream of data packets. Thus, the sequential HTTP requests,
creating an on-off pattern, present a challenge for TCP. The
relationship of HAS and TCP performance is considered, for
example, in works by Hu et al. [5] and Huang et al. [6].
This study explores the relationship between selected qual-

ity of service (QoS) estimators and the QoE influence factors
of HAS playback. In HAS, the most common QoE influence
factors at application-level are a long initial buffering time,
interruptions due to rebuffering, and decreased quality of
the segments (and switching between them) [7]. Delay in
the startup phase and rebuffering are shown directly to the
user, and HAS tries to minimize them by decreasing the

segment quality. Hence, quality changes —even noticeable
ones— may be unavoidable; however, too-frequent quality
switching or even distracting bitrate oscillation can be elim-
inated with a decent adaptation algorithm. Garcia et al. [8]
also detected that changes between high-quality videos are
less noticeable than changes between low-quality ones.
They suggested preparing more video versions at low qual-
ity to make the quality change gradual and less notice-
able to the user. Typically, adaptation methods use network
capacity estimation and/or buffer occupancy information to
choose a suitable bitrate. Even many of the model based
approaches are developed around these QoS metrics like a
DASH rate adaptation algorithm QUETRA, developed by
Yadav et al. [9].

As network capacity and buffer occupancy change before
the user observes an improvement or reduction in quality, they
predict the QoE influence factors of the playback. Often, pre-
dictive metrics are modified to be more applicable in adapta-
tion algorithms. In this study, we monitor these metrics under
changing network conditions to reveal their features and
possible weaknesses in bitrate adaptation. To cause changes
in HLS streaming quality, a variable bitrate (VBR)-encoded
test video was streamed in altered network conditions by
varying the available bandwidth and inducing packet loss.
Two popular video players designed for web playback were
chosen for analysis.

This study makes the following contributions in the HLS
streaming context:
• It shows effects of network impairments on bandwidth
estimators and buffer occupancy (i.e. on typical metrics
used in adaptation algorithms);

• It examines how well common bandwidth estimators,
as well as our two proposed estimators, and buffer occu-
pancy can predict QoE influence factors;.

• It examines effects of lengthening the segment duration
on QoE influence factors in unstable streaming condi-
tions; and

• It uses two players in our test environment to examine
the possible effect of players’ features.

The paper is organized as follows: Section 2 discusses the
related work, and Section 3 introduces streaming condition
estimators used in this paper. Section 4 presents our testbed,
while Section 5 describes the HLS streaming behavior in the
test environment, where network conditions are altered. The
effect of segment duration is also examined. Section 6 dis-
cusses the findings in this study, and Section 7 concludes the
paper.

II. RELATED WORK
The performance of media players depends largely on rate
adaptation methods. In addition to throughput-, buffer-,
and hybrid-based approaches, Yadav et al. [9] divide adap-
tation approaches into QoE-centric, queuing model, and
non-normative based. The simplest throuhput-based methods
evaluate future throughput with the most recently arrived
segment. Buffer-based methods use different thresholds to
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prevent buffer underflow or overflow. When throughput met-
rics and buffer occupancy are used together for assessing
streaming conditions, the bitrate version can be selected by
assessing the TCP throughput first and then fine tuning the
selection based on the buffered media time. Karn et al. [10]
developed an algorithm that predicts throughput but makes
the final decision about level switching based on buffer occu-
pancy. Particularly, when the buffer occupancy is between
two threshold values, the algorithm will keep the current
quality level regardless of throughput estimate. That is to
avoid unnecessary quality switching when there are two com-
peting clients. Tian and Liu [11] generated a rate adaptation
algorithm that uses TCP throughput estimation in addition to
an adjustment factor, which is the product of the buffer size
adjustment, buffer trend adjustment, and video segment size
adjustment functions. QoE-centric based methods consider
throughput and buffer occupancy in order to avoid radical
or frequent quality level changes, and other factors that
are known to influence on QoE. In queuing model based
approaches, HAS client is a queuing system, where queue
length is the buffer occupancy. QUETRA [9] selects the qual-
ity level of the segment so that buffer occupancy converges
to the ideal value in the estimated network throughput. Thus,
also QUETRA combines buffer-based and throughput-based
approaches. Into non-normative approach Yadav et al. [9]
categorize methods that use less general goals or means when
selecting quality level. These include for example server-side
quality selection aiming for fairness among clients. To con-
clude, even more sophisticated adaptation approaches
use network throughput estimation or buffer occupancy
monitoring.

VBR videos bring more challenges in bitrate selection.
The more a VBR video’s bitrate varies from the target
encoding bitrate, the more leeway is needed to prevent
buffer underflows. It is not uncommon for videos on the
Internet even to double the advertised bitrate occasionally.
In addition to buffer size, various smoothing techniques
are applied to improve playback quality in streaming VBR
videos. Le et al. [12] used video bitrate estimation with a
moving average to evaluate the capacity sufficiency more
precisely for VBR videos. The adaptation algorithm of
Dubin et al. [13] estimated the median bandwidth instead of
average based on previous segments to obtain more stable
estimation. These researchers also suggested that playlist files
should include each segment rate in addition to the average
bitrate of the entire quality level.

The effects of segment duration have been considered in
various studies. Sideris et al. [14] observed in their experi-
ment that a longer segment duration achieved a better QoE
level. They deduced that downloading shorter segments pro-
hibits the TCP’s sending window from reaching high values,
which causes the adaptation logic to remain at lower quality
levels. Islam and Khan [15] observed that downloading one
large segment is faster than downloading multiple smaller
segments; they considered the option that, instead of switch-
ing to a lower bitrate version, the segment duration could

be varied in insufficient network conditions. In addition,
Liu et al. [16] studied the possibility of using segment dura-
tion in the rate adaptation. They developed a rate adapta-
tion method, that estimates the minimum segment duration
for producing a smoothed HTTP/TCP rate, representing the
current network capacity.

Nguyen et al. [17] compared streaming with fixed seg-
ment lengths of 2, 5, and 10 seconds in networks with
different round trip times (RTTs) and using instant and
smoothed capacity estimation methods. They found that
advantages of longer segments arise when the RTT is
increased. Videos delivered with longer segments reach a
higher average bitrate during streaming, especially with the
instant throughput–based adaptation method. They also dis-
covered that using a shorter segment duration reduces the
occurrence frequency of buffer underflows. In another study,
Mondal et al. [18] explored YouTube’s bitrate and quality
adaptation algorithm. They found that YouTube uses a par-
allel downloading of segments and segment length changing
to offer the best possible quality with minimum data wastage.

In our research, we bring together and compare some
common estimators, introduced in Section III, and evalu-
ate how QoE influence factors can be predicted with them.
These estimators can further be used in adaptation algorithms.
By modifying the introduced metrics, we form two new
streaming quality estimators. The analysis is performed using
a VBR-encoded video. AlthoughHTML5 tags enable embed-
ding videos directly in a webpage, adding adaptive bitrate
streaming, live streaming, and other functionality requires
using HTML5 Media API and JavaScript. For that reason,
a readymade HTML5 player is often the most straightforward
solution. Unlike in the papers mentioned previously, in this
study, two common readymade web players are chosen as test
players.

III. NETWORK CAPACITY AND BUFFER OCCUPANCY
ESTIMATION
The traditional method for determining the most suitable
bitrate version is assessing the network capacity and/or mon-
itoring the client buffer occupancy. To avoid reacting to
short-term throughput variation caused by TCP congestion
control, a smoothed throughput estimation can be used to
detect more persistent bandwidth changes [19]. The simplest
method for assessing the network capacity T is measuring the
segment fetch time (SFT) and dividing the segment size lsize
by it, that is,

T (i) =
lsize(i)
SFT i

.

Here, SFTi denotes a period of time from the time instant ti of
sending a GET request for a ith media segment to the instant
of receiving the last bit of the requested media segment, that
is, the time consumed downloading a segment of size lsize(i).
The network capacity for the next segment request interval
i+ 1 can be estimated as

T ′e(i+ 1) = T (i). (1)
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The longer the media segment duration, the smoother the
throughput estimation is in equation (1). Liu et al. [19] esti-
mated segment size lsize by multiplying segment duration
ldur with segment bitrate lbr , obtained from the playlist file.
Hence,

T ′e(i+ 1) = lbr (i) ·
ldur
SFTi

= lbr (i) · µ. (2)

Method (1) takes only the previous segment fetch time into
account when estimating the network throughput for the next
segment interval. To smooth the estimation more, the expo-
nentially weighted moving average (EWMA) of segment
throughput

Ts(i) =

{
(1− δ)Ts(i− 1)+ δT (i), i > 1
T (i), i = 1

can be used. Parameter δ ∈]0, 1[ is a weighting value
(smoothing factor). Following [20], the smoothed throughput
estimate for the download interval i+1 can now be formulated
as

Te(i+ 1) = Ts(i). (3)

A smoothed bandwidth may cause a late reaction to a large
throughput decrease. In these situations, the buffer should be
big enough to prevent stalling.

In HAS streaming, the data are transferred periodically.
A segment fetch period, the time between two consecutive
GET requests, may include long idle periods. Thus, the aver-
age download rate can be much lower compared with the
throughput. The average download speed in a segment fetch
period is

A(i) =
lsize(i)
ti+1 − ti

. (4)

This represents the average speed at which the client can
receive a segment due to restrictions set by the through-
put or playback buffer. Here, ti is the timepoint of the
GET request for the ith segment. Akhshabi et al. [21] used
EWMA-smoothing on the average download speed in a con-
stant, 2-second period for exploring adaptation algorithms.
In that case, A′(i) = mi/(2 seconds), where mi represents
all media data downloaded in the ith 2-second period. In the
following, we use EWMA smoothing on equation (4) for
estimating the average download rate for the next segment
interval, that is

Ae(i+ 1) = As(i),

where

As(i) =

{
(1− δ)As(i− 1)+ δA(i), i > 1
A(i), i = 1.

In this paper, Ae is applied to form a new estimator. The
difference 1(i) = T (i) − A(i) gives information about the
bandwidth utilization. When the playback is in a steady state,
that is, the playback buffer is full, A(i) follows the average
video bitrate, and the difference1(i) increases. The less time

a player uses on idle periods, the closer A(i) becomes to T (i);
that is 1(i) decreases. Decreasing the difference means that
the client strives to maximize the use of the bandwidth as
the player is in the buffering state. In addition to operating
in the startup phase, the buffering state is on every time
the buffer occupancy decreases due to insufficient streaming
conditions for the current video bitrate, that is, when media
data are removed from the playback buffer faster than they
are received. Due to these features, the EWMA-smoothed
difference,

1e(i) = Te(i)− Ae(i), (5)

is the other of our two proposed new streaming quality esti-
mators. One option for estimating the threshold value for
1e is monitoring the initial buffer filling phase. When the
buffer is filled for the first time, the client uses the maximum
capacity and 1e is its smallest. The closer to zero the differ-
ence becomes during the filling phase, the more efficiently
the client can utilize the available bandwidth. If 1e later
approaches the value observed during initial buffer filling, the
playback is closer to transitioning into the buffering state.

If the video bitrate occasionally shows high variation, even
inside the same HAS quality level, it may not be enough to
compare only the throughput to the bitrate for the adaptation
methods. To fade out absolute throughput measuring, the
approach to observing the relationship of the segment fetch
time and segment playback time was examined, that is,

S(i) = SFTi/ldur .

If S(i) exceeds a threshold value, λ = 1, segment i is
received slower than one is played out. This results the buffer
occupancy to fall. Vice versa, the value of S(i) under 1 depicts
that the current throughput is sufficient for the video and the
buffer occupancy can grow if it is not yet full. In practice,
a value of λ below 1 should be selected to give more time,
for example, for decoding. Metric S(i) evaluates the buffer
occupancy development direction. It is not independent of
A(i) and T (i), as the following equation shows:

S(i) =
SFTi
ldur
=
ti+1 − ti
ldur

·
A(i)
T (i)

.

To form a streaming quality estimator from S(i), we used an
EWMA-smoothed version of it:

Se(i+ 1) = Ss(i), (6)

where

Ss(i) =

{
(1− δ)Ss(i− 1)+ δS(i), i > 1
S(i), i = 1.

Whilemonitoring Se, buffer occupancy can be estimated by
comparing the received media time to the passed time from
the initial buffer filling. Basically, all information needed
comprises timestamps of sent GET requests from the network
level. If application-level information of the video timeline
position value is available, an accurate buffer occupancy can
be deduced. As the segment duration ldur is constant, and the
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player requests a segment only after all the previous ones are
received, the buffer occupancy b at timepoint t is

b(t) = (i− 1) · ldur − p(t), t ∈ [hi, hi+1[. (7)

Herein, hi is the time when the ith segment has arrived and
p(t) is the video timeline position value at time t . Using
p(t) gives more accurate estimation than using real time in
the buffer evaluation in pursuance of Se monitoring. Partic-
ularly, method (7) takes stalling occurrences into account.
As segments are moved into the playout buffer as a whole,
b(t) forms a sawtooth line. In the buffer occupancy figures
given below, we depict the buffer occupancy only in the GET
request points b(ti), in which case, the buffer always contains
at least one segment.

IV. THE TEST ENVIRONMENT
During the tests, we used two HTML5 video players that
are built for web playback—the commercial JW Player [22]
and open source Video.js player [23]. Both are commonly
used for professional online video deployments. Adaptive
streaming is possible with HLS, MPEG-DASH, and RTMP
protocols. In our tests, HLS streaming and the current
market-leading web browser, Google Chrome, were used.
Video was streamed from a normal web server with the Win-
dows Server 2008 R2 operating system, which uses the Com-
pound TCP (CTCP) version [24]. The media data were sent
on the network layer in 1,500 byte–sized packets. CTCP uses
the delay- and loss-based congestion avoidance approaches.
We also observed that the client used delayed acknowledg-
ment, informing only every other data packet.

Changing network conditions were generated during the
streaming tests with the Linktropy 5500 WAN emulator [25]
by adjusting the available bandwidth and packet loss rate.
During the playbacks, the media data traffic was monitored
with the Wireshark network analysis tool [26]. The playback
progress information was tracked with JavaScript, utilizing
the players’ APImethods. The playback progress information
was combined with timestamps of the GET requests recorded
by Wireshark to estimate the buffer occupancy at the GET
requests using equation (7). The test environment proved
to be isolated enough to provide very little variation in the
metrics monitored during playbacks with the same settings.
The test setup is illustrated in Fig. 1.

As it is commonly applied in video quality research papers,
the VBR encoded Big Buck Bunny [27] animation was cho-
sen as a test video. To assure some results, also another test
video, Elephants Dream [28], was used. The videos were
re-encoded suitable for HLS transmission. The specifications
of videos are shown in the Table 1. The client machine infor-
mation is in the Table 2. Fig. 2 presents the bitrate profiles
of test videos with 2-second long segments. Each video and
audio frame has a display timestamp that defines when the
frame should be rendered. The figure shows the size of frames
in each display second. The blue dashed line depicts the
overall average bitrate of the video. The blue solid line is the

TABLE 1. Test video information.

TABLE 2. Client machine information.

20-second moving average of the bitrate profile. The content
dictates the variation in the bitrate profile.

V. RESULTS
In this section, the effects of different bandwidth conditions
and packet loss rates on network capacity estimators and the
buffer behavior are observed. For HDS, the client’s playback
buffer size is roughly recommended to be at least three times
the segment duration [29]. The specification states that the
buffer length should provide minimal playback disruptions
while considering factors like network conditions, desired
latency, desired start times, and effects on server scalability.
The DASH and HLS specifications do not stipulate the buffer
length. In our test setup, themaximumbuffer size in themedia
timewas 25s for JWPlayer. The default buffer size ofVideo.js
is 60s, but it was also set to 25s in the test environment. As a
default, both players gathered only 1 or 2 segments to the
buffer before starting the playback, when the segment length
was 2 seconds. With longer segments tested, players started
the playback after receiving one segment. This led to short
initial delays (even at the expense of smooth playback—a
small initial buffer occupancy may cause stalling occurrences
right at the beginning of the playback).

A. BANDWIDTH LIMITATION
For years, service providers have relied on network
over-provisioning as a solution to traffic fluctuations. Reserv-
ing more bandwidth, than the expected traffic load, pro-
vides readiness to serve future customers, although it is
not energy efficient. However, over-provisioning does not
solve all situations in a network. Not all routers prioritize
real-time applications, and UDP-based flows lacking con-
gestion control may flood the network [30]. When multiple
flows compete for their fair share of the link, the throughput
decreases. Especially, if the link is shared between other
adaptive streaming flows with a temporal overlap of the on-
off periods, the fair share may be estimated incorrectly. This
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FIGURE 1. Test environment. Video segments are fetched from a web server and transported through
a campus network. Before delivering packets to the client, streaming conditions are altered with a
physical WAN emulator. Network traffic is monitored with the Wireshark packet capture program.

FIGURE 2. Encoding bitrate profiles with moving averages of Test video 1 a) and Test video 2 b) in bits/display time.

causes instability in video quality, unfairness, and bandwidth
underutilization [31].

Larger video player buffer sizes, better playing strategies,
and improvements in TCP have decreased network through-
put requirements [32]. For constant bitrate videos, Biernacki
and Tutschku [32] assessed that the network throughput
should exceed the video bitrate for about 15 percent for
smooth transmission. In a simplest case, an adaptation algo-
rithm chooses the maximum of the bitrates that meet the
condition γ · lbr ≤ Te, where γ = 1.15 is a coefficient that is
evaluated to guarantee enough bandwidth to overhead traffic.
With VBR videos, a throughput exceeding the average bitrate
by 15 percent may not be enough.

To examine the estimators’ behavior and players’ perfor-
mance, we regulated the available bandwidth with the WAN
emulator using the two players. In a test case shown in Fig. 3,
the bandwidth is first set to be 1.7 times the average bitrate,
then reduced to 1.2 times, changed to 1 time, and increased
back to 1.2 times the average bitrate of test video 1. This kind
of sudden bandwidth change may be caused by other clients
connecting to share the link. Figure shows the received media
data per second (gray line) and estimators Te (green line), Ae
(blue line), and 1e (brown line) for both players. The initial
value of the smoothing factor δ is chosen to be 0.2, following
Akhshabi et al.’s [21] article. The time is set to start from the
timestamp of the GET request for the first segment. During
the tests, a 2-second-long segment length was used.

In the first bandwidth period (bw = 1.7 · average
(video bitrate)), players fill their playback buffers as fast
as possible. This causes 1e to decrease to near zero as all
the available bandwidth is utilized. After that, Ae and Te
diverge from each other, and the variation of Ae increases.
An increasing 1e value denotes that the network connection
will allow higher bandwidth utilization than is used in video
streaming. At its highest,1e rises to 4.4 Mbps; that is, at this
point, the client is using over 4 Mbps less bandwidth than
offered. The decrease of Ae results from the idle periods in
the data transmission. However, Te stays up since packets are
received as quickly as they were earlier, although requested
less frequently. The playback is in a steady state; that is,
the buffer is full and the next segments are requested less
frequently to prevent buffer overflow.

In the second period, the available bandwidth is decreased
to 1.2 times the average video bitrate. Estimates Ae and Te
can still keep their distance from each other, meaning that
clients can have idle periods and playback is not vulnerable to
stalling. In the third and fourth periods, 1e approaches zero.
Both Ae and Te are near the emulated bandwidth; that is, the
players request each segment as soon as they have received
the previous one. This may indicate decreasing buffer occu-
pancy. The situation is not much improved when the available
bandwidth is raised back to the second period level (bw =
1.2 · average (video bitrate) ). The behavior of the estimators
is extremely similar in both players.
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FIGURE 3. Received Mbits/s, and estimators Te, Ae, and 1e (smoothing factor δ = 0.2) in changing bandwidth conditions with JW
Player a) and Video.js player b). The segment duration is 2s, and the maximum playback buffer size, in media time, is 25s.

FIGURE 4. Smoothed estimator Se (δ = 0.2) a) and buffer occupancy b) for JW Player and Video.js in variable bandwidth conditions.
The segment duration is 2s, and the maximum playback buffer size, in media time, is 25s.

In Fig. 4, the new estimator Se is applied, and the buffer
occupancy for both players during the same test runs as
above is depicted in time instances of GET requests using
equation (7). In the Se chart, the threshold value is λ = 1 and
smoothing factor is δ = 0.2. In Fig. 4a, Se stays below the
threshold value λ in the first two periods, indicating sufficient
streaming conditions with both players. In the first period, the
maximum of Se is about 0.75; that is, downloading a segment
takes roughly less than 75 percent of the time it takes to play
it back. This is enough for building up the buffer occupancy.
Both players can also hold the buffer fullness well in the
second bandwidth period.

In the third period, Se rises above the threshold value.
On average, Se ≈ 1.14 for both players in the third period.
This means that the streaming would need approximately
14 percent more bandwidth than offered with the current
bitrate. The time since the arrival of the first segment reaches
a received media time of about 360 seconds with JW Player.
Thus, it can be assumed that all the received media time is
played out, and buffer underrun will take place. The buffer
decrease is proved by Fig. 4b, where a more accurate buffer
approximation, with the video timeline position, is used. The
user will not see any changes in playback quality until the

buffer has drained or reached the threshold defined by the
player, causing stalling. Both playbacks stall twice in the third
period. The last test period looks extremely different from the
second test interval, although the available bandwidth is the
same in both periods. This is explained by the variable bitrate
of the test video. The last 2 minutes of the content requires a
higher bandwidth than the first part (see Fig. 2a). Se exceeds
the threshold value and stays above it for over a minute.

QoE influence factors (total stalling times and occur-
rences), were observed in conditions where the available
bandwidth was not changed in the middle of the playback.
The test video was played five times on six bandwidth levels
with both players. Fig. 5 shows, that when the available
bandwidth decreases below 1.2 · average (video bitrate),
stalling starts to appear; that is, QoE starts to decrease. Thus,
the threshold limit for estimator Te should be 20 percent
larger than the average video bitrate for this video; in other
words, selecting segments in such a way that Te > 1.2 ·
lbr should prevent stalling. Our previous observations with
estimators1e and Se and the buffer occupancy values suggest
switching quality level when the bandwidth drops under 1.2 ·
average (video bitrate) because of the bitrate variation of the
test video. This result is in line with Fig. 5. In the setup above,
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FIGURE 5. Averages of total stalling durations a) and times b) in constant relative bandwidth values with the test video. The playback
was done five times with each bandwidth value (1.05–1.30 times average video bitrate). The segment duration is 2s, and the maximum
playback buffer size, in media time, is 25s.

FIGURE 6. Received Mbits/s, and estimates Te, Ae, and 1e (smoothing factor δ = 0.2) in changing packet loss conditions with JW
Player a) and Video.js player b). The segment duration is 2s, and the maximum playback buffer size, in media time, is 25s.

all the estimators concerned work fairly reliably. However,
the constant bandwidth does not usually compare with the
reality. In the next section, packet loss is added to the channel
to cause more bandwidth fluctuation.

B. PACKET LOSS
The most common cause of packet loss in wired networks
is congestion. Another cause of losses is transmission errors
resulting in corrupted packets, which are then rejected.
Device-based reasons include the performance of routers or
switches that are unable to handle all traversing traffic or
damaged cables. Wireless networks are more vulnerable to
packet loss as the signal strength weakens due to multipath
fading. The popularity of mobile devices makes packet loss
common. As HAS protocols run on top of TCP, all lost or
corrupted packets are resent. If the available bandwidth is
high enough, the increased retransmissions may not mani-
fest to the user. Many retransmissions, and especially TCP
retransmission timeouts, can cause delay, throughput fluctua-
tion, and finally, buffer underflow.Video image artifacts, such
as blockiness or blurring, are not typical in TCP streaming.

The influence of packet loss was tested while keep-
ing the available bandwidth constant. From previous tests,

we concluded that bandwidth exceeding the encoding bitrate
by 20 percent is just enough for playing the video back flaw-
lessly, but this may cause the buffer occupancy to decrease
in the final part of the video. To ensure that insufficient
throughput is caused by the packet loss, the available band-
width was set to 1.3 · average (video bitrate) in the test
setup. The loss rate was set first to 1%, then increased to 3%,
and then increased again to 5%. The final part was played
without packet loss to see how quickly estimators reacted to
improved network conditions. The WAN emulator discards
packets randomly based on the specified packet loss rate.
Dropped frames also consume link bandwidth.

The received media data per second and estimators Te, Ae
and 1e are shown in Fig. 6 for both players. Packet loss
affects the throughput and causes variation in estimators.
Although δ is chosen as a way to smooth out Te, the variation
may still lead to failure in selecting optimal bitrate, when
using Te alone. Estimators Te and Ae follow each other when
the player tries to fill the buffer, that is, 1e approaches zero
with only a slight variation. In the second period (3% loss),
1e rises, indicating that the buffer fills upmomentarily.When
the packet loss is removed in the final period,Te andAe start to
rise again near the emulated bandwidth level. It takes almost
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FIGURE 7. Smoothed estimator Se (δ = 0.2) a) and buffer occupancy b) for JW Player and Video.js at four different packet loss levels.
The segment duration is 2s, and the maximum playback buffer size, in media time, is 25s.

FIGURE 8. Averages of total stalling durations a) and times b) in different packet loss conditions with the test video. The playback was
done five times in each bandwidth value. The segment duration is 2s, and the maximum playback buffer size, in media time, is 25s.

a minute for Te to reach its maximum, but most of the rise
takes place in a few seconds.

Fig. 7 depicts the behavior of estimator Se and the buffer
occupancy during previous test runs. In 1% and 3% packet
losses, Se stays below the threshold value, indicating that
the channel can deliver packets in sufficient speed to render
video. In a 5% packet loss period, Se rises above the threshold
value of λ. In this period, the average of Se is 1.04 with JW
Player and 1.01 with Video.js. Stalling occurrences are still
avoided. The buffer occupancy is, at the lowest, about 11s
with JW Player and 12s with Video.js in the third period.

Packet loss naturally slows down the buffer filling and
causes the initial delay to lengthen. However, neither players
gather more than 1–2 segments to buffer before starting the
playback. This already causes difficulties in the beginning
as both players can raise their buffer level only to about
10 seconds during the first minute. As could be assumed
based on estimator 1e, the players manage to fill in their
playback buffer in the second packet loss period. From the
behavior of estimator Se, it could be deduced that, in the
5% packet loss period, with the used bandwidth, the level of
media data decreased in both players’ playback buffer.

Fig. 8 shows the averages of total stalling times and stalling
occurrences, when the packet loss ratio is kept constant

during the whole playback time and the available bandwidth
is limited to 1.3 · average (video bitrate). The video is played
back five times with each packet loss ratio. The stalling time
starts to increase when the loss ratio exceeds 4%.

Along with the packet loss, the throughput conditions were
more realistic during the tests in this section. Naturally, the
fluctuating throughput affected the behavior of Te the most.
Estimator 1e behaved similarly to the case with constant
available bandwidth. Estimator Se varied a bit more than it
did without packet loss, but as it only indicates the incoming
data in relation to played data, it is easy to interpret.

C. SEGMENT LENGTH
Segment length is usually decided on the server side. The
decision depends on the terminal device and video content.
Short segments enable quick adaptation to changing network
conditions. Every segment starts with a key frame; thus, long
segments allow higher efficiency in encoding. In addition,
fewer requests are needed, which reduces the overhead. For
the HLS protocol, a segment length of 6 to 10s is often
recommended. However, for example, Bitmovin [33], sug-
gested HLS segment sizes of around 2 to 4s to achieve a
good compromise between encoding efficiency and flexibil-
ity for stream adaptation to bandwidth changes. This section

VOLUME 10, 2022 9825



S. Laine, I. Hakala: Network Capacity Estimators Predicting QoE in HTTP Adaptive Streaming

FIGURE 9. Received media data in Mbits/s and estimates Te, Ae, and 1e (δ = 0.2) for JW Player in variable, limited bandwidth a) and
packet loss conditions b). A 10-second segment video is employed with a maximum playback buffer size of 25s.

FIGURE 10. Smoothed estimators Se (δ = 0.2 and δ = 0.6) a) and buffer occupancy b) for JW Player in changing relative bandwidth
conditions. The segment length is 10s and the maximum playback buffer size is 25s.

examines both the behavior of estimators with longer seg-
ments and the effects of segment length on QoE influence
factors.

The changing bandwidth and packet loss condition,
realized in sections V-A and V-B, were repeated with a
10-second segment length. Since there were no significant
differences in buffer handling between players, and switching
algorithms were not examined, only JW Player was used in
these tests. Fig. 9a shows how the lengthening of segment
duration increases the smoothing of estimates Te and Ae; that
is, it slows down reacting on throughput changes, and the vari-
ation decreases. The time for Te to reach the real throughput
may be too long for most real-life use cases. This should be
consideredwhen choosing the smoothing factor δ. In contrast,
when the packet loss is induced in Fig. 9b, Te smooths down
variation to the level that would prevent bitrate oscillation.

Fig. 10 shows the estimator Se and buffer occupancy for
playback in the 10s length segment duration for varying band-
width levels and packet loss rates. In this setup, the estimator
Se is formed using two different smoothing factor values, δ =
0.2 and δ = 0.6. JW Player starts the playback right after the
first segment has arrived and uses the same maximum buffer
size (25s) as with the 2-second segment. Estimator Se reveals
that data are receivedmore slowly than they are removed from
the playback buffer in the third and fourth bandwidth periods.
The accurate buffer occupancy monitoring reports six stalling
occurrences. Segment lengthening from 2 to 10 seconds

could not prevent buffer underrun. Corresponding, figures
of Se and buffer occupancy for packet loss test are shown
in fig. 11.
Finally, the effect of bandwidth limitation on two

QoE influence factors with four different segment lengths
(2, 4, 6, and 10s) is depicted in Fig. 12. In these four video
variants, keyframes only appear at the start of each seg-
ment. Thus, lengthening segments cause decrease in average
bitrate. On each relative bandwidth, the video was played
five times and stalling occurrences and the total time spent
on them were monitored. In Fig. 12a, the total stalling dura-
tions during the 10-minute video for JW Player are shown
between bandwidths of 1.05 · average (video bitrate) to
1.3 · average (video bitrate). In the bandwidth of 1.05 ·
average (video bitrate), video stalls on average lasted 47 sec-
onds with 2-second segments and 42 seconds with 10-second
segments in total. In a 10-minute-long video, the difference
is hardly significant to the user. However, it is interesting
that the longest and shortest segment lengths tested had
the least stalling events. Closer inspection revealed that,
unlike with longer segments, JW Player collected 2-second
segments more than one before resuming playback after
stalling. It is also possible that some stalling occurrences
with 2-second segments were shorter than 0.5 seconds, which
was our criterion for stalling. Most stalling occurrences on
average (34) were observed with the 4-second segment length
in the lowest available bandwidth conditions tested.
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FIGURE 11. Smoothed estimators Se (δ = 0.2 and δ = 0.6) a) and buffer occupancy b) for JW Player in changing packet loss conditions.
The segment length is 10s and the maximum playback buffer size is 25s. The available bandwidth is 1.3 times the average video bitrate.

FIGURE 12. Averages of total stalling durations a) and the number of stalling instances b) at different bandwidth levels with four
segment lengths. Each test setup is repeated five times. The maximum playback buffer size, in media time, is 25s.

FIGURE 13. Total stalling durations a) and the number of stalling instances b) at different bandwidth levels with four segment lengths.
Each test setup is repeated at least five times. The maximum playback buffer size, in media time, is 25s.

The results were also checked with Test video 2. Test
video 2 is smaller, average bitrate varying from 1.83 to
1.91 Mbit/s between segment length versions. Streaming this
video clip, gave us more unsteady results that are depicted
in Fig. 13. When decreasing bandwidth with longer segment
variations (6s and 10s), the playback showed stallings, not
caused by buffer underrun. These can result from for example
browser settings, device glitch or corrupt video software. The
phenomena is demonstrated in Fig. 14. The dark red lines
depict the stalling times caused by buffer underrun. Lighter
ones are stallings times caused by other reasons. Addingmore
key frames did not clear up this buffering behavior. However,
Video.js player gave consistent results with the Test video 2.
These are shown in Fig. 15.

FIGURE 14. A demostration of stalling events when there is no buffer
underrun. (Light red lines).

VI. DISCUSSION
Above, the features of four estimators were brought out to
evaluate their applicability in HAS algorithms. The smoothed
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FIGURE 15. Total stalling durations a) and the number of stalling instances b) at different bandwidth levels with four segment lengths
using Video.js player. Each test setup is repeated three times. The maximum playback buffer size, in media time, is 25s.

estimator Te and buffer occupancy are possibly the most
used (alone or together). The estimator Te evaluates absolute
throughput to the next segment request interval. To select
the most suitable bitrate, the value of Te is compared with
encoding rates that are informed in the playlist file, or for
example, to the measured average bitrate of a given number
of previous segments. In cases where Te varies a lot, it is
not optimal for the adaptation algorithm. This may happen,
for instance, in a congested channel, when Te has a constant
smoothing factor. On the other hand, the video sections that
differ a lot from informed target bitrate, may lead to incorrect
decisions of segment quality selection if only Te is used.

Often, the throughput estimator is completed with other
metrics. To make Te more applicable for VBR videos, it was
observed in relation to the download estimator Ae, and the
difference1e = Te−Ae. Estimator1e discerns howmuch of
the maximum available bandwidth capacity is unused. When
the player fills its playback buffer, maximum utilization is
applied. This happens right at the beginning of a streaming
session during the initial buffering. In the steady state, the
player has idle periods as the playback buffer only has room
for a new segment when data are removed from it to play
back. Together, Te and 1e are able to tell whether the eval-
uated throughput is sufficient for the current bitrate, and in
theory, estimate the amount by which the video bitrate can be
raised or reduced.

Alongside throughput estimators, buffer occupancy is
often used in adaptive algorithms by setting different thresh-
old values for it. These values define when to start playback
and switch quality level. When used alone, the appropriate
segment bitrate selection is not based on any throughput
measurements but has to be done for example one quality
level at a time. This can cause for example too slow reacting
when the buffer is full.

To observe the relative throughput, we simply compared
the segment download time to its assumed playback time
(segment duration). Estimator Se is a smoothed version of that
metric. The approach combines features from buffer occu-
pancy and throughput estimation. The variation of Se results
both from throughput and segment size changes. A simple
goal of the adaptation algorithm using Se may be selecting a
segment that keeps Se right below the set threshold value λ.

A more ambitious algorithm would allow exceeding λ occa-
sionally. The time possible to spend above the threshold value
depends on the buffer occupancy development. Buffer occu-
pancy can be obtained by recording in- and outgoing media
seconds during Se tracking. Estimator Se also tells whether
the video bitrate should be raised or reduced.

The behavior of estimators was tested with two players—
a commercial JW Player and open source Video.js. Since
the HTML5-versions of these players did not express any
resource-dependent adapting buffering methods, players’
performance were very similar. Only difference was observed
when long segments (6s and 10s) where played back in insuf-
ficient bandwidth conditions. This caused JWPlayer to pause
playback occasionally before buffer underrun. In addition,
as a default, the players collected only one segment before
starting playback. This resulted in similar initial buffering
behavior. As the estimators in this paper predict the metrics
for the next request interval, lengthening the segment duration
smooths out the estimates; this requires adjusting parameters.
Otherwise, changing the segment length hardly affected the
QoE metrics observed with JW Player.

VII. CONCLUSION
This paper presented metrics that can be used as building
blocks for adaptive algorithms of HAS. We explored four
different approaches to evaluating streaming conditions from
a client’s side. A commonly used test video was played in
different bandwidths and throughput conditions, both altering
them in the middle of the playback and using the same chan-
nel conditions throughout the video. This study also brought
out challenges that VRB encoding causes to streaming con-
dition estimators. When the encoding bitrate varies, it is
often also with the metrics evaluating streaming conditions.
Thus, adaptation algorithms should be designed to handle and
interpret fluctuating metrics.

The ability of estimators to predict influence factors of
QoE were evaluated. Stalling frequency and total stalling
time were used as response variables. Estimator Se may be
the most applicable in predicting streaming conditions inde-
pendently. Throughput estimator Te usually needs additive
information. The work in this paper also demonstrated that
lengthening segments is not a straightforward solution for
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increasing QoE, even when the initial delay is not considered.
The adaptation algorithms of players tested in this paper
do not include specific buffering methods. Thus, the true
differences of players will probably manifest only in a multi-
bitrate environment. Future work will consider testing the Se
estimator as part of an adaptive algorithm. In addition, more
precise information on video complexity should be utilized to
better optimize the bitrate switching.
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