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ABSTRACT In this paper, we propose a secure image encryption system based on compressed sensing (CS)
with a scrambling mechanism. For efficient encryption, we use a sparse measurement matrix, where the
nonzero elements are generated by a linear feedback shift register (LFSR) based keystream generator. Then,
several pairs of data scramblers, also based on LFSR, are attached behind the CS-encryption for diffusion.
While guaranteeing theoretically reliable CS-decryption, numerical results indicate that the proposed
cryptosystem has more reliable CS-decryption performance than other CS-based cryptosystems. Examining
the histogram, entropy and correlation of the ciphertexts, experimental results demonstrate that the proposed
cryptosystem has strong statistical security. Moreover, it turns out that the proposed cryptosystem has higher
plaintext sensitivity than other CS-based cryptosystems, thanks to the bit-level diffusion from the scramblers.

INDEX TERMS Compressed sensing, diffusion, image encryption, plaintext sensitivity, scramblers,
statistical security.

I. INTRODUCTION
Compressed sensing (CS) is a signal processing technique
which allows to reconstruct a sparse signal from the
incomplete measurements sampled at a rate lower than the
Nyquist rate [1]. We say that a signal x ∈ RN is K-sparse
with respect to an orthonormal basis 9 ∈ RN×N if α =
9x has at most K nonzero elements, where K � N .
In CS, the sparse signal x is measured by y = 8x ∈
RM , where 8 ∈ RM×N is a measurement matrix with
M � N . The reconstruction of the original signal x can be
achieved by solving an l1-minimization problem [2]. Thanks
to the efficient data acquisition, there have been various CS
applications, such as communications [3], [4], bio signal
processing [5], image processing [6], RFID identification [7],
etc. In particular, CS can be an attractive choice for data
acquisition in a resource-limited transmitter of the Internet
of Things (IoT) [8]–[11].

The CS techniques can be applied in a symmetric-
key cryptosystem for information security. In CS-based
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cryptosystems, a plaintext x is encrypted to a ciphertext
y = 8x using a secret matrix 8. A sender and a legitimate
recipient share a secret key to generate the elements of the
secret matrix 8. The legitimate recipient who knows 8 can
reconstruct the original plaintext through CS reconstruction
algorithms. Rachlin and Baron [12] showed that the CS-based
cryptosystem cannot be perfectly secure but might be compu-
tationally secure. Orsdemir et al. [13] claimed that estimating
the random Gaussian secret matrix of the CS-based cryp-
tosystem is computationally infeasible. In [14], Bianchi et al.
proved that CS-based cryptosystems can resist known-
plaintext attacks (KPA) by encrypting plaintexts in a one-
time-sensing (OTS) manner, where the secret matrix is
renewed at every encryption. Furthermore, they showed
that the Gaussian-OTS (G-OTS) cryptosystem, which uses
a random Gaussian secret matrix in the OTS manner, can be
perfectly secure if the plaintext has constant energy. In [15],
it is quantitatively shown that the Bernoulli-OTS (B-OTS)
cryptosystem, which uses a random Bernoulli matrix to
encrypt a plaintext in the OTSmanner, can resist against KPA.
Moreover, the indistinguishability [16] was discussed for the
G-OTS and the B-OTS cryptosystems [17], respectively.
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For image encryption, Zhou et al. proposed CS-based
cryptosystems [18], [19] based on chaotic systems. In [20],
a multi-class CS-encryption is proposed, which gives dif-
ferent decryption qualities to different class recipients.
Zhang et al. [21] designed a multi-image encryption, which
uses the random convolution [22] for CS-encryption. In [23],
Zhu et al. proposed a CS-based cryptosystem employing
a circular shift for diffusion. Li et al. [24] proposed an
efficient image encryption for IoTmonitoring applications by
reducing time consumption in encryption and reconstruction.
Zhu et al. [25] proposed a CS-based cryptosystem, where
permutation and diffusion are executed simultaneously for
encryption. There are many other applications of CS for
information security [26]–[29].

For processing large size data, the secret matrix of a
CS-based cryptosystem may require large data storage and
high computational complexity. To resolve this issue, the
parallel CS-based cryptosystem was proposed in [30], where
the columns of an image are encrypted in parallel with the
counter mode operation. Also, a CS-based cryptosystem [31]
was proposed to reduce data storage for the secret matrix
by employing the semi-tensor product. In [32], Cho et al.
proposed the sparse-OTS (S-OTS) cryptosystem in which a
plaintext is encrypted in the OTS manner by a sparse secret
matrix with only a few nonzero elements. By using the sparse
matrix, the S-OTS cryptosystem can save storage space
and computational cost. Therefore, it can be an attractive
choice to use the S-OTS cryptosystem in a resource-limited
environment, e.g., sensors of IoT.

To evaluate the security of image encryption, we can
analyze the encrypted images with statistical measures, such
as histogram, entropy, correlation and plaintext sensitivity
[21], [24]. Although the S-OTS cryptosystem has efficiency
and security, we realize in this paper that it has weak
security in terms of the statistical measures. To enhance the
statistical security of the S-OTS cryptosystem, a scrambler
can be introduced for diffusion mechanism. Scramblers
have been widely used in communications [33], [34] and
information security [35]. Based on a linear feedback shift
register (LFSR), a scrambler randomizes its input bitstream
such that the corresponding output bitstream seems to
be independently distributed at random. Moreover, a few
changes of an input bitstream to a scrambler can lead to
significant changes in the output by the recursive structure.
Exploiting this property, a scrambler structure was proposed
to give the avalanche effect for a secure key distribution to the
receivers of wireless local area networks [36].

In this paper, a secure CS-based cryptosystem with strong
statistical security is proposed for image encryption. The
proposed cryptosystem uses a sparse matrix of the S-OTS
cryptosystem and several scrambler chains for diffusion. It is
noteworthy that the proposed cryptosystem can theoretically
guarantee reliable CS-decryption inherited from the S-OTS
cryptosystem, which will be numerically demonstrated. Each
scrambler chain consists of a pair of scramblers aligned in
series, where the output of the first scrambler is fed as an

input to the second scrambler in reverse order. While this
scrambler chain is similar to the scrambler structure in [36],
we use it at a transmitter to give the avalanche effect for
CS-based encryption. To prevent a malicious attacker from
restoring the scrambled contents, a keystream generator of a
stream cipher is also employed for simultaneous scrambling
and encryption. Due to the hardware-friendly structure, the
proposed cryptosystem can be implemented easily in real
world applications.

For statistical security, we conduct numerical experiments
to analyze the histogram, entropy, correlation and plaintext
sensitivity for the proposed cryptosystem. We demonstrate
that the proposed cryptosystem can achieve flat histogram,
high entropy and low correlation of adjacent pixels in
ciphertexts, thanks to the diffusion by the proposed scrambler
structure. Especially, since the diffusion mechanism of the
proposed cryptosystem is executed in ciphertext bit-level, the
quantitative evaluation measures of the plaintext sensitivity
are much better than those of the other CS-based cryptosys-
tems [23]–[25], [30] that execute the diffusion mechanisms
in ciphertext element-level, where each ciphertext element
consists of multiple bits. In summary, the proposed CS-based
cryptosystem has a hardware-friendly structure and reliable
CS-decryption performance. Through numerical results,
we demonstrate that the proposed cryptosystem can be
statistically secure achieving flat histogram, high entropy,
low correlation and high plaintext sensitivity, thanks to the
proposed scrambler structure.

The rest of the paper is organized as follows. Some
background knowledge for understanding this paper is given
in Section II. In Section III, we briefly introduce other
CS-based cryptosystems [23]–[25], [30] for comparison.
The details of the proposed CS-based cryptosystem, includ-
ing encryption, scrambling and decryption processes, are
described in Section IV. In Section V, experimental results
about the statistical security measures of the proposed
CS-based cryptosystem are presented and compared to those
of the other CS-based cryptosystems [23]–[25], [30]. Finally,
concluding remarks will be given in Section VI.

II. BACKGROUND
A. CS-BASED CRYPTOSYSTEMS
Let x = 9Tα ∈ RN be a plaintext, which is K-sparse
with respect to an orthonormal basis 9 ∈ RN×N . Then,
the corresponding ciphertext of a CS-based cryptosystem
is y = 8x, where 8 ∈ RM×N is a secret matrix with
M � N . A legitimate recipient who knows the secret matrix
can decrypt the ciphertext by CS reconstruction techniques,
such as an algorithm for l1-minimization [37] and a greedy
algorithm [38].

B. S-OTS CRYPTOSYSTEM
The secret matrix 8 of the S-OTS cryptosystem is a sparse
matrix with only a few nonzero bipolar entries, which is
represented by

8 =
1
√
Mr

SP, (1)
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where S ∈ {−1, 0, 1}M×N is a sparse matrix and P ∈ RN×N

is a column permutation matrix. The row-wise sparsity r is
defined by r = q

N , where q is the number of the nonzero
elements of each row of S. The nonzero elements of S are
generated by the self-shrinking generator (SSG) [39], which
is an LFSR-based keystream generator. The first qM bits of
an SSG keystream k = (k1, k2, · · · ) are used to generate S.
The i-th row of S has a column index set 3i of the nonzero
elements defined as

3i = {((i− 1) mod η) · q+ l | l = 1, · · · , q}, (2)

where η = N
q . Then, the element in the i-th row and the j-th

column of S is

si,j =

{
b
b
i−1
η
c · N+j, if j ∈ 3i,

0, otherwise,
(3)

where bi = (−1)ki with ki ∈ {0, 1} for i = 1, 2, · · · .
The S-OTS cryptosystem can encrypt a plaintext quickly,

since the matrix-vector multiplication of the encryption
process can be implemented row-wise in parallel. The
CS-decryption can also be processed efficiently, exploiting
the few nonzero elements of8. In addition, the authors of [32]
showed that the S-OTS cryptosystem can be computationally
secure through the security analyses against ciphertext only
attacks (COA) and chosen plaintext attacks (CPA).Moreover,
the S-OTS cryptosystem can theoretically guarantee a stable
and reliable CS-decryption for a legitimate recipient.

C. STATISTICAL SECURITY MEASURES
The histogram of an image shows the number of the
occurrences of all pixel values. For secure image encryption,
the histogram of an encrypted image should have a fairly
uniform distribution, which means that the frequencies
of the occurrences of all pixel values are almost equal.
If the histogram of an encrypted image is non-uniform,
it may be vulnerable to statistical attacks. To measure the
randomness of an image quantitatively, we can use the
entropy. An encrypted image with higher entropy means that
its histogram is closer to the uniform distribution. The entropy
E of an 8-bit gray-scale image is defined as

E = −
l−1∑
i=0

p(i) log2 p(i), (4)

where l = 256 is the number of the gray levels of the image,
i is a pixel value in [0, 255], and p(i) is the frequency of the
occurrences of i. Ideally, p(i) = 1

256 for all i, where E takes
the maximum of 8, and the histogram shows the ideal uniform
distribution.

In correlation analysis, we measure the correlation of
adjacent pixels of an encrypted image for horizontal, vertical
and diagonal directions, respectively. We can quantitatively
evaluate the correlation of an encrypted image using the

correlation coefficient (CC) [21], which is defined as

CC =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
, (5)

where xi and yi represent randomly selected adjacent pixel
values of an encrypted image, x̄ = 1

n

∑n
i=1 xi, ȳ =

1
n

∑n
i=1 yi,

and n is the number of the selected pixel pairs.
The plaintext sensitivity shows the degree of variation in a

ciphertext whenwemodify its plaintext slightly. LetC1 be the
ciphertext of a plaintext M1 for a cryptosystem by a key K.
Another plaintext M2, which is different with M1 by one-
bit, can be encrypted to a ciphertext C2 by the same key K.
Then, we can compareC1 andC2 by using the unified average
changing intensity (UACI) [24] and the number of pixels
change rate (NPCR) [24], respectively. The UACI, which
represents the average of absolute difference of pixel values
for two 8-bit gray-scale images, is defined as

UACI (%) =
1
WH

H∑
i=1

W∑
j=1

|C1(i, j)− C2(i, j)|
255

× 100, (6)

where W and H are width and height of the images,
respectively. In (6), C1(i, j) and C2(i, j) are the pixel values of
C1 and C2 at the pixel position (i, j), respectively. The NPCR,
which represents how many pixels are different for two 8-bit
gray-scale images, is defined as

NPCR (%) =
1
WH

H∑
i=1

W∑
j=1

D(i, j)× 100, (7)

where D(i, j) = 1 if C1(i, j) 6= C2(i, j), and D(i, j) = 0 if
C1(i, j) = C2(i, j). The expected values of the NPCR and
the UACI are theoretically calculated by treating every pixel
value of two images to be uniformly distributed, which results
in 99.6094% and 33.4635%, respectively [40].

D. SCRAMBLERS
An input bitstream of length H , denoted by m =

(m1,m2, · · · ,mH ), can be scrambled by an L-stage LFSR-
based scrambler characterized by a polynomial P(x) = 1 +
a1x1 + a2x2 + · · · + aLxL with ai ∈ {0, 1} and aL = 1.
In Fig. 1(a), the output bitstream is s = (s1, s2, · · · , sH ),
where

si = mi ⊕ a1si−1 ⊕ a2si−2 ⊕ · · · ⊕ aLsi−L (8)

for i = 1, 2, · · · ,H and ⊕ denotes the bit-wise XOR
operation. In this paper, we assume that the initial state of
the LFSR is all-zero state. We can restore the original input
bitstreamm by using the descrambler in Fig. 1(b), where the
descrambling process can be described as

mi = si ⊕ a1si−1 ⊕ a2si−2 ⊕ · · · ⊕ aLsi−L . (9)

Note that the scrambling process is recursive, so the current
input bit can influence the output bits thereafter. Therefore,
we expect that if a bit flip occurs in mt , a scrambler can make
significant changes in si’s for i ≥ t .
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FIGURE 1. LFSR based (a) scrambler, (b) descrambler.

E. GRAIN-128
The Grain-128 [41] is a stream cipher with a 128-bit key
and a 96-bit initialization vector (IV). The stream cipher
consists of a 128-stage LFSR, a 128-stage nonlinear feedback
shift register (NFSR) and an output generating function,
as illustrated in Fig. 2. Due to the simple structure, Grain-
128 is suited for a resource-limited environment with easy
implementation in hardware.

Let (b0, b1, · · · , b127) and (f0, f1, · · · , f127) be the states of
the NFSR and LFSR at a clock, respectively. The feedback
Boolean function of the NFSR generating g is defined
as

g = b0 ⊕ b26 ⊕ b56 ⊕ b91 ⊕ b96 ⊕ b3b67 ⊕ b11b13
⊕b17b18 ⊕ b27b59 ⊕ b40b48 ⊕ b61b65 ⊕ b68b84.

(10)

With f = f0, the recursive relation of the LFSR is f0 ⊕
f7 ⊕ f38 ⊕ f70 ⊕ f81 ⊕ f96. The Boolean function generating
h is

h = b12f8 ⊕ f13f20 ⊕ b95f42 ⊕ f60f79 ⊕ b12b95f95. (11)

Finally, the output keystream bit z is defined as

z = b2 ⊕ b15 ⊕ b36 ⊕ b45 ⊕ b64 ⊕ b73 ⊕ b89 ⊕ h⊕ f93.

(12)

Readers are referred to [41] for more details on Grain-128.

III. SOME KNOWN CS-BASED CRYPTOSYSTEMS
For investigating statistical securitymeasures of our proposed
CS-based cryptosystem, we introduce other CS-based cryp-
tosystems for comparison in this section. Note that⊕ denotes
the bit-wise XOR operation between a-bit integers.We define
the binary representation of an a-bit integer d as Ed =
(d1, d2, · · · , da) with di ∈ {0, 1} for i = 1, 2, · · · , a, where
d =

∑a
i=1 (di · 2

i−1). Then, if p and q are a-bit integers,
r = p ⊕ q is an a-bit integer, where Er = (r1, r2, · · · , ra)
with ri = pi ⊕ qi for i = 1, 2, · · · , a.

FIGURE 2. Structure of Grain-128.

A. CIRCULAR SHIFT-BASED CRYPTOSYSTEM
In the circular shift-based cryptosystem [23], a sparse
representation matrix α = 9X ∈ Rn×n is randomly
permuted to α′, where9 ∈ Rn×n is an orthonormal basis and
X ∈ Rn×n is an image. Then, α′ is encrypted to Y = 8α′ ∈
Rm×n, where the secret matrix 8 ∈ Rm×n is generated by
using the Chebyshev map [42]. Then,Y is quantized toYQ by
an a-bit quantizer. Each row of YQ can be concatenated into
yQ = (yQ,1, yQ,2, · · · , yQ,mn) ∈ Rmn, where yQ,i is an a-bit
integer for i = 1, 2, · · · ,mn. Each element of yQ is modified
by

ei = circshift(yQ,i, k
(1)
i ) (13)

for i = 1, 2, · · · ,mn, where circshift(u, v) is a bit-wise circu-
lar shift operation to an a-bit integer u, i.e.,w = circshift(u, v)
is an a-bit integer, where wi = u{(i+v−1) mod a}+1 for
i = 1, 2, · · · , a. In (13), the keystream k(1) =

(k (1)1 , k (1)2 , · · · , k (1)mn) is generated by using the 4-D hyper-
chaotic system [23], where k (1)i < a is an integer for
i = 1, 2, · · · ,mn. Finally, an element-level diffusion is
applied to each element ei to yield the ciphertext c =
(c1, c2, · · · , cmn) ∈ Rmn by

ci = {(ei + ci−1) mod 2a} ⊕ {(k (3)i + e
′
i) mod 2a}, (14)

where e′i = (bk (2)i · ci−1 · 10
14
c) mod 2a, c0 = 0, and i =

1, 2, · · · ,mn. The keystreams k(2) = (k (2)1 , k (2)2 , · · · , k (2)mn)
and k(3) = (k (3)1 , k (3)2 , · · · , k (3)mn) of (14) are generated by
using the 4-D hyper-chaotic system [23], where k (2)i is a
real number and k (3)i is an a-bit integer. The details of the
keystream generation are described in [23].

B. KRONECKER CS-BASED CRYPTOSYSTEM
The Kronecker CS-based cryptosystem [24] encrypts an
image X ∈ Rn×n to Y = 8X ∈ Rm×n. In this cryptosystem,
the secret matrix 8 can be constructed by

8 = A⊗ P ∈ Rm×n, (15)

where ⊗ denotes the Kronecker product [43]. In (15),
A ∈ R

m
p ×

n
p is a random chaotic matrix with each element

generated from a chaotic system called the Tent map [44].
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Also, P = PπD ∈ Rp×p is a weighted permutation matrix,
where Pπ ∈ Rp×p is a permutation matrix and D ∈ Rp×p is
a diagonal matrix with diagonal elements generated from the
Logistic-Tent chaotic system [45].

After CS-encryption, a-bit quantization is performed to Y,
which results in a quantized ciphertext YQ. Each row of YQ
can be concatenated into a vector yQ = (yQ,1, yQ,2, · · · ,
yQ,mn) ∈ Rmn, where yQ,i is an a-bit integer for i =
1, 2, · · · ,mn. The first diffusion is applied to each element
of yQ, which yields e = (e1, e2, · · · , emn) ∈ Rmn with

ei = ei−1 ⊕ yQ,i ⊕ k (1)i , (16)

where i = 1, 2, · · · ,mn and e0 = 0. In (16), the keystream
k(1) = (k (1)1 , k (1)2 , · · · , k (1)mn) is generated by using the
Logistic-Tent chaotic system [45], where k (1)i is an a-bit
integer. Note that in the element-level diffusion, the l-th
bit position of yQ,i cannot influence the t-th bit position
of yQ,j, where l 6= t for i, j = 1, 2, · · · ,mn. Therefore,
bit-level variations cannot be diffused within the whole
ciphertext, which leads to weak plaintext sensitivity. The
second element-level diffusion yields the final ciphertext c =
(c1, c2, · · · , cmn) ∈ Rmn by

ci = ci+1 ⊕ ei ⊕ k (2)i , (17)

where i = mn,mn − 1, · · · , 1 and cmn+1 = 0. In (17), the
keystream k(2) = (k (2)1 , k (2)2 , · · · , k (2)mn) is generated by using
the Logistic-Tent chaotic system [45], where k (2)i is an a-bit
integer. The details of the keystream generation are described
in [24].

C. DIVISION-BASED CRYPTOSYSTEM
In the division-based cryptosystem [25], an image X ∈ Rn×n

is encrypted to Y = 8α ∈ Rm×n, where α = 9X ∈ Rn×n

is a sparse representation of X with an orthonormal basis
9 ∈ Rn×n and the secret matrix 8 ∈ Rm×n is generated by
using the Chebyshev map [42]. Then, Y is quantized to YQ
by an a-bit quantizer. Each row of YQ can be concatenated
into a vector yQ = (yQ,1, yQ,2, · · · , yQ,mn) ∈ Rmn, where
yQ,i is an a-bit integer for i = 1, 2, · · · ,mn. Let yQ =
(y(1)Q , y

(2)
Q ), where y(w)Q = (y(w)Q,1, y

(w)
Q,2, · · · , y

(w)
Q,mn2

) ∈ R
mn
2 for

w = 1, 2. Finally, elements of y(1)Q and y(2)Q are modified
by an element-level diffusion to yield the ciphertext c =
(c(1), c(2)) ∈ Rmn, where c(w) = (c(w)1 , c(w)2 , · · · , c(w)mn

2
) ∈ R

mn
2 ,

by

c(1)i = {(c
(2)
πi
+ k (1)i ) mod 2a}

⊕ {(y(1)Q,π ′i
+ k (2)i ) mod 2a} ⊕ c(1)i−1,

c(2)i = {(y
(1)
Q,πi + k

(1)
i ) mod 2a}

⊕ {(y(2)Q,π ′i
+ k (2)i ) mod 2a} ⊕ c(2)i−1 (18)

for i = 1, 2, · · · , mn2 and c(w)0 = 0. In (18), π =

(π1, π2, · · · , πmn
2
) and π ′ = (π ′1, π

′

2, · · · , π
′
mn
2
) are

random permutations of (1, 2, · · · , mn2 ), respectively, and

k(w) = (k (w)1 , k (w)2 , · · · , k (w)mn
2
) is generated by using the 6-D

chaotic system [25], where k (w)i is an a-bit integer. The details
of the keystream generation are described in [25].

D. PARALLEL CS-BASED CRYPTOSYSTEM
In the parallel CS-based cryptosystem [30], the columns of
an image X = [X1,X2, · · · ,Xn] ∈ Rn×n are encrypted in
parallel. Each column Xi is encrypted to Yi = 8iXi ∈ Rm

for i = 1, 2, · · · , n, where 8i ∈ Rm×n is a secret matrix
with each element generated from the Logistic-Tent chaotic
system [45]. Then, Y = [Y1,Y2, · · · ,Yn] ∈ Rm×n is
quantized to YQ by an a-bit quantizer. Each row of YQ can
be concatenated into a vector yQ = (yQ,1, yQ,2, · · · , yQ,mn) ∈
Rmn, where yQ,i is an a-bit integer for i = 1, 2, · · · ,mn. The
final ciphertext c = (c1, c2, · · · , cmn) ∈ Rmn can be obtained
after an element-level diffusion, which can be described as

ci = ci−1 ⊕ yQ,i ⊕ ki, (19)

where i = 1, 2, · · · ,mn and c0 = 0. In (19), the keystream
k = (k1, k2, · · · , kmn) is generated by using the Logistic-Tent
chaotic system [45], where ki is an a-bit integer. The details
of the keystream generation are described in [30].

IV. PROPOSED CS-BASED CRYPTOSYSTEM
In this section, we describe the details of the proposed
CS-based cryptosystem. For CS-encryption, we use the secret
matrix of the S-OTS cryptosystem. Then, the quantized
ciphertext of the S-OTS cryptosystem is fed into the
proposed scrambler structure, which enhances the statistical
security of the proposed cryptosystem. Fig. 3 illustrates the
overall structure of the proposed CS-based cryptosystem.
In the proposed CS-based cryptosystem, it is notewor-
thy that the LFSR-based keystream generation by SSG
and Grain-128 can be easier to be implemented in real
world applications than others, e.g., chaos-based keystream
generation [46], [47].

A. CS-ENCRYPTION
The columns of an 8-bit gray-scale n × n image are stacked
into a column vector x ∈ RN , where N = n2. We assume that
each 8-bit gray-scale pixel of x takes a value in [−128, 127]
by shifting its original value by −128. With the shared key
K1, one can generate a keystream for constructing the secret
matrix 8 = 1

√
Mr

SP ∈ RM×N , where S is a sparse matrix
with only q nonzero bipolar elements in each row, and P is a
column permutation matrix. The secret matrix8 encrypts the
plaintext x to y = 8x ∈ RM . Then, y is quantized by an a-bit
quantizer. The quantized CS-encrypted ciphertext yQ ∈ RM

is

yQ = round[
(2a − 1) · (y− ymin · 1)

ymax − ymin
], (20)

where ymax =
q·128
√
Mr

, ymin =
−q·128
√
Mr

, 1 is an all-one vector
of length M , and round(v) replaces each element of a vector
v with the nearest integer. As each element of x is between
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FIGURE 3. Proposed CS-based cryptosystem.

−128 and 127, it is readily checked that the range of the
elements of y is from −q·128

√
Mr

to +q·128√
Mr

with its resolution
1
√
Mr

, from which the elements of y have 2 · q · 128 +
1 possible values. Thus, the number of quantization level
should be sufficiently high to represent all possible values
of each element of y, i.e., 2a ≥ 2 · q · 128 + 1, which
suggests that the number of quantization bits should be a ≥
log2 (2 · q · 128+ 1).

B. PROPOSED SCRAMBLER STRUCTURE
In (2), the i-th row of S has the index set 3i = {((i −
1) mod η) · q + l | l = 1, · · · , q} for the nonzero elements,
where η = N

q . Accordingly, it is clear that 3i+η = 3i.
Assume that M

η
= ρq is an integer with the compression

ratio ρ = M
N . In y = 1

√
Mr

SPx, if a variation occurs at

xk for x = (x1, x2, · · · , xN )T , it would be dispersed to
yd , yd+η, · · · , yd+(ρq−1)·η, where the index k is permuted to
k ′ ∈ 3d = 3d+η = · · · = 3d+(ρq−1)·η by Px. Then,
yQ = (yQ,1, yQ,2, · · · , yQ,M )T can be divided to ρq segments,
i.e., yQ = (y(1)Q , y

(2)
Q , · · · , y

(ρq)
Q )T , where the w-th segment

can be represented as

y(w)Q = (yQ,(w−1)η+1, yQ,(w−1)η+2, · · · , yQ,wη) (21)

for w = 1, 2, · · · , ρq. Then, the variation of xk will be
embedded to each segment for the avalanche effect after
scrambling.

In Fig. 3,m(1),m(2), · · · ,m(ρq), which are the correspond-
ing bitstreams of y(1)Q , y

(2)
Q , · · · , y

(ρq)
Q , respectively, are fed

into the proposed scrambler structure in parallel. In the
scrambler structure, each scrambler chain consists of a series
of an L-stage scrambler pair connected by the last-in-first-out

(LIFO) buffer of aη-bits. Through the LIFO buffer, the output
bitstream s(w) = (s(w)1 , s(w)2 , · · · , s(w)H ) of Scrambler 1 with
H = aη is fed reversely into Scrambler 2, where we encrypt
every LIFO output bitstream s(w)r = (s(w)H , s(w)H−1, · · · , s

(w)
1 ) by

a common keystream to enhance the security. In other words,
m′(w) = (m′(w)1 ,m′(w)2 , · · · ,m′(w)H ) is fed to Scrambler 2, where
m′(w)i = s(w)H−i+1 ⊕ ki for i = 1, 2, · · · ,H and a keystream
k = (k1, k2, · · · , kH ) with ki ∈ {0, 1} is generated from the
Grain-128 using the shared key K2. Then, we can get s′(w) =
(s′(w)1 , s′(w)2 , · · · , s′(w)H ) at the output of Scrambler 2, which is
the corresponding bitstream of c(w) = (c(w)1 , c(w)2 , · · · , c(w)η ),
where c(w)i is an a-bit integer for i = 1, 2, · · · , η. Finally,
c = (c(1), c(2), · · · , c(ρq)) is the ciphertext.

In the proposed scrambler structure, the reverse order
feeding by the LIFO buffer can cause the avalanche
effect for each scrambler chain. Suppose that a bitstream
m(w)

= (m(w)
1 ,m(w)

2 , · · · ,m(w)
H ) enters Scrambler 1, which

yields s(w) = (s(w)1 , s(w)2 , · · · , s(w)H ). If another bitstream
m(w)

err = (m(w)
err,1,m

(w)
err,2, · · · ,m

(w)
err,H ) enters Scrambler 1, where

m(w)
err,i = m(w)

i ⊕ 1 if i = t , and m(w)
err,i = m(w)

i otherwise,
it yields s(w)err = (s(w)err,1, s

(w)
err,2, · · · , s

(w)
err,H ). Then, we may

assume that g ≈ H−t
2 bits of s(w)err would be different with those

of s(w). This is because the recursion of Scrambler 1 causes
almost a half of the last (H − t) bits of s(w) and s(w)err to be
different. Thus, we expect that the one-bit difference at the
t-th position can cause the avalanche effect by Scrambler
1 only if t � H . Meanwhile, if s(w) and s(w)err are fed in reverse
order through the LIFO buffer, there is a g-bit difference
between the first (H − t) bits of the corresponding encrypted
LIFO outputsm′(w) andm′(w)err , which results in approximately
t
2 -bit difference between the last t bits of s

′(w) and s′(w)err at the
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FIGURE 4. Bit difference rate at the outputs of Scrambler 1 and Scrambler
2, respectively, according to the one-bit difference position of input
bitstreams to a scrambler chain.

output of Scrambler 2. Finally, two output bitstreams s′(w) and
s′(w)err would be almost 50% different regardless of the one-bit
difference position t .
When m(w) and m(w)

err with H = 104 enter a scrambler
chain, Fig. 4 sketches the bit difference rate at the outputs
of Scrambler 1 and Scrambler 2, respectively. We assume
that every scrambler is characterized by a polynomial P(x) =
1 + x18 + x23. We denote d1 as the number of different bits
between s(w) and s(w)err for Scrambler 1 and d2 as the number
of different bits between s′(w) and s′(w)err for Scrambler 2.
We can see that the bit difference rate b1 =

d1
H of Scrambler

1 decreases as t increases, which means that the avalanche
effect cannot be guaranteed by a single scrambler. On the
other hand, b2 =

d2
H of Scrambler 2 maintains almost

50% regardless of t , which numerically demonstrates the
avalanche effect of the scrambler chain.

C. CS-BASED DECRYPTION
In decryption, the received ciphertext ĉ can be divided to
ĉ(1), ĉ(2), · · · , ĉ(ρq), which yield the corresponding bitstreams
ŝ′(1), ŝ′(2), · · · , ŝ′(ρq), respectively. Each bitstream ŝ′(w) =
(ŝ′(w)1 , ŝ′(w)2 , · · · , ŝ′(w)aη ) is fed into Descrambler 1, where the
output is decrypted by a Grain-128 keystream k generated by
using the shared keyK2. With the LIFO buffer, the decrypted
output of Descrambler 1 is reversely fed into Descrambler
2 as an input bitstream ŝ(w) to yield m̂(w), which finally returns
ŷ(w)Q . Then, ŷQ = (ŷ(1)Q , ŷ

(2)
Q , · · · , ŷ

(ρq)
Q )T is scaled to the range

of y, i.e.,

ŷ =
ŷQ · (ymax − ymin)

(2a − 1)
+ ymin · 1. (22)

We can get the plaintext x̂ after CS-decryption through an
l1-minimization algorithm

α̂ = argmin
α
‖α‖1 subject to ŷ = 89Tα, (23)

where 9 ∈ RN×N is an orthonormal basis, such as 2D ver-
sion of the Daubechies 4 (D4) wavelet basis with x̂ = 9T α̂.

Finally, the decrypted plaintext x̂ is mapped to the range
[0, 255] by adding 128 to each element.

V. EXPERIMENTAL RESULTS
In this section, we demonstrate the statistical security of
the proposed CS-based cryptosystem through numerical
experiments. The statistical security measures are compared
to those of the circular shift-based [23], the Kronecker
CS-based [24], the division-based [25], and the parallel
CS-based [30] cryptosystems, which are referred to as circu-
lar CS, Kronecker CS, division CS, and parallel CS, respec-
tively. To demonstrate the statistical security enhancement
by the proposed scrambler structure, we encrypt plaintexts
only with the S-OTS cryptosystem [32], which is called
S-OTS only. In contrast, the proposed cryptosystem, called
S-OTS scrambled, includes the proposed scrambler structure,
where Scrambler 1 and Scrambler 2 are characterized by a
polynomialP(x) = 1+x18+x23, respectively.We use ‘Lena’,
‘Barbara’, ‘Boat’, ‘Plane’, and ‘Peppers’ of 256 × 256 test
images, which are shown in Fig. 5. In S-OTS encryption,
the SSG operates with a 128-stage LFSR, the number of the
nonzero elements of each row of the secret matrix is q = 8,
the compression ratio is ρ = 0.625, and the quantization bit
size is a = 12. For the Kronecker CS, we select the parameter
p = 8 for the secret matrix. With the same quantization bit
size and compression ratio, the other experimental settings of
circular, Kronecker, division, and parallel CS, such as initial
values and control parameters for chaotic systems and initial
conditions, are selected randomly to meet the constraints
presented in [23]–[25], [30], respectively. For all CS-based
cryptosystems, each a-bit ciphertext c is mapped to e =⌊

1
2a−8

c
⌋
in [0, 255] for statistical analysis.

A. CS-DECRYPTION PERFORMANCE
In [32], reliable and stable CS-decryption of the S-OTS
cryptosystem have been theoretically guaranteed. Moreover,
the phase transition shown in [32] demonstrated that the
CS-decryption performance of the S-OTS cryptosystem is
similar to that of the B-OTS cryptosystem with random
Bernoulli secret matrices. Clearly, the S-OTS scrambled
inherits the theoretically guaranteed reliable performance of
CS-decryption from the S-OTS cryptosystem.

The peak signal-to-reconstruction noise ratio (PSNR),

defined by PSNR = 10 log10

(
N ·2552

‖x−x̂‖2

)
, can be used

to evaluate the CS-decryption performance, where x and
x̂ are original and decrypted plaintexts, respectively. For
CS-decryption, we employ SPGL1 [48] for the basis
pursuit (BP) with D4 wavelet basis. The decryption results
of the proposed cryptosystem in noiseless condition are
shown in Fig. 5, which demonstrates that the decrypted
images are visually acceptable. Table 1 shows that the
proposed cryptosystem numerically guarantees higher PSNR
for decrypted images than circular, Kronecker, division,
and parallel CS. Therefore, we conclude that the proposed
cryptosystem can achieve more reliable CS-decryption
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TABLE 1. PSNR (dB) of decrypted images in noiseless condition.

FIGURE 5. Decryption results of the proposed cryptosystem (S-OTS
scrambled) in noiseless condition, where N = 65536, q = 8, ρ = 0.625,
and a = 12.

performance than the other CS-based cryptosystems, while
guaranteeing theoretically reliable and stable CS-decryption
performance.

B. HISTOGRAM
Fig. 6 shows the histograms of original and encrypted images
of S-OTS only and S-OTS scrambled, respectively. A secure

cryptosystem should conceal the histograms of original
images and have ciphertexts with uniform histograms.
We can see that the encrypted images of the S-OTS only
show non-uniform histograms, which can be vulnerable
to statistical attacks. The encrypted images of the S-OTS
scrambled show uniform histograms, which means that the
proposed scrambler structure can successfully flatten the
histograms of the ciphertexts of the S-OTS only. We also
observed that the encrypted images of ‘Lena’, ‘Barbara’,
‘Boat’, ‘Plane’, and ‘Peppers’ have uniform histograms for
circular, Kronecker, division, and parallel CS. Therefore, our
proposed CS-based cryptosystem is statistically secure with
the uniform histograms of ciphertexts.

C. ENTROPY
In Table 2, the entropies of encrypted images of each
CS-based cryptosystem are shown. We observe that the
S-OTS scrambled can increase entropies of the encrypted
images of the S-OTS only by means of scramblers, which
demonstrates the statistical security enhancement by the
proposed scrambler structure. Similar to circular, Kronecker,
division, and parallel CS, the S-OTS scrambled has entropies
close to the ideal value 8. Therefore, the S-OTS scrambled is
sufficiently secure in terms of entropy.

D. CORRELATION
In correlation analysis, we randomly select 2, 000 adjacent
pixel pairs from an encrypted image and calculate the
correlation coefficients by using (5) in horizontal, vertical
and diagonal directions, respectively. Table 3 shows that
the encrypted images of the S-OTS scrambled present low
correlation coefficients, similar to the other CS-based cryp-
tosystems, which demonstrates the statistical security of the
proposed cryptosystem. We observed similar results of low
correlation coefficients for the other test images of ‘Boat’,
‘Plane’ and ‘Peppers’ for all the CS-based cryptosystems,
respectively.

For analyzing the correlation, we also examine the
correlation distribution, which is a scatter diagram plotting
randomly selected 2, 000 adjacent pixel pairs of an encrypted
image. Fig. 7 displays the correlation distributions of original
and encrypted images of ‘Lena’. We also observed that the
other test images show similar correlation distributions for
original and encrypted images. The original image shows
a linear distribution in all directions, which means that the
adjacent pixel pairs are highly correlated. The encrypted
image of the S-OTS only has a concentrated distribution.

VOLUME 10, 2022 10713



J. Choi, N. Y. Yu: Secure Image Encryption Based on Compressed Sensing and Scrambling for Internet-of-Multimedia Things

FIGURE 6. The histograms of original and encrypted images (S-OTS only and S-OTS scrambled).

TABLE 2. Entropies of encrypted images.

TABLE 3. Correlation coefficients (×10−4) of encrypted images.
(horizontal, vertical, diagonal).

On the other hand, the uniform distribution of the S-OTS
scrambled suggests that adjacent pixel pairs of the encrypted
image are uncorrelated to each other. Therefore, we conclude
that the proposed scrambler structure can successfully reduce
the correlation between adjacent pixel pairs.

E. PLAINTEXT SENSITIVITY
To analyze the plaintext sensitivity, we calculate the NPCR
and the UACI for test images. For secure encryption, the
NPCR and the UACI should be close to the theoretically
expected values, 99.6094% and 33.4635%, respectively.

In numerical experiments, we randomly select a pixel
position and flip the least significant bit of the pixel for
test images. To evaluate the plaintext sensitivity, we examine
the average NPCR and UACI over 100 trials of each cryp-
tosystem. Table 4 shows that circular, Kronecker, division
and parallel CS with ciphertext element-level diffusion
mechanisms show lower average NPCR and UACI than
the theoretically expected values, respectively, while the
S-OTS scrambled has average NPCR and UACI close to the
theoretically expected values, respectively. This demonstrates
that our proposed CS-based cryptosystem has high plaintext
sensitivity. Moreover, the variances of NPCR and UACI for
‘Lena’ are 0.0027 and 0.0272 for the S-OTS scrambled,
271.3460 and 30.7554 for the circular CS, 1120 and
24.3601 for the Kronecker CS, 262.2163 and 1.0785 for
the division CS, 1179 and 22.3574 for the parallel CS,
respectively. We observed similar results for the other test
images of ‘Barbara’, ‘Boat’, ‘Plane’ and ‘Peppers’. Since
circular, Kronecker, division, and parallel CS have large
variances in NPCR and UACI, their diffusion performance
for the plaintext sensitivity is not stable. Meanwhile,
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FIGURE 7. Correlation distributions of original and encrypted ‘Lena’ in the horizontal (first row), vertical (second row), and diagonal (third row) directions.

TABLE 4. NPCR (%) and UACI (%) for plaintext sensitivity in CS-based cryptosystems.

extremely small variances of the S-OTS scrambled indicate
that our diffusion mechanism can stably guarantee high
plaintext sensitivity. As the S-OTS only rarely achieves high
plaintext sensitivity, the stable diffusion performance of
the S-OTS scrambled demonstrates security enhancement
in terms of plaintext sensitivity by the proposed scrambler
structure.

Fig. 8 shows the differential images of the CS-based
cryptosystems for test image ‘Lena’, respectively. In this
experiment, the original ‘Lena’ is encrypted to the ciphertext
C1, while the other ciphertext C2 is obtained from a
modified ‘Lena’ with one pixel modification. Then, bit-
wise XOR operation between each pixel pair of C1 and
C2 yields the differential image. The noise pattern of Fig. 8(a)
demonstrates that a slight modification of a plaintext results
in significant changes in the ciphertext for the S-OTS
scrambled. Meanwhile, the other CS-based cryptosystems
show partially black or almost black differential images due

to the high similarity of C1 and C2, which implies the
weak plaintext sensitivity of circular, Kronecker, division,
and parallel CS, respectively. Therefore, we conclude that
the proposed cryptosystem has high plaintext sensitivity
due to the bit-level diffusion by the proposed scrambler
structure.

F. KEY SPACE
It is important to have a large key space to resist a
brute-force attack for a secure cryptosystem. In the pro-
posed cryptosystem, we use a 128-bit key for the SSG
to construct the secret matrix 8 and a 128-bit key for
Grain-128 for diffusion. This means that the key space
of the proposed cryptosystem is 2128 × 2128 = 2256,
which implies that the proposed cryptosystem can be secure
against a brute-force attack with a sufficiently large key
space.
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FIGURE 8. Differential images of ciphertexts C1 and C2 with size 160× 256. The ciphertext C1 is obtained by original ‘Lena’, while the other ciphertext
C2 is obtained from ‘Lena’ with one pixel modification. (a) S-OTS scrambled (b) circular CS (c) Kronecker CS (d) division CS (e) parallel CS.

TABLE 5. NPCR (%) and UACI (%) for key sensitivity in CS-based cryptosystems.

TABLE 6. PSNR (dB) of decrypted images of CS-based cryptosystems with
a wrong key.

G. KEY SENSITIVITY
For a secure cryptosystem, if we modify the key slightly,
the ciphertext should be changed significantly. In numerical
experiments for key sensitivity, we change either K1 or
K2 by one-bit randomly for the S-OTS scrambled, while
one of the chaotic parameters is changed by 10−15 ran-
domly for circular, Kronecker, division, and parallel CS,
respectively. Table 5 shows the average NPCR and UACI
over 100 trials of the ciphertexts of all the test images for
the CS-based cryptosystems, when we change their keys,
respectively. We observe that one-bit modification of the
key can result in significant changes in the ciphertext for
the S-OTS scrambled, where the average NPCR and UACI
are close to the theoretically expected values for all test
images, respectively. Also, the numerical results of the
S-OTS scrambled are similar to those of the other CS-based
cryptosystems. In addition, we observed that the variances
of NPCR and UACI for all the test images are extremely
small for all the CS-based cryptosystems, which implies that
the proposed cryptosystem has key sensitivity with stable
performance.

Fig. 9 shows the decryption results of the S-OTS scrambled
with a one-bit wrong key. It demonstrates that one cannot
visually recover the original ‘Lena’ after decryption with

FIGURE 9. Decrypted ‘Lena’ images from the S-OTS scrambled with a
one-bit wrong key.

TABLE 7. The number of operations of CS-based encryptions.

a one-bit wrong key. Table 6 shows the average PSNR
over 100 trials of decrypted images for the CS-based
cryptosystems, when we use a wrong key. For a cryptosystem
with high key sensitivity, it is reasonable to assume that a
decrypted image by a wrong key has the uniform distribution
of the pixel values to provide no useful information about the
original image. Under this assumption, Table 6 also presents
the average PSNR of the decrypted images of uniformly
distributed pixel values as a benchmark. Compared to the
other CS-based cryptosystems, the PSNR of the decrypted
images of the S-OTS scrambled is relatively high, but close
to the benchmark PSNR, where the decrypted images with a
one-bit wrong key are not recognizable, as shown in Fig. 9(b).
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H. COMPUTATIONAL COMPLEXITY
For each CS-based cryptosystem, Table 7 shows the numbers
of addition, multiplication, and XOR operations for encryp-
tion, respectively. Since the CS-decryption performance of
the S-OTS cryptosystem is known to be irrelevant to q [32],
we can select q � n to reduce the computational com-
plexity for the S-OTS scrambled, while maintaining reliable
CS-decryption performance. Given identical compression
ratio ρ and quantization bit size a for all the CS-based
cryptosystems, the computational complexity including all
operations of the S-OTS scrambled is O(n2). For the
Kronecker CS, the minimum computational complexity is
O(n2) for n

p = 2, since n
p ≥ 2 is an integer from the secret

matrix structure of the Kronecker CS. This implies that the
S-OTS scrambled can have similar computational complexity
to the Kronecker CS. Also, the computational complexity
of the S-OTS scrambled is lower than the computational
complexity O(n3) of circular, division, and parallel CS,
respectively. Note that the multiplication operations with
bipolar entries of the secret matrix of the S-OTS scrambled
can be implemented as simple operations, i.e., sign change for
the numbers multiplied with the negative entries. Meanwhile,
the other CS-based cryptosystems require more complex
multiplication with floating point numbers. Therefore,
we conclude that the proposed cryptosystem has a benefit in
terms of computational complexity with a proper selection
of q.

VI. CONCLUSION
In this paper, we proposed a secure CS-based cryptosystem
for image encryption with hardware-friendly structure, which
can be easily implemented in real world applications. In addi-
tion to a sparse secret matrix for efficient CS-encryption,
a scrambling mechanism has been proposed for enhancing
the statistical security of the CS-encryption. We numerically
confirmed that the proposed CS-based cryptosystem has
more reliable CS-decryption performance than the other
CS-based cryptosystems. For analyzing the statistical secu-
rity, we investigated the histogram, entropy, correlation and
plaintext sensitivity of the proposed cryptosystem, which
demonstrates that the proposed cryptosystem is sufficiently
secure in terms of the statistical measures. In particular,
we confirmed that our bit-level diffusion by the proposed
scrambler structure has superior performance in plaintext
sensitivity than the element-level diffusion mechanisms
of the other CS-based cryptosystems. In conclusion, the
proposed cryptosystem can be statistically secure thanks to
the proposed scrambler structure.

Despite the strong statistical security, the proposed
CS-based cryptosystem may have some potential drawbacks.
First, the bit-level diffusion by the proposed scrambler
structure takes longer time than the element-level diffusion.
Also, the proposed scrambler structure requires memory
space for the LIFO buffers as well as the scramblers. For
a future work, we will further study to reduce the time
complexity and the memory requirement for the proposed

cryptosystem. We found that the CS-based encryption of [49]
employs the hash of a plaintext for keystream generation. Our
future work may exploit the hash-based structure to improve
our proposed CS-based cryptosystem further.
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