
Received December 15, 2021, accepted January 4, 2022, date of publication January 20, 2022, date of current version January 28, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3145002

Robust Network Intrusion Detection
System Based on Machine-Learning
With Early Classification
TAEHOON KIM AND WOOGUIL PAK , (Member, IEEE)
Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, South Korea

Corresponding author: Wooguil Pak (wooguilpak@yu.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government [Ministry of
Science and Information and Communications Technology (ICT)] under Grant NRF-2019R1F1A1062320.

ABSTRACT Network Intrusion Detection Systems (NIDSs) using pattern matching have a fatal weakness
in that they cannot detect new attacks because they only learn existing patterns and use them to detect those
attacks. To solve this problem, a machine learning-based NIDS (ML-NIDS) that detects anomalies through
ML algorithms by analyzing behaviors of protocols. However, the ML-NIDS learns the characteristics of
attack traffic based on training data, so it, too, is inevitably vulnerable to attacks that have not been learned,
just like pattern-matching machine learning. Therefore, in this study, by analyzing the characteristics of
learning using representative features, we show that network intrusion outside the scope of the learned data
in the feature space can bypass the ML-NIDS. To prevent this, designing the active session to be classified
early, before it goes outside the detection range of the training dataset of the ML-NIDS, can effectively
prevent bypassing the ML-NIDS. Various experiments confirmed that the proposed method can detect
intrusion sessions early (before sessions terminate) significantly improving the robustness of the existing
ML-NIDS. The proposed approach can provide more robust and more accurate classification with the same
classification datasets compared to existing approaches, so we expect it will be used as one of feasible
solutions to overcome weakness and limitation of existing ML-NIDSs.

INDEX TERMS Network intrusion detection, early classification, robust classification, adversarial attack,
machine-learning.

I. INTRODUCTION
It is very important to detect a network intrusion quickly and
accurately for stable operation of the network. For this pur-
pose, a dedicated security device called theNetwork Intrusion
Detection System (NIDS) was proposed [1], [2]. The initial
NIDS generated patterns from existing attacks and detected
intrusions very quickly and accurately through pattern match-
ing with the received packets [3]–[5]. However, a method
that relies on patterns for existing attacks has a disadvantage
in that it is impossible to detect an attack that is not known
beforehand, and the network is easily penetrated by a variant
of an existing attack.

To solve this problem, various methods have been pro-
posed and applied to the NIDS [6], [7]. The machine

The associate editor coordinating the review of this manuscript and

approving it for publication was Hayder Al-Hraishawi .

learning-based NIDS (ML-NIDS), which has recently
received the most attention, was evaluated as an alternative
that can significantly improve the shortcomings of the pattern
matching NIDS (PM-NIDS). The ML-NIDS analyzes the
characteristics of existing network intrusions using ML and
detects the intrusions using overall behavioral characteristics.
Therefore, while the PM-NIDS can be penetrated by simply
changing the pattern of an intrusion session, the ML-NIDS
can detect intrusions even if some characteristics are changed
as long as the overall behavior is maintained. Therefore, it is
well known through the results of several studies that the
ML-NIDS provides higher robustness for intrusion detection
than the PM-NIDS.

However, the ML-NIDS learns the overall behavior of an
intrusion using a training dataset, so just like the PM-NIDS,
it strongly depends on having the pattern of the existing
attack, and its detection ability depends on the training

10754 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-6087-8331
https://orcid.org/0000-0002-9551-7373
https://orcid.org/0000-0002-0977-9984

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

dataset. In other words, like the PM-NIDS, theML-NIDS can
have a very low probability of detecting an intrusion that does
not exist in the training data. Nevertheless, research on such
limitations is not being conducted much. Instead, various
methods of avoiding the ML-NIDS by modifying features
in the feature space are in progress, and recently, studies
to supplement the robustness of training datasets through a
Generative adversarial network (GAN) and other deep learn-
ing have been proposed [21]–[23]. However, these studies do
not directly analyze the dependence of the ML-NIDS on the
learning dataset, so there are limitations in understanding the
characteristics of that dependence.

In this paper, we directly analyze these characteristics and
propose a method to provide robustness to the ML-NIDS
training dataset without increasing its size. The proposed
method analyzes the characteristics of the training dataset
for the ML-NIDS and uses discovered characteristics to sig-
nificantly improve intrusion detection performance without
major changes in the system. To that end, the method pro-
posed in this paper increases the detection range of the train-
ing dataset by analyzing the existing session-based dataset.

The main contributions of this study are as follows.
First, it is proven that ML-NIDS is vulnerable for detect-

ing existing intrusion with some behavioral modification by
adding some packets. Through analyzing ML-NIDS datasets,
it is found that dependence on the training dataset is very high,
so weaknesses similar to the PM-NIDS exist. In particular,
it shows that the influence of the dependency can be quite
different based on the ML algorithm.

Second, to alleviate strong dependency on the training
dataset in terms of packet count, we present a method for
selecting when the ML-NIDS optimally detects an intrusion.
Through this, even too short or too long sessions that cannot
be detected by the existing ML-NIDS can be detected with
very high accuracy. In particular, compared to the existing
PM-NIDS, early attack detection is possible on a similar hard-
ware platform, so it is advantageous in keeping the network
safe.

Third, since the proposed method is so light to be imple-
mented on the existing ML-NIDS platform instead of a high-
cost, high-performance hardware platform, the proposed
approach is feasible in economic terms.

II. PREVIOUS WORK
The types of ML-NIDS are packet-based methods that use
packet data directly as features, and session-based methods
that use statistical data for a logical group called a session
instead of packets as features. The packet-based method can
be classified in two ways: one detection method uses a single
packet to detect a pattern for malicious data in every packet
received, and the other detection method uses multiple pack-
ets, storing and combining packets belonging to the same
session into one dataset that is used for detection [2]–[5],
[9], [35], [36]. Both the single-packet detection method and
the multi-packet detection method search for malicious code
or patterns in the packet payloads [10]. Owing to the high

accuracy of the pattern-matching algorithm, it can detect
malicious traffic while maintaining a very low false positive
rate (FPR). However, attacks exploiting normal packets, like a
Distributed denial-of-service (DDoS), are hard to detect with
the packet-based method, and the pattern-matching algorithm
can easily be bypassed by adding random data to the payload.
Therefore, only the pattern-based method is not used alone.

In order to solve the shortcomings of the packet-based
method, studies have been proposed to extract session fea-
tures and detect an intrusion through them [13]–[18]. When
using session features, it is impossible to bypass the NIDS
just by adding some dummy data. In addition, regardless
of the packet size or the length of the session, the size of
the entire feature is always the same, so the session-based
method is more advantageous than the packet-based method
for handling large volumes of traffic.

The NIDS using session features mostly uses machine
learning algorithms to classify the received traffic. So far,
various ML-NIDSs have been developed and are expected
to overcome the weaknesses of the PM-NIDS. Inevitably,
malicious users are developing various methods to bypass
the ML-NIDS (largely divided into white box, gray box, and
black box methods), depending on what information can be
used. The white box method is a way to bypass the NIDS
when the attacker knows all information about it [19]–[23].
This is an ideal and unrealistic case, because information
about the dataset, the machine learning model, and the fea-
ture set used for learning has to be available. On the other
hand, the gray box method is where a malicious user knows
minimal information, such as the algorithm for extracting
features [24], [25]. The black box method, however, finds
a way to bypass the NIDS without having any information
in advance [26]. Therefore, although it is the most realistic,
it is technically quite difficult to implement, because it is
necessary to actively collect the necessary information and
indirectly identify the characteristics of the NIDS.

Although various approaches and many related studies
exist, we can see that the accuracy of a commonly learned
classification model is greatly affected by a small number of
features [19], [25]. Therefore, in the white box method, the
corresponding features can easily be found, and the NIDS
can easily be bypassed by generating an attack that exceeds
the learning range of these features. Of course, research to
alleviate these weaknesses is also being conducted. Various
methods, such as removing some of the most influential
features and training a classification model, have been pro-
posed. However, the method of removing some features is
not a fundamental solution in that it can inevitably affect the
performance of the MLmodel. In the end, it is urgent to make
a robust ML model by lowering the dependency on, and sen-
sitivity to, features that affect the learning model while main-
taining classification accuracy at the same time [26], [27].

Fundamentally, it is unreasonable to assume that the NIDS
equipped with a model created using pre-built training data
can learn all the characteristics of all sessions received from
an actual network in advance. In fact, the training dataset

VOLUME 10, 2022 10755

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

size is limited, so it is possible for a session to exist where
the values for some specific features exceed the range of
the learning values from the training dataset. If the corre-
sponding feature is one that greatly affects the performance
of the learning model described above, the sessions cannot
be accurately classified by ML-NIDS. Therefore, this is a
problem that must be solved in order to develop a system to
defend against attacks. Nevertheless, research on this is not
being conducted. Table 1 summarizes the pros and cons of
each type of ML-NIDS, including the proposed approach.

TABLE 1. Strengths and weaknesses of each type of ML-NIDS.

III. THE PROPOSED APPROACH
We present a new method to improve the ML-NIDS in order
to handle intrusion sessions with feature values that exceed
the range of learned values. Therefore, an ML model com-
bined with our proposed approach can detect intrusions that
exceed the classification range of the training dataset in the
feature space with high probability, so it is expected to not
only make the ML-NIDS robust, but will also help prevent
existing adversarial attacks.

A. MOTIVATION
Since the training dataset determines the performance of
the ML-NIDS, it is most important to implement a training
dataset including a large amount of rich data on network
intrusions without redundancy as much as possible. However,
since the size of the training dataset is finite, the area of the
feature space learned with the training dataset is inevitably
limited. In order to confirm this in more detail, it is necessary
to analyze the effect when the learning range of the training
dataset and the range of the test dataset do not overlap in
the feature space. For further explanation, let us define some
notations as follow:

A session S is defined by S = {P1,P2, . . . ,Pk}, where
it consists of k packets. Let us define src (Pi), size (Pi),
rtime (Pi) by source IP of Pi, size of Pi, reception time of
Pi, respectively. Then the forward packet count and the total

data rate are defined by |Sforward| and
∑k

i=1 size(Pi)
rtime(Pk)−rtime(P1)

, where

Sforward = {Ph |Ph ∈ S, src (Ph) = src (P1)} .
In previous studies, the forward packet count and the total

data rate are known to be very important features in the

ML-NIDS [19], [25]. According to the value of the forward
packet count feature, in this experiment, a training dataset
consisting of sessions with values smaller than a threshold
value and a test dataset consisting of sessions with larger
than a threshold value were created, and an experiment was
conducted to measure classification performance using them.
Since the influence of the forward packet count feature may
be different for each class, the following experiment was con-
ducted to analyze it. With the data for the i-th class among the
entire dataset, only sessionswith a forward packet count value
less than or equal to a threshold value (the maximum forward
packet count value for class i, θi) were selected to create the
training dataset, and only sessions where the forward packet
count value was greater than θi were used to construct the test
dataset. Here, θi sets the data configuration ratio at 7:3 for the
corresponding class. For other classes, the training and test
datasets were randomly configured, regardless of the θi value.
θi is set to a value close to the ratio of 7:3 because suf-

ficient training and test dataset size are required to obtain
accurate classification performance. That is, if θi is too large,
the test dataset becomes too small to accurately measure
classification performance. On the contrary, if θi is too small,
the training dataset becomes too small compared to train
the ML model, causing degraded classification performance.
Figure 1 shows f1-scores of some selected classes according
to the dataset ratio. From the figure, we can see that the ratio
should not be too small or too large according to the class.
Thus, each θi was set as close to 7:3 as possible.

FIGURE 1. F1-scores of some selected classes according to the ratio of
training dataset size to test dataset size when CIC-IDS 2017 dataset is
used.

Tables 2 to 5 show the experimental results from con-
figuring the training dataset and the test dataset based on
θi for Brute Force-SSH, DDoS, DoS-HTTP, and Infiltration
using the ISCX2012 dataset. For Brute Force-SSH, when the
ML model is trained only with forward packet count values
smaller than θi (as shown in Table 2) the class cannot be
detected at all using the model. On the other hand, as shown
in Tables 3 to 5, when the training and test datasets are
randomly configured for Brute Force-SSH, more than 98.5%
were detected. As for the detection rates of the other classes
(DDoS, DoS-HTTP, and Infiltration) shown in Tables 3, 4,

10756 VOLUME 10, 2022

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

TABLE 2. Confusion matrix where the training dataset and test dataset, respectively, are composed of sessions with small forward packet count values
and sessions with large forward packet count values for Brute Force-SSH, whereas training and test datasets for other classes are randomly composed.
Columns and rows of the matrix represent instances of actual and predicted classes, respectively.

TABLE 3. Confusion matrix where the training dataset and test dataset, respectively, are composed of sessions with small forward packet count values
and sessions with large forward packet count values for DDoS, whereas training and test datasets for other classes are randomly composed. Columns and
rows of the matrix represent instances of actual and predicted classes, respectively.

TABLE 4. Confusion matrix where the training dataset and test dataset, respectively, are composed of sessions with small forward packet count values
and sessions with large forward packet count values for DoS-HTTP, whereas training and test datasets for other classes are randomly composed. Columns
and rows of the matrix represent instances of actual and predicted classes, respectively.

TABLE 5. Confusion matrix where the training dataset and test dataset, respectively, are composed of sessions with small forward packet count values
and sessions with large forward packet count values for the Infiltration class, whereas training and test datasets for other classes are randomly
composed. Columns and rows of the matrix represent instances of actual and predicted classes, respectively.

and 5, only 0.01%, 5.2%, and 3%were detected, respectively,
and all classes showed similar results. In the end, it was
confirmed that when the range of the value of the forward
packet count configured in the training dataset and the range
of the value of the forward packet count configured in the
test dataset were different, the classification accuracy was
significantly affected.

As shown in Tables 2 to 5, sessions with a count value
greater than the number of forward packets in the training
dataset are hardly ever detected, regardless of the class type.
In an actual network, the forward packet count value simply
increases as the attack continues. That is, it is relatively easy
to make it outside the range of the forward packet count of
the training data (compared to other features), but the impact
on the existing ML-NIDS is very high.

One of the solutions for this is to collect various sessions,
including sessions with from a very small forward packet
count to a very large count. However, this method not only
makes the training dataset too large, but also makes it quite
difficult to obtain sufficient training data without any missing
value because the range of the forward packet count values
is large. In addition, when the size of the training dataset
increases, training time greatly increases due to the bigger
dataset, and detection speed may decrease as the complexity
of the training model increases. Therefore, increasing the
size of the training dataset in order to increase the forward
packet count value cannot be a fundamental solution. In the
end, malicious users can disarm the existing ML-NIDS by
performing an attack to increase the forward packet count,
and they can easily bypass detection regardless of the dataset

VOLUME 10, 2022 10757

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

FIGURE 2. Classifiable and unclassifiable regions of sessions in the feature space.

size, but an effective method to prevent this has not yet been
presented.

This study tries to effectively solve this problem by adjust-
ing the detection timing, instead of expanding the detection
range of the training dataset in the feature space. Figure 2 is
a conceptual diagram showing two ranges within which the
MLmodel can and cannot classify sessions when themodel is
trained on a dataset consisting of two features. According to
Figure 2 (a), session X can be classified, so the ML classifier
can determine whether it is an intrusion or a benign session.
On the other hand, it is impossible to classify session Y using
the ML classifier because it is located in an area that cannot
be classified.

Now let us assume that session Y consists of four packets.
We also assume that whenever each packet is received, the
NIDS cumulatively creates from the first packet an interme-
diate session feature using the currently received packet, and
plots it in the feature space as shown in Figure 2 (b). The
number on the path shown in Figure 2 (b) represents the
number of packets used to create the feature. For example,
2 in Figure 2 (b) indicates a session feature created using the
first and second packets.

In Figure 2 (b), the features when the first and fourth
packets are received are located in the unclassifiable range
in the feature space, whereas the features when the sec-
ond and third packets are received are located within the
classifiable range. Therefore, if we find the right timing at
which the corresponding session can be accurately classi-
fied, instead of classifying it when the session is terminated,
we can classify the session correctly before the end of the
session. Now let us discuss in detail how this idea can be
implemented.

B. THE PROPOSED ALGORITHM
The algorithm should classify a session when the intermedi-
ate session feature exists in the classifiable area even before
the session is terminated. However, determining if the session

feature is in an unclassifiable area for the currently on-going
session is difficult. Of course, if intermediate session features
are created, and if classification is performed using them
on every received packet, it may be possible to classify the
session when the intermediate session feature exists in a
classifiable region in the feature space even before the session
is terminated. However, this incurs very high calculation and
memory costs, which means it requires a very expensive,
high-end platform that far exceeds the performance of the
currently existing NIDS. As a result, in terms of cost, it is
infeasible to classify every received packet.

To solve this problem, the proposed method uses the fol-
lowing approach. For a specific feature, a range of values that
can be well classified for each class is determined in advance,
and classification is attempted only when the intermediate
session feature for the currently received session is included
within the range. Here, the range of the feature for each class
is determined, because the range of the training data for the
corresponding feature may be different for each class. In this
case, it is advantageous to select a feature type that can be
easily calculated and that has great influence on classification
accuracy. In this paper, we chose the forward packet count as
the feature for the decision, since it meets all conditions.

In the proposed method, the learning process is the same
as that of the existing ML-NIDS. Also, it is the same when
the session ends in that the corresponding session feature is
created to perform classification. However, the classification
process differs from that of the existing classification in the
following aspect.

By analyzing the training dataset, the maximum forward
packet count value (θi) for each class except benign class
is precalculated. Thus, we will have N − 1 values at most
due to duplication, when N is the total number of classes.
If the forward packet count of the currently received packet
matches one of these values, an intermediate session feature
of the session the packet belongs to is created and classified.
At this time, if the classification result is a class in which

10758 VOLUME 10, 2022

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

FIGURE 3. The comparison original and modified datasets with five sessions belonging to two classes where Fk and Rk stand for the k-th forward
and backward packets.

the maximum forward packet count has the same value as
the packet count of the currently received packet, the packet
will be processed according to the classification result. For
example, the packet will be dropped and the result will be
logged or notified to an administrator Otherwise, the current
classification result is ignored, and the next classification is
reperformed whenever the packet number matches one of the
maximum forward packet counts again, or when the session
ends.

Figure 3 shows how to obtain the training dataset from the
original dataset using precalculated θi. For training dataset,
each session of a class i is normalized according to θi. Such
a normalized dataset is greatly helpful to avoid classification
on the unclassifiable range of the class.

In this method, each class undergoes classification within
the classifiable feature values, while at the same time adjust-
ing the classification timing so that each class is best classi-
fied. Here, since the intrusion class tends to be classified as
benign, if the result of each classification is benign, the result
is ignored. Only when the session is finished and classified
as benign, the packet is processed as benign. The detailed
operation of the proposed method is in Algorithm 1. The
classification is only performed when P is the last packet
of the session or n (P) ∈ 2, the computational complex-
ity of Algorithm 1 is O(|2| + 1) = O(N + 1) = O(N),
where N is the class number. Usually, the class number
is smaller than the session length. It means that the algo-
rithm has lower complexity than the per packet detection
approach.

To make it easier to understand the operation of the pro-
posed algorithm, Figure 4 illustrates two cases in which
the proposed method finally obtains the classification result.
As shown in the figure, classification is performed only
when θ (Ci) and forward packet count are the same, thus
reducing the overall classification overhead and increasing
the possibility of completing classification before the forward
packet count becomes too large. By doing so, the proposed

Algorithm 1 Proposed NIDS Classification
Input: C = {C1, C2, . . . ,CN} where N is the total

number of classes, and C1 denotes a benign class.
θ (Ci): the maximum packet count value for Ci in
the training dataset. i.e., θi. 2 =
{θ (C2), θ (C3), . . . , θ (CN)}.
P: the current received packet.
n(P): the maximum forward packet count of
P in the session.
F(P): the intermediate session features created
from the first to P packets.

Output: Class ID if found
None, otherwise

1 IF P is the last packet of the session THEN
2 Cest = classifier(F(P))
3 Return Cest
4 ELSE
5 IF n(P) ∈ 2 THEN
6 Cest = classifier(F(P))
7 IF θ (Cest) == n(P) THEN
8 Return Cest
9 ELSE
10 Postpone the decision until the

next packet is received.
11 ENDIF
12 ENDIF
13 ENDIF

approach improves classification speed and classification
accuracy simultaneously.

Figure 5 shows the entire procedure of the proposed algo-
rithm. It calculates the maximum forward packet count for
each class, build the training set using the counts. It then tries
to classify the received packet to infer the class of the session
that the packet belongs to.

VOLUME 10, 2022 10759

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

FIGURE 4. Two cases that the proposed algorithm classifies an incoming. Each circle represents each packet of the session. The empty and numbered
circles denote no classification and classification result, i.e., class ID, respectively.

IV. PERFORMANCE EVALUATION
In order to accurately evaluate and analyze the proposed
method, various datasets and several classification algorithms
were used to analyze its performance in various environ-
ments. For the evaluation, six algorithms were selected:
Random forest [28], Adaboost decision tree [29],
XGBoost [30], Extreme learning machine (ELM) [31], Deep
neural network (DNN) [32], and Convolutional neural net-
work (CNN) [17]. By including from the deep learning to
the decision tree–based method, we compare how the pro-
posed method affects performance when applied to various
algorithms.

A. EVALUATION ENVIRONMENT
It is important to usemultiple datasets, because characteristics
within the same class may differ, depending on the network
environment in which data are collected. In this experiment,
three datasets were used: ISCX2012, CIC-IDS2017, and
CSE-CIC-IDS2018 [33], [34]. Here, minor classes were
excluded. In addition, classes having only one forward packet
count value were excluded because there is no need to apply
the proposed method. For example, in PortScan from CIC-
IDS2017, there is no need to apply the proposed method
because sessions with one forward packet count comprise
99.5% of the total data. For the same reason, FTP-Brute
Force and DoS-SlowHTTPTest with only one forward packet
count value were excluded from CSE-CIC-IDS2018. The
total numbers of classes of ISCX2012, CIC-IDS2017, and
CSE-CIC-IDS2018 are 6, 9, and 8 respectively.

To measure the performance of the proposed method, it is
necessary to create a training dataset consisting of small
forward packet counts and a test dataset consisting of large
counts. To this end, in the distribution according to the

TABLE 6. The ISCX2012 dataset.

forward packet count size for each class, all the session data
were divided at a ratio of 7:3 to create training and test
datasets. Exceptionally, if the distribution of forward packet
counts is U-shaped, training and test datasets were built by
dividing all the data based on the minimum point. Only the
benign class created training and test datasets by randomly
dividing the data at 7:3, regardless of the forward packet count
value. The data sizes for the classes are shown in Tables 6 to 8.
To evaluate each classification models, the following metrics
were used:
• Accuracy = TP+TN

TP+TN+FP+FN
• Precision = TP

TP+FP
• Recall = TP

TP+FN
• F1-score = 2

1/Precision+1/Recall
• Error rate = FP+FN

TP+TN+FP+FN
where TP, TN, FP and FN stand for true positive, true nega-
tive, false positive and false negative.

B. DETECTION RATE
The results of applying the proposed method to the three
datasets and six machine learning algorithms are shown in
Figures 6 to 8. Comparing the results of applying and not

10760 VOLUME 10, 2022

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

TABLE 7. The CIC-IDS2017 dataset.

TABLE 8. The CSE-CIC-IDS2018.

FIGURE 5. The overall procedure of the proposed approach.

applying the proposed method to each algorithm, we see
that most of the performances improved when the proposed
method was applied. Among a total of 18 test cases, the only
case where the performance did not improve (based on the
F1-score) was theDNNwith the proposed algorithm using the
CSE-CIC-IDS2018 dataset. Also, in Figures 6 to 8, we found
that the overall sensitivity of the deep learning–based algo-
rithm to the forward packet count feature was higher than
DT-based algorithms. Even if the proposed method was
applied, the ELM, DNN, and CNN all had F1-scores of
30% to 50%, whereas RF, Adaboost DT, and XGBoost show
F1-scores higher than 75%. Therefore, it can be argued that
deep learning algorithms have great difficulty in improving
performance if sufficient training datasets are not collected.

RF, Adaboost DT, and XGBoost also had very low
F1-scores if the proposed method was not applied. In apply-
ingXGBoost to CSE-CIC-IDS2018, as an exception, it shows
a high F1-score of 86.15% even without using the proposed
method. However, in other datasets, the F1-score is only about
10% higher than deep learning.

When the proposed method was applied to DT-based algo-
rithms the F1-score improved by up to 32%. The highest
F1-score was obtained by applying the proposed method
to XGBoost with ISCX2012, which achieved 80.22%. With
CIC-IDS2017, applying the proposed method to XGBoost
achieved 94.21%, and with CSE-CIC-IDS2018, the F1-score
reached 90.49% when applying the proposed method to RF.
Depending on the dataset, the optimal algorithm may be dif-
ferent, but we confirmed it is essential to apply the proposed
method.

Additionally, Figure 9 shows the error rates of the proposed
and original approaches. For most cases, our algorithm shows
smaller error rate than the original one regardless of types of
ML algorithm and dataset.

For more detail, it is necessary to analyze the performance
of each class when the proposed method is applied. We chose
the case where the proposed method is applied to RF with
the CSE-CIC-IDS2018 dataset for detailed analysis. Accord-
ing to Figure 10, the F1-score improved, or was at least
maintained, after applying the proposed method to all classes
except for Brute Force-XSS. In particular, Brute Force-WEB,
DoS-GoldenEye, and DoS-Slowloris show that extremely
low F1-scores of 7%, 0%, and 1.6% significantly improved
to 95.7%, 64.7%, and 96.1% after applying the proposed
method.

Table 9 shows the confusion matrix from Figure 10 for a
more accurate analysis. If the proposed method is not applied

VOLUME 10, 2022 10761

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

FIGURE 6. The comparison of detection rates for each classification algorithm with the ISCX2012 dataset.

FIGURE 7. Comparison of detection rates for each classification algorithm with the CIC-IDS2017 dataset.

FIGURE 8. Comparison of detection rates for each classification algorithm with the CSE-CIC-IDS2018 dataset.

in the confusion matrix, intrusions are often falsely detected
as benign. On the other hand, when the proposed method is
used as shown in Table 10, the number of cases in which

intrusions are falsely detected as benign was greatly reduced.
For example, 96% of the Brute Force-Web class was falsely
detected originally, but when the proposed method was

10762 VOLUME 10, 2022

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

FIGURE 9. The comparison of error rate for each classification algorithm with ISCX2012, CIC-IDS2017 and CSE-CIC-IDS2018 datasets.

FIGURE 10. Comparison of detection rates for each class with the CSE-CIC-IDS2018 dataset.

TABLE 9. Confusion matrix for RF and the proposed algorithm with the CSE-CIC-IDS2018 dataset. Columns and rows represent instances of actual and
predicted classes, respectively.

applied, Brute Force-Web was detected with 100% accuracy.
In addition, after applying the proposed method, the F1-score
decreased by 5.2% for Brute Force-XSS, but looking at the

confusion matrix, 10% of Brute Force-XSS sessions were
falsely detected as Brute Force-WEB, so the intrusion was
successfully detected as an intrusion. Therefore, the proposed

VOLUME 10, 2022 10763

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

TABLE 10. Confusion matrix for RF without the proposed algorithm using the CSE-CIC-IDS2018 dataset. Columns and rows represent instances of actual
and predicted classes, respectively.

TABLE 11. Average detection length using random forest with the ISCX2012 dataset.

TABLE 12. Average detection length using random forest with the CIC-IDS2017 dataset.

method not only improved the average F1-score, but also
significantly increased the intrusion detection rate for each
session.

C. AVERAGE SESSION LENGTH REQUIRED FOR
DETECTION
The most important performance metric in the NIDS is
detection rate. In addition, detection speed is also a very
important metric—the faster the NIDS detects network intru-
sions, the more it helps keep the network safe. The pro-
posed method is not designed to increase detection speed;
nevertheless, it is important to check whether the speed is
increased or decreased by it. Therefore, in this experiment,
we analyzed detection speed before and after using the pro-
posed method. In order to measure detection speed, we mea-
sured how many packets were received in each session until

detection was completed. The experimental results for each
dataset are shown in Tables 11 to 13. As seen in Algo-
rithm 1, the proposed method includes both packet-based
detection and detection of session-based behaviors; there-
fore, we measured the number of packets required for both.
With ISCX2012, the proposed method detected intrusions
slightly faster than the existing method. For a DDoS, the
proposed method can reduce the number of packets required
for detection by 40%, and for the entire classes, it can reduce
the number by 28% on average. Although the proposed
method is not designed to focus on improving detection
speed, it significantly improved speed, thus proving it is
of great help in improving the performance of an existing
NIDS.

With the CIC-IDS2017 dataset, there was a significant
improvement for some classes, such as a 36% performance

10764 VOLUME 10, 2022

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

TABLE 13. Average detection length using random forest with the CSE-CIC-IDS2018 dataset.

TABLE 14. The average number of classifications for each class from using the ISCX2012 dataset.

TABLE 15. The average number of classifications for each class from using the CIC-IDS2017 dataset.

TABLE 16. The average number of classifications for each class from using the CSE-CIC-IDS2018 dataset.

improvement against a DDoS, and a 33% performance
improvement against SSH-Patator.

Unlike the other two datasets, the CSE-CIC-IDS2018
dataset showed significant performance improvement for
classes with a very long detection length. For example, if the
proposed method is not used, detecting Brute Force-WEB
and Brute Force-XSS required 151.2 and 202.7 packets,
respectively, whereas using the proposedmethod, only 38 and
78.5 packets needed to be received, improving performance
by 75% and 61%.

In the results from using the three datasets, detection speed
for most classes improved, and only a few classes showed
the same performance. In particular, the longer the session
is, a greater improvement in detection speed can be a great
advantage. Long sessions usually consume a lot of memory
of NIDS, because NIDS require all the data for each packet
to create a feature after the session ends. Therefore, the
proposedmethod can classify such long sessionsmuch before
session termination, so it can significantly reduce the amount
of memory for the sessions, and can improve detection per-
formance at the same time.

D. TOTAL CLASSIFICATION NUMBER REQUIRED FOR
DETECTION
Unlike the existing ML-NIDS, the proposed method may
make multiple classifications until one session is successfully

classified. Now, let the number of classifications be defined
as ‘‘the number of classifications required until one session
is classified.’’ This is important because more classifications
require more processing power to classify one session, so a
hardware platform with better performance is required. In the
end, the closer the number of classifications is to one, the
higher the possibility of implementing the proposed algo-
rithm on the existing session-based NIDS hardware platform.
As shown in Tables 14 to 16, the average number of classifi-
cations for each dataset differed greatly for each class. This is
because the total session length for each class and the size of
θi for each class were different. However, in Tables 14 to 16,
the average number of classifications for the entire dataset
does not exceed 3. In particular, the average number of classi-
fications with the CIC-IDS2017 and ISCX2012 datasets were
1.29 and 1.58, respectively, which is not a significant increase
compared to the existing session-based classification. There-
fore, even if the proposedmethod is implemented on the exist-
ing hardware platform, there is no significant performance
degradation.

V. CONCLUSION
The most important thing in the ML-NIDS is the training
dataset used to create the classifier model. However, it is
impossible to obtain a training dataset including all network
intrusions that occur in the wild. Rather, it is important to
find a way to accurately detect an intrusion by utilizing an

VOLUME 10, 2022 10765

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

existing dataset, even if the intrusion data it contains are insuf-
ficient. In this paper, a new approach to solve this problem
is presented. Using various datasets, the proposed method
has proven that the weaknesses of the existing ML-NIDS can
be greatly improved. Of course, there is still much room for
improvement in the proposed method. For example, it may
not be sufficient to determine whether the learning range
is exceeded using only the forward packet count feature.
However, if multiple features are considered, the number of
sessions that can be processed per second decreases. Also, for
some classes, improvement of the detection rate is not big.
Despite these weaknesses, it is a great advantage to be able to
broadly expand the classification range in the feature space
by using a dataset consisting of limited data. In addition,
classification speed can also be improved, so it is expected
that the proposed method, when installed in actual NIDS
equipment, will be of great help in keeping large networks
safe. As our future work, we will focus on how to extend
this current result to support multiple features. If the solution
is successfully found, ML-NIDS can maximize the classifi-
cation detection rate without deteriorating the classification
speed.

REFERENCES
[1] A. Borkar, A. Donode, and A. Kumari, ‘‘A survey on intrusion detec-

tion system (IDS) and internal intrusion detection and protection sys-
tem (IIDPS),’’ in Proc. Int. Conf. Inventive Comput. Informat. (ICICI),
Nov. 2017, pp. 949–953, doi: 10.1109/ICICI.2017.8365277.

[2] Z. Zhou, C. Zhongwen, Z. Tiecheng, and G. Xiaohui, ‘‘The study
on network intrusion detection system of snort,’’ in Proc. Int. Conf.
Netw. Digit. Soc., May 2010, pp. 194–196, doi: 10.1109/ICNDS.2010.
5479341.

[3] M. F. Zolkipli and A. Jantan, ‘‘A framework for malware detec-
tion using combination technique and signature generation,’’ in Proc.
2nd Int. Conf. Comput. Res. Develop., May 2010, pp. 196–199, doi:
10.1109/ICCRD.2010.25.

[4] H. Zhang, ‘‘Design of intrusion detection system based on a new pattern
matching algorithm,’’ in Proc. Int. Conf. Comput. Eng. Technol., Jan. 2009,
pp. 545–548, doi: 10.1109/ICCET.2009.244.

[5] V. Gupta, M. Singh, and V. K. Bhalla, ‘‘Pattern matching algorithms for
intrusion detection and prevention system: A comparative analysis,’’ in
Proc. Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), Sep. 2014,
pp. 50–54, doi: 10.1109/ICACCI.2014.6968595.

[6] A. Halimaa A. and K. Sundarakantham, ‘‘Machine learning based
intrusion detection system,’’ in Proc. 3rd Int. Conf. Trends Electron.
Informat. (ICOEI), Apr. 2019, pp. 916–920, doi: 10.1109/ICOEI.2019.
8862784.

[7] A. Phadke, M. Kulkarni, P. Bhawalkar, and R. Bhattad, ‘‘A review of
machine learning methodologies for network intrusion detection,’’ in
Proc. 3rd Int. Conf. Comput. Methodol. Commun. (ICCMC), Mar. 2019,
pp. 272–275, doi: 10.1109/ICCMC.2019.8819748.

[8] L. Bondan, M. A. Marotta, M. Kist, L. R. Faganello, C. B. Both,
J. Rochol, and L. Z. Granville, ‘‘Kitsune: A management system for
cognitive radio networks based on spectrum sensing,’’ in Proc. IEEE
Netw. Operations Manage. Symp. (NOMS), May 2014, pp. 1–9, doi:
10.1109/NOMS.2014.6838316.

[9] R. Gaddam and M. Nandhini, ‘‘An analysis of various snort based tech-
niques to detect and prevent intrusions in networks proposal with code
refactoring snort tool in kali Linux environment,’’ in Proc. Int. Conf.
Inventive Commun. Comput. Technol. (ICICCT), Mar. 2017, pp. 10–15,
doi: 10.1109/ICICCT.2017.7975177.

[10] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
‘‘HAST-IDS: Learning hierarchical spatial-temporal features using deep
neural networks to improve intrusion detection,’’ IEEE Access, vol. 6,
pp. 1792–1806, 2018.

[11] S. Soheily-Khah, P.-F. Marteau, and N. Bechet, ‘‘Intrusion detection in
network systems through hybrid supervised and unsupervised machine
learning process: A case study on the ISCX dataset,’’ in Proc. 1st Int. Conf.
Data Intell. Secur. (ICDIS), Apr. 2018, pp. 219–226.

[12] Y. Yuan, L. Huo, and D. Hogrefe, ‘‘Two layers multi-class detection
method for network intrusion detection system,’’ in Proc. IEEE Symp.
Comput. Commun. (ISCC), Jul. 2017, pp. 767–772.

[13] I. Ahmad, M. Basheri, M. J. Iqbal, and A. Raheem, ‘‘Performance com-
parison of support vector machine, random forest, and extreme learning
machine for intrusion detection,’’ IEEE Access, vol. 6, pp. 33789–33795,
2018.

[14] Y. Cheong, K. Park, H. Kim, J. Kim, and S. Hyun, ‘‘Machine learning based
intrusion detection systems for class imbalanced datasets,’’ J. Korea Inst.
Inf. Secur. Cryptol., vol. 27, no. 6, pp. 1385–1395, Dec. 2017.

[15] C. Yin, Y. Zhu, J. Fei, and X. He, ‘‘A deep learning approach for intru-
sion detection using recurrent neural networks,’’ IEEE Access, vol. 5,
pp. 21954–21961, 2017.

[16] K. Park, Y. Song, and Y.-G. Cheong, ‘‘Classification of attack types for
intrusion detection systems using a machine learning algorithm,’’ in Proc.
IEEE 4th Int. Conf. Big Data Comput. Service Appl. (BigDataService),
Mar. 2018, pp. 282–286.

[17] W.-H. Lin, H.-C. Lin, P. Wang, B.-H. Wu, and J.-Y. Tsai, ‘‘Using
convolutional neural networks to network intrusion detection for cyber
threats,’’ in Proc. IEEE Int. Conf. Appl. Syst. Invention (ICASI), Apr. 2018,
pp. 1107–1110.

[18] Y. Otoum, D. Liu, and A. Nayak, ‘‘DL-IDS: A deep learning–based intru-
sion detection framework for securing IoT,’’ Trans. Emerg. Telecommun.
Technol., p. e3803, 2019, doi: 10.1002/ett.3803.

[19] Z. Wang, ‘‘Deep learning-based intrusion detection with adversaries,’’
IEEE Access, vol. 6, pp. 38367–38384, 2018.

[20] J. Clements, Y. Yang, A. Sharma, H. Hu, and Y. Lao, ‘‘Rallying adver-
sarial techniques against deep learning for network security,’’ 2019,
arXiv:1903.11688.

[21] O. Ibitoye, O. Shafiq, and A. Matrawy, ‘‘Analyzing adversarial attacks
against deep learning for intrusion detection in IoT networks,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019,
pp. 1–6.

[22] A. Piplai, S. S. L. Chukkapalli, andA. Joshi, ‘‘NAttack! Adversarial attacks
to bypass a GAN based classifier trained to detect network intrusion,’’ in
Proc. IEEE IEEE 6th Int. Conf. Big Data Secur. Cloud (BigDataSecurity)
Int. Conf. High Perform. Smart Comput., (HPSC) IEEE Int. Conf. Intell.
Data Secur. (IDS), May 2020, pp. 49–54.

[23] D. Han, Z. Wang, Y. Zhong, W. Chen, J. Yang, S. Lu, X. Shi, and X. Yin,
‘‘Evaluating and improving adversarial robustness of machine learning-
based network intrusion detectors,’’ IEEE J. Sel. Areas Commun., vol. 39,
no. 8, pp. 2632–2647, Aug. 2021.

[24] Z. Lin, Y. Shi, and Z. Xue, ‘‘IDSGAN: Generative adversarial networks for
attack generation against intrusion detection,’’ 2018, arXiv:1809.02077.

[25] X. Peng, W. Huang, and Z. Shi, ‘‘Adversarial attack against DoS intrusion
detection: An improved boundary-based method,’’ in Proc. IEEE 31st Int.
Conf. Tools with Artif. Intell. (ICTAI), Nov. 2019, pp. 1288–1295.

[26] G. Apruzzese, M. Colajanni, and M. Marchetti, ‘‘Evaluating the effec-
tiveness of adversarial attacks against botnet detectors,’’ in Proc.
IEEE 18th Int. Symp. Netw. Comput. Appl. (NCA), Sep. 2019,
pp. 1–8.

[27] M. J. Hashemi and E. Keller, ‘‘Enhancing robustness against adversar-
ial examples in network intrusion detection systems,’’ in Proc. IEEE
Conf. Netw. Function Virtualization Softw. Defined Netw. (NFV-SDN),
Nov. 2020, pp. 37–43, doi: 10.1109/NFV-SDN50289.2020.9289869.

[28] V. Svetnik, A. Liaw, C. Tong, J. Culberson, R. Sheridan, and B. Feuston,
‘‘Random forest: A classification and regression tool for compound clas-
sification and QSAR modeling,’’ J. Chem. Inf. Comput. Sci., vol. 43,
pp. 1947–1958, Nov. 2003.

[29] Y. Coadou, ‘‘Boosted decision trees and applications,’’ in Proc. EPJ Web
Conf., vol. 55, 2013, p. 02004.

[30] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’ in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, San
Francisco, CA, USA, Aug. 2016, pp. 785–794.

[31] G. B. Huang, Q. Y. Zhu, and C. K. Siew, ‘‘Extreme learning machine:
Theory and applications,’’ Neurocomputing, vol. 70, pp. 489–501,
Dec. 2006.

[32] Y. Bengio, ‘‘Learning deep architectures for AI,’’ Found. Trends Mach.
Learn., vol. 2, pp. 1–127, Jan. 2007.

10766 VOLUME 10, 2022

http://dx.doi.org/10.1109/ICICI.2017.8365277
http://dx.doi.org/10.1109/ICNDS.2010.5479341
http://dx.doi.org/10.1109/ICNDS.2010.5479341
http://dx.doi.org/10.1109/ICCRD.2010.25
http://dx.doi.org/10.1109/ICCET.2009.244
http://dx.doi.org/10.1109/ICACCI.2014.6968595
http://dx.doi.org/10.1109/ICOEI.2019.8862784
http://dx.doi.org/10.1109/ICOEI.2019.8862784
http://dx.doi.org/10.1109/ICCMC.2019.8819748
http://dx.doi.org/10.1109/NOMS.2014.6838316
http://dx.doi.org/10.1109/ICICCT.2017.7975177
http://dx.doi.org/10.1002/ett.3803
http://dx.doi.org/10.1109/NFV-SDN50289.2020.9289869

T. Kim, W. Pak: Robust Network Intrusion Detection System Based on Machine-Learning With Early Classification

[33] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, ‘‘Toward devel-
oping a systematic approach to generate benchmark datasets for intrusion
detection,’’ Comput. Secur., vol. 31, no. 3, pp. 357–374, May 2012, doi:
10.1016/j.cose.2011.12.012.

[34] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, ‘‘Toward generat-
ing a new intrusion detection dataset and intrusion traffic characterization,’’
in Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, 2018, pp. 108–116, doi:
10.5220/0006639801080116.

[35] G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescape, ‘‘A hierar-
chical hybrid intrusion detection approach in IoT scenarios,’’ inProc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–7.

[36] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, ‘‘Mobile encrypted
traffic classification using deep learning: Experimental evaluation, lessons
learned, and challenges,’’ IEEE Trans. Netw. ServiceManag., vol. 16, no. 2,
pp. 445–458, Feb. 2019.

TAEHOON KIM received the B.S. degree in
information and communication engineering from
Yeungnam University, in 2018, where he is
currently pursuing the M.S. degree. His cur-
rent research interests include high-speed net-
work intrusion detection and prevention based on
machine-learning.

WOOGUIL PAK (Member, IEEE) received the
B.S. and M.S. degrees in electrical engineering
and the Ph.D. degree in electrical engineering
and computer science from Seoul National Uni-
versity, in 1999, 2001, and 2009, respectively.
In 2010, he joined the Jangwee Research Insti-
tute for National Defence as a Research Professor,
and Keimyung University, Daegu, South Korea,
in 2013. He is currently an Associate Profes-
sor at Yeungnam University, Gyeongsan, South

Korea. His current research interests include network and system security,
blockchain, user behavior analytics based on machine learning, and network
security for high speed networks.

VOLUME 10, 2022 10767

http://dx.doi.org/10.1016/j.cose.2011.12.012
http://dx.doi.org/10.5220/0006639801080116

