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ABSTRACT The x-ray computed tomography (CT) images with low dose are noisy and may contain photon
starvation artifacts. The artifacts are location and direction dependent. Therefore, the common shift-invariant
denoising filters do not work well. The state-of-the-art methods to process the low-dose CT images are image
reconstruction based; they require the raw projection data. In many situations, the raw CT projections are
not accessible. This paper suggests a method to denoise the low-dose CT image using the pseudo projections
generated by the application of a forward projector on the low-dose CT image. The feasibility of the proposed
method is demonstrated by real clinical data.

INDEX TERMS Image processing, image reconstruction, biomedical imaging, computed tomography,
filters.

I. INTRODUCTION
The main drive force of using low-dose x-ray computed
tomography (CT) is to reduce the patient radiation expo-
sure [1]–[3]. Even though it is not clear whether x-ray radi-
ation exposure plays a role in getting cancers, it is advised
to reduce the x-ray exposure to an As-Low-As-Reasonably-
Achievable (ALARA) level [4].

An immediate negative effect of using a low dose in CT
imaging is that the images become noisy. When the x-ray
dose is extremely low, the photon starvation effect can cause
severe streaking artifacts in the CT reconstruction [5], [6].
Reference [7] states that ‘‘Photon starvation is one source
of streak artifact which may occur in CT. It is seen in high
attenuation areas, particularly behind metal implants.’’ In [8]
we read: ‘‘When too few photons reach detector elements,
strong streaks appear through paths of high X-ray attenuation
and an image becomes completely useless.’’

The conventional denoisingmethods are based on the shift-
invariant assumption. They can be implemented either in the
spatial-domain as convolution methods or in the Fourier-
domain as multiplication methods. The conventional denois-
ing methods include many classic linear filters, for example,
Butterworth filters [9], Hamming filters [10], Hanning fil-
ters [11], Gaussian filters [12], moving average filters [13],
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and autoregressive filters [14]. These linear filters are easy to
implement and computationally efficient. They are also shift-
invariant.

Shift-invariant filters can also be nonlinear. The nonlinear
filters may outperform the linear filters in terms of sharp
edge preservation. The median filters [15] and Huber fil-
ters [16] are effective denoising filters while maintaining the
edges.

Some modern filters are adaptive, and their characteris-
tics depend on the image local patch. Guided filters [17]
and bilateral filters [18] are in this category. The transform-
based BM3Dfilter [19] is considered state-of-the-art in image
denoising. The BM3D method uses specific nonlocal image
modeling by grouping mutually similar 2D image blocks and
stacking them together in 3D arrays.

Convolutional neural network (CNN) based methods can
be very effective in removing noise from the images provided
a large amount of noisy/noiseless image pairs are available to
train the neural network [20], [21]. The noisy images should
be reconstructed using the projections acquired with similar
imaging parameters and similar body anatomy.

This paper presents an effective nonlinear shift-variant
procedure that does not need any image pairs to train. This
proposed procedure blends the concepts of linear filtering,
shift-variant filtering, and tomography. The feasibility and
effectiveness of the proposed procedure are illustrated by its
application to real clinical data.
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II. METHODS
A. UNIQUENESS OF THE PROBLEM
The main focus of this paper is the removal of the photon
starvation artifacts in low-dose CT. Artifacts are nonstation-
ary noise and normally have some recognizable structures or
textures. Photon starvation artifacts appear as bright and dark
streaks along the direction where the x-rays have the largest
attenuation. For human torso scans, this worse-case direction
is the shoulder-to-shoulder direction.

Due to the location dependency of the artifacts, a lin-
ear convolutional filter is not effective, which will smooth
the entire image but cannot remove the streaking artifacts,
as demonstrated in the Results section of this paper.

Shift-invariant nonlinear filters are not effective, either.
When the artifacts are severe, the nonlinear filters fail to
correctly identify the artifacts to remove and the true edges
to keep.

The state-of-the-art methods in reducing the noise/artifacts
in low-dose CT images are image reconstruction based
[22]–[24]. In other words, the noise control is performed dur-
ing image reconstruction. Iterative reconstruction algorithms
are suitable for noise control image reconstruction. One strat-
egy in an iterative image reconstruction is to assign a weight
to each projection. A less-noisy projection is assigned with a
larger weight; a noisier projection is assigned with a smaller
weight. As a result, the noisier projections have less influence
on the reconstructed image. A typical objective function for
the iterative image projection contains the following data
fidelity term

F =
N∑
i=1

wi
(
aTi x − pi

)2
, (1)

where x is the (unknown) image represented as a column
vector, pi is the ith projection (i.e., line integral), wi is the
weighting factor for the ith measurement, and the inner prod-
uct aTi x represents the pseudo (simulated) forward projection
of the ith projection. Image reconstruction is to minimize the
objective function F in (1) to obtain an estimation of the
image x.

The objective function (1) only has the data fidelity
enforcement. The objective function can contain some
Bayesian terms, for example, a total variation (TV) norm of
the image x [25].
In this paper, we assume that the image x is already some-

how reconstructed, for example, by the analytical filtered
backprojection (FBP) algorithm [26]. The image is noisy and
contains photon starvation artifacts. The original measured
projections are NOT available anymore.

B. THE PROPOSED ALGORITHM
The proposed artifact reduction algorithm is introduced as
follows.

Step 1. For a given image xold , generate simulated pseudo
projections as

pi = aTi xold (2)

for all i.

Step 2. Select a threshold value T .
Step 3. Loop through all projections pi.

If pi < T , do nothing.
If pi ≥ T , replace pi by its filtered version using
a one-dimensional moving-average filter along the
detector direction.

Step 4. Apply the filtered backprojection (FBP) algo-
rithm to the processed pseudo projections, to obtain the final
image xnew.

The threshold value T is a user-selected parameter, and we
used T as the 75% of the maximum projection value in our
study in this paper.

We now explain what motivates this algorithm. We do
not choose any shift-invariant filters, because the artifacts
are location and direction dependent. Since the state-of-the-
art denoising algorithms are image reconstruction based,
we choose an image reconstruction-based algorithm.

Our biggest obstacle is that we do not have an access of
the original measurements in the projection domain. We only
have a noisy reconstruction xold . The simulated pseudo for-
ward projection aTi xold is not the same as the originally
measured projection.

The original projections due to noise are inconsistent. The
inconsistency carries the noise information. The inconsis-
tency information is lost in the forward projection aTi xold .The
objective function F in (1) is already at its minimum with
the pseudo projections because pi = aTi xold . Therefore, the
strategy of selecting a set of weights to minimize F in (1)
does not help.

Realizing that the re-projected pseudo measurements do
not carry the same information and do not have the same
values as the original raw measurements, our novel strategy
of this paper is to use the transmission data noise model
to estimate the noise variance in the re-projected pseudo
measurements.

When the original x-ray photon counts I0 pass through an
object, according to the Beer-Lambert law [27], the survived
photon counts I can be estimated as

I = I0e−p (3)

where p is the line integral of the attenuation coefficients
along the projection ray passing through the object. This
line integral p is referred to as the ‘projection’ or ‘post-log
measurement’ or simply ‘measurement’ in tomography.

It is assumed that the noise in the survived photon counts I
follows the Poisson distribution, and its variance is the same
as its mean value. Using the expression

p = ln (I0)− ln (I ) , (4)

the variance of p can be estimated as

var (p) =

∣∣∣∣∂p∂I
∣∣∣∣2 var (I )= 1

I2
mean (I ) =

1
I
=
ep

I0
, (5)

where we approximate mean(I ) by I because we only have
one realization of the random variable I . The value I0 in

13634 VOLUME 10, 2022



G. L. Zeng: Photon Starvation Artifact Reduction by Shift-Variant Processing

practice is very large (maybe in the range of 103 ∼ 104) and
can be approximated as a noiseless constant.

From (5), the variance of the random variable p is an
exponential function of p, assuming that I0 is a constant. The
relation (5) tells us that the line integral p is very noisy if
p is large. This is the reason of using a threshold T in the
proposed algorithm to determine if the random variables pi
are too noisy and need to be filtered.

When the noise variance is too large, a lowpass filter is
applied to smooth out the noise. Our experience shows that
this lowpass filter is very ‘forgiving’ in the sense that we
do not need to worry about over-smoothing. The choice of
using a moving-average filter is based on the consideration
that the moving-average filter is the easiest filter to design
and to implement. The order (i.e., the size) of the moving-
average filter can be chosen to be large enough to remove the
artifacts.

The FBP algorithm is selected to reconstruct the final
image, because it is fast and easy to implement.

C. CLINICAL DATA
This paper uses a clinical CT scanner to acquire data. The
scanner was Aquilion ONETM, made by Toshiba America
Medical Systems, Tustin, CA, USA. The data acquisi-
tion of a cadaver torso was performed at Leiden Univer-
sity Medical Center. The cone-beam data acquisition had
320 rows. Each row was 0.5 mm tall and had 896 channels
(i.e., 896 detectors). The fan angle was 49.2◦. The number
of views was 1200 over 360◦. Two current settings were
used for the x-ray tube: 60 mAs for the low-dose acquisition
and 500 mAs for the regular-dose acquisition. The images
were reconstructed with the FBP algorithm. These imaging
system setup parameters are not necessarywhen our proposed
algorithm is applied.

D. IMAGE EVALUATION
The most common way to determine the effectiveness of
artifact removal algorithms is by visual inspection or human
observer studies. A quantitative evaluation metric adopted in
this paper is the Sum Square Difference (SSD), defined as

SSD =

∑
i,j [Xgold (i, j)− X (i, j)]

2√∑
i,j [Xgold (i, j)]2

∑
i,j [X (i, j)]2

, (6)

where Xgold is the gold standard image, which is the FBP
reconstruct from the regular-dose projections, and X is
another image to compare with. The SSD essentially is the
normalized distance between two images Xgold and X .
A second quantitative evaluation method adopted in this

paper uses the noise power spectrum image, which is defined
as the magnitude image of the two-dimensional (2D) Fourier
transform of the difference image of Xgold − X . If these two
images exactly match, this noise power spectrum image is a
constant zero. This noise power spectrum image can tell if
the two images are the same and the frequency components
of the differences.

A third quantitative evaluation method in this paper is the
modulation transfer function (MTF), which is defined as

MTF =

∣∣FT (Xoutput)∣∣+ ε∣∣FT (Xinput)∣∣+ ε , (7)

where FT represents the 2D Fourier transform of an image,
ε is a small positive number to prevent the denominator being
zero, Xinput is the input image, and Xoutput is the output image.
In this paper, ε is selected as 0.1. The output image Xoutput
is the processed image, and the input image Xinput is the
unprocessed image. In this paper, the input image can be
the regular-dose FBP reconstruction or the low-dose FBP
reconstruction. TheMTF defined in (7) is an image. However,
the MTF curves are easier to understand. In this paper, from
the MTF image we extract 3 MTF curves, the 0◦ curve,
45◦ curve, and the 90◦ curve, according to the procedure
descripted in [28]. The MTF images are first transformed in
the polar coordinates. The 0◦ curve is obtained by summing
the MTF images from -16◦ to 16◦. The 45◦ curve is obtained
by summing the MTF images from 45◦-16◦ to 45◦+16◦. The
90◦ curve is obtained by summing the MTF images from
90◦-16◦ to 90◦+16◦. The purpose of summation is to reduce
noise.

A fourth evaluation method is the line profile evaluation
to compare the spatial resolution in the image domain, while
the second and third evaluation methods are in the frequency
domain. A direct result from the line profiles is the full-width-
at-half-maximum (FWHM) value, as illustrated in Fig. 1.

FIGURE 1. The definition of the full width at half maximum for a pulse
function.

III. RESULTS
In this section, the methods are labeled with A – G. We point
out that methods A and F use the ‘unavailable’ projections.
In Figs. 1-14, the following labels are used for the images:
(A) the gold standard image FBP reconstructed from the
regular-dose x-ray projections; (B) the raw FBP reconstruc-
tion image reconstructed from the measured low-dose x-ray
data; (C) the processed image using the proposed algorithm in
the paper using the pseudo data; (D) the image is FBP recon-
structed with a linear Hanning filter applied to the pseudo
data; (E) the image is FBP reconstructed with a nonlinear
bilateral filter applied to the pseudo data; (F) the image is
post processing result of image from (B) with a BM3D filter
in the image domain; (G) almost the same as (C) except that
the ‘unavailable’ low-dose x-ray data is used instead of the
pseudo data.
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FIGURE 2. Processed and unprocessed images for slice #5. The standard-dose image in (2A) is the gold standard. The
image with the proposed method (2C) gives the best result among all images using the low-dose raw image (2B). The
image in (2G) uses the ‘unavailable’ measured data.
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FIGURE 3. The noise power spectrum images of the processed images for slice #5. The proposed method (3C) has the fewest concentrated bright
dots along the central vertical axis. (3A) is a constant 0 (not shown).

Results of three slices are shown. The images from
slices #5, #30, and #50 are displayed in Figs. 2, 4, and 6,
respectively. Their associated noise power spectrum images
are displayed in Figs. 3, 5, and 7, respectively.

The numerical results of the Sum Square Difference (SSD)
values are listed in Tables 1, 2, and 3, respectively, for
slices #5, #30, and #50. The SSD is a non-negative quantity,
the smaller value the better. The ideal SSD value is 0. In all
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FIGURE 4. Processed and unprocessed images for slice #30. The standard-dose image in (4A) is the gold standard. The
image with the proposed method (4C) gives the best result among all images using the low-dose raw image (4B).
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FIGURE 5. The noise power spectrum images of the processed images for slice #30. The proposed method (5C) has the fewest concentrated bright dots
along the central vertical axis. (5A) is a constant 0 (not shown).
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FIGURE 6. Processed and unprocessed images for slice #50. The standard-dose image in (6A) is the gold standard. The
image with the proposed method (6C) gives the best result among all images using the low-dose raw image (6B).
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FIGURE 7. The noise power spectrum images of the processed images for slice #50. The proposed method (7C) has the fewest concentrated bright
dots along the central vertical axis. (7A) is a constant 0 (not shown).

these cases, the proposed method gives the smallest SSD val-
ues, indicating the best performance. It is interesting to notice
that the proposed method performs better with the pseudo
forward projections than with the ‘unavailable’ original low-
dose projections. This phenomenon could be caused by the

lowpass filtering effect of the forward projecting procedure,
which reduces some noise.

The ideal noise power spectrum is a constant 0 (i.e., black
color in the image). The noise power spectrum images in
Figs. 3, 5, and 7 all have some bright dots in the spectrum

VOLUME 10, 2022 13641



G. L. Zeng: Photon Starvation Artifact Reduction by Shift-Variant Processing

FIGURE 8. The modulation transfer function images of the processed images for slice #5. The proposed method (8C) has the smallest high-frequency
noise structures. (8A) is a constant 0 (not shown).

images scatter all over. Those scattered bright dots represent
noise. The artifact related bright dots are concentrated along
the central vertical axis. The noise power spectrum images
for the proposed method (see C and G) contain the fewest
concentrated bright dots along the central vertical axis.

The modulation transfer function (MTF) represents
the input-output relationship in the frequency domain. If the
output is the same as the input, the MTF is a constant 1. If the
input is the regular-dose image, the MTF results are shown
in Figs. 8, 9 and 10, respectively, for slices #5, #30, and #50.
The 3 MTF curves for the proposed method (see C and G)

are very close to each other for the 3 directions and stay away
from 0.

If the input is the ‘unavailable’ low-dose projections and
the output is processed projections by the proposed method,
the MTF images are shown in Figs. 11, 12, and 13, respec-
tively, for slices #5, #30, and #50.

The line profiles shown in Fig. 14 are along the yellow
horizontal line segment indicated in Fig. 6A for slice #50,
where the yellow line segment is the path that the line profiles
are taken. The FWHM values can be readily obtained by the
line profiles shown in Fig. 14. The FWHM values are listed
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FIGURE 9. The modulation transfer function images of the processed images for slice #30. The proposed method (9B) has the smallest
high-frequency noise structures. (9A) is a constant 0 (not shown).

in Table 4. The proposed method provides the best resolution
among the processing methods. The important fact is that the
results from linear Hanning filter, the nonlinear bilateral filter
and the BM3D filter show very severe artifacts and loss of
small details.

The MTF results in Figs. (8B), (9B), and (10B) indicate
some values above 1 at high frequencies. They are caused by
the high frequency noise and artifacts.

The MTF results in Figs. (8C), (9C), and (10C) indi-
cate some values below 1 at high frequencies. They are
caused by the resolution degradation generated by the pseudo

forward projections. This effect can also be observed in
Table 4. When the bare-bone FBP is applied to the measured
low-dose data, the HWHM is 2.34 and when applied to the
pseudo data, the HWHM is 2.98. The pseudo data resolution
loss is noticeable. We should always use the original mea-
sured data whenever it is available.

For slice #50, the projection-domain images (also known
as the sinograms) are displayed in Fig. 15. The images are
(a) the ‘unavailable’ regular-dose projections, (b) the differ-
ence between the raw ‘unavailable’ low-dose projections and
the ‘unavailable’ regular-dose projections, (c) the difference
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FIGURE 10. The modulation transfer function images of the processed images for slice #50. The proposed method (10C) has the smallest high-frequency
noise structures. (10A) is a constant 0 (not shown).

between the pseudo forward projections from the low-dose
FBP reconstruction and the ‘unavailable’ low-dose projec-
tions, and (d) the difference between the processed version
of the pseudo forward projections from the low-dose FBP
reconstruction and the unprocessed version, respectively. It is
observed from Fig. 15d that the proposed method only alters
a very small portion of the projections.

All images in this paper are displayed with the linear gray
scale. The largest image value is white; the smallest image
value is black. For the CT images, the display window is from
0 to the maximum image value of the regular-dose image.

For the sinogram images, the display window is [−V, V],
where V is maximum value of the regular-dose sinogram.
This standard window [−V, V] is too wide when displaying
the sinogram differences. A narrower display window is also
used when the sinogram image shows almost a constant. For
the noise spectrum images, the display window is [0, 0.5].

The proposed method is able to remove the shoulder-to-
shoulder bright-and-dark streaking artifacts while keep the
high contracts in the artifact-free regions.

The kernel in the moving-average filter (See Step 2 in the
algorithm) in the proposed algorithm has 13 elements.
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TABLE 1. Sum square distance (SSD) between the processed low-dose
image and the regular-dose image (Slice #5).

TABLE 2. Sum square distance (SSD) between the processed low-dose
image and the regular-dose image (Slice #30).

TABLE 3. Sum square distance (SSD) between the processed low-dose
image and the regular-dose image (Slice #50).

TABLE 4. Full width at half maximum value comparison.

The proposed algorithm is effective in reducing the streak-
ing artifacts and keeping the image resolution. As a com-
parison, the images produced by a linear Hanning filter,

FIGURE 11. MTF from the low-dose FBP image to the image by the
proposed method, slice #5.

FIGURE 12. MTF from the low-dose FBP image to the image by the
proposed method, slice #30.

FIGURE 13. MTF from the low-dose FBP image to of the image by the
proposed method, slice #50.

a nonlinear bilateral filter, or a BM3D filter are unable to to
keep small details while the streaking artifacts are still severe.

The proposed algorithm was implemented in Matlab R© on
a Thinkpad laptop computer with Windows 10. The proces-
sor was Intel R© CoreTM i7-10510U CPU @ 1.80GHz. The
processing time was 0.56 seconds.

IV. DISCUSSION
When a noisy reconstructed image is available while the
original projection measurements are no longer available, the
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FIGURE 14. Line profiles along the yellow horizontal line segment indicated in Fig. 6A for slice #50. (14A) comparing the blue curve to itself (not
shown).
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FIGURE 15. Sinogram domain images of slice #50.

pseudo re-projected line integrals are not helpful to reduce
noise if a conventional iterative image reconstruction algo-
rithm is to be used. The conventional iterative image recon-
struction algorithmswork in the principle of reducing the data

fidelity term as presented in (1), where the entire summation
on the right-hand side is referred to as ONE fidelity term.
By using the pseudo re-projected line integral data, this data
fidelity term is already at its minimum value, which is zero.
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FIGURE 16. A sensitivity study of the SSD with respect to the threshold
value T for slice #50.

One way of denoising is to stop the iterations early. This
approach is equivalent to lowpass filtering, which is shift
invariant. As we demonstrated in the Results section, shift-
invariant denoising smooths the images but still cannot reduce
the streaking artifacts.

A filter is referred to as shift-invariant if the filter oper-
ation is the same everywhere. In our proposed filter, the
filter operation is only applied to a small amount of selected
pseudo projections. Therefore, our proposed filter is shift
variant.

A linear filter must satisfy the linear scaling property that if
the image X results in a filtered version Y after filtering, then
a scaled version of X , αX , should result in αY after filtering,
where α is a real number. Our proposed filter is associated
with a threshold value T ; the scaling factor α affects whether
the data value is greater or less than the threshold value T .
Therefore, our proposed filter is nonlinear.

Our proposed algorithm is NOT an iterative image recon-
struction algorithm; it is an analytic FBP algorithm with
a nonlinear pre-filter. In the FBP algorithm, a ramp filter
(which is a high-pass filter) must be used to cancel the
bachprojection blurring. The purpose the low-pass filter
is to reduce the noise in the image. The application of
a low-pass filter is optional in FBP, only when image
denoising is necessary. The main goal of this paper is
photon-starvation artifact reduction, we do not apply a linear
low-pass filter in the FBP algorithm. In the proposed algo-
rithm, there is a threshold value T ; any pseudo projection
data value that is less than this threshold value is not affected.
The majority of the pseudo projections are less than this
threshold. Thus, the image resolution degradation is kept to its
minimum.

Fig. 15b is the low-dose data minus the regular-dose data;
it reveals that in the heavily attenuated regions, the low-dose
measurements mainly have smaller values than the regular-
dose measurements. However, at some scattered points, the
low-dose measurements have larger values than the regular-
dose measurements. Therefore, we do not have a systematic
way to convert the low-dose data into regular-dose data due
to complicated beam hardening effects.

Fig. 15c shows that there are significant differences
between the ‘unavailable’ measured data and the pseudo
re-projected data.

Fig. 15d shows that in the most part of the sinogram space,
the pseudo re-projection data and the processed data by the
proposed algorithm are the same. The proposed algorithm
only alters the measurement values in the heavily attenuated
regions.

The proposed algorithm contains a user-determined hyper
parameter T . This hyper parameter T is determined by trial
and error. In fact, parameter T is not very sensitive. As shown
in Fig. 16, the SSD vs T curve has a flat valley, which means
that a wide range of the parameter T can give the optimal
solution.

In this paper, the geometry of the original imaging setup is
assumed to be unknown. The forward pseudo projection setup
can be different and independent from the original setup. The
original number of angles in data acquisition was 1200 over
360◦. If we use the number of angles in the pseudo projections
as 2400 (instead of 1200) over 360◦, our proposed algorithm
gives almost the same result as that when we use the number
of angles in the pseudo projections as 1200 over 360◦.

Three noise-reducing filters have been used to compare
with the proposed shift variant filter in the task of photon star-
vation artifact reduction. Those three noise-reducing filters
do not perform well for this task. If the filters are adjusted
to remove the artifacts, many image details are removed as
the price to pay. The message of our paper is that the noise
reduction task is different from the artifact reduction task. For
artifact reduction, where to filter (or equivalently, where not
to filter) is far more important than what filter to use. Once the
region to be filtered is identified, many filters are effective as
long as the filters have enough smoothing power. We choose
the simplest linear moving-average filter with a large enough
kernel size. Other noise reduction filters such as bilateral and
BM3D filters will work just fine when applied only in the
specified region. The critical point is that we do not apply the
lowpass filter to the entire image or the entire sinogram.

V. CONCLUSION
We have developed an effective method to reduce the photon
starvation streaking artifacts in low-dose x-ray CT images.
The proposed method is shift-variant; it only applies lowpass
filtration for some pre-determined measurement values in the
sinogram domain.

We assume that the raw, low-dose measurements are not
available, and the noisy reconstruction is available. A set of
pseudo re-projections are generated from noisy reconstruc-
tion. A threshold value T is selected by the user using a trial-
and-error method. The pre-determined measurements are
selected if the pseudo measurement value is greater than T .
The pre-selected pseudo measurements are filtered in the
sinogram domain by a simple moving-average lowpass filter
along the detector direction. The FBP algorithm is performed
to generate a final image using the selectively filtered pseudo
measurements.
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The effectiveness of the proposed method has been demon-
strated by real clinical data. The proposed method is not
restricted to CT images. Other potential applications include
processing images that are contaminated with textures along
some particular directions.
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