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ABSTRACT On-board state estimation is a persistent challenge to fielding unmanned aerial systems (UAS),
particularly when global positioning system (GPS)measurements are not available. The dominant estimation
tool remains the extended Kalman filter (EKF) applied to an inertial measurement unit (IMU). The growing
availability of low-cost commercial-grade IMUs raises questions about how to best improve sensor readings
into an estimate when measurements are available from multiple IMUs. This paper evaluates four different
approaches to attitude estimation from multiple IMU measurements and their application in high dynamic
motion. The four approaches are fusion of measurements (virtual IMU), fusion of state estimates (Federated
KF), feedback fusion state estimate (Feedback Federated KF), and an EKF design incorporating the addi-
tional measurements (Augmented KF); these correspond to fusion before, within, or after state estimation.
The performance of the approaches are quantified for varying IMU number theoretically and experimentally.
The experiments use on-board autopilot hardware implementations of the estimators during maneuvers in a
motion capture volume and flights on-board an Unmanned Aerial Systems (UAS) implementation, with the
peak and root-mean-square (RMS) errors used to quantify accuracy. The RMS error results indicate that the
feedback federated Kalman Filter using five IMUs returns 38% compared to general federated Kalman Filter
using 37% accuracy improvement over a single IMU. This improvement compares to a 19% improvement
for virtual IMU and 9% improvement for the Augmented KF respectively. These results indicate that both
the Federated KF approach achieves the lowest RMS error relative to the virtual IMU and augmented KF
approaches and inform the design of multi-IMU UAS pose estimators.

INDEX TERMS State estimation, Kalman filters, unmanned aerial systems, inertial navigation, quaternions,
Bortz estimator, multi-IMU, inertial measurement unit, autopilot, attitude estimation.

I. INTRODUCTION
In recent years, the growth in commercial applications
of Unmanned Aerial Systems (UAS) have been supported
by the availability of inertial measurement units (IMUs).
IMU manufacturing processing improvements have resulted
in reductions of size, price and power consumption, combined
with software and algorithm development including sensor
calibration, measurement integration, sensor fusion. These
advances have all supported the proliferation of consumer
grade IMUs in low-cost UAS platforms.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiankang Zhang .

As commercial UAS applications extend to becomingmea-
surement system platforms, there is a need for improved state
estimation accuracy without significant cost increase. A key
use of the estimates are as a reference for atmospheric wind
inference algorithms that use precise state information to
estimate local wind conditions [1]. When the wind estimates
are used as inputs to developing local weather forecasting
algorithms that have sensitive dependence on initial condi-
tions, the precision of state estimation must be improved
beyond the tolerances acceptable for UAS navigation. Given
the decreasing cost of consumer and industrial grade IMUs,
multi-IMU estimators geared towards improving accuracy
can yield a significant improvement in accuracy at a low cost
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and serve as a foundation to long term dead reckoning, real-
time accurate wind and environment parameter estimations,
and potentially provide tactical grade applications using con-
sumer grade sensors.

There are multiple options to fusing sensor information,
and this paper examines the fusion problem by considering
four basic approaches: fusing the measurements (i.e., before
estimation), higher order estimator design (i.e., within esti-
mation), fusing the state estimates (i.e., after estimation), and
fusing the state estimates with feedback. The main objectives
of this paper are to:

• Outline the four classes of multi-IMU frameworks for
improving state estimation accuracy.

• Define underlying local attitude filters to be integrated
with the different multi-IMU estimation approaches.

• Test the performance of the system considered in soft-
ware and analyze the results as a comparison of perfor-
mance improvements against a reference.

In this study, four general multi IMU state estimation
frameworks are considered to fuse state estimates using two
separate local Kalman filters. We then analyze and quantify
the performance of the sensor fusion by implementing the
multi-IMU state estimation using a hardware example with
five IMUs.

The remainder of this paper is structured as follows.
Section II reviews previous work done in multi-IMU based
navigation and their applications to different fields not limited
to aviation. Section III defines the typical non linear system
to be estimated using multi-IMU formulations. In Section IV,
four different fusion approaches are considered and evalu-
ated. Section V expands on the local filter design needed to
implement the multi-IMU formulation. Section VI outlines
the experimental setup and implementation to evaluate and
compare the performances of all the multi-IMU formulations
and discusses the outcome of the paper.

II. PREVIOUS WORK
The idea of using multiple IMUs to achieve performance
improvement has been used in different industries. Refer-
ence [2] used an ad-hoc Kalman filter integrating two IMUs
for marine navigational purposes. Position estimation accu-
racy from multi-IMU approaches can significantly exceed
the single IMU case, as indicated by [3], which compared
satellite launcher position estimation and showed the three
IMU case reduced error by 54% relative to the single IMU
case. Reference [4] applied the [3] framework to an integrated
navigation system that includes a traditional inertial naviga-
tion system (INS) with auxiliary IMU sensors.

Multiple researches such as the ones discussed in the
papers [5]–[10] have been conducted to improve noise char-
acteristics using multi-IMU sensor arrays rather than focus-
ing on sensor fusion for estimation improvement. One of such
method is considered in this research by fusing the measure-
ments into a synthetic IMU output or ‘‘virtual IMU’’ having
reduced noise statistics [11]. This method is non domain

specific as categorised in [12]. This means that this methods
can be used for any application regardless of system.

Previouswork in the aviation industry usingmultiple IMUs
in a navigation system has been dominated by a focus on their
applications as a part of estimator health monitoring or fault
detection. In these treatments, their purpose is to facilitate
sensor (IMU) or estimator fault detection rather than improve
estimate accuracy. Examples of this work is outlined in [13].
Marine applications have also used multi-IMU (2-IMUs) for
fault detection and redundancy in case of a single IMU failure
such as in [14].

Some results are available for position-only multi-IMU
pedestrian navigation architectures when a global position-
ing system (GPS) measurement is also available. Refer-
ences [15], and [6] evaluated multiple and experimentally
evaluated the architectures using five IMUs, which showed
position estimate accuracy improvements exceed 30%.

Other studies that are more closely related to this research
have focused on dynamic systems analyzed all frameworks
individually rather than an extensive framework compari-
son [16], [17]. Where as other researches focused on the
orientation of sensor placement [18]–[21]. Despite the work
in this area to develop multi-IMU fusion approaches, exper-
imental data for dynamic systems on their comparative per-
formance remains sparse. As a result, the question of which
approaches are best implement in an airborne UAS platform
requiring higher accuracy is not yet answered quantitatively
for high rate dynamic systems. This work begins to answer
that by systematically outlining and comparing four estima-
tion strategies based on previous literature and most com-
monly referenced [3], [11], [15], [22]. The results include
both theoretical and experimental results of the approaches
implemented in an on-board UAS autopilot and on the same
measurements, allowing direct comparison.

III. PROBLEM STATEMENT
Ageneral nonlinear systemmay bewritten in discrete dynam-
ics form as

xk+1 = f (xk , uk )+ wk
yi,k = h(xk , uk )+ vi,k , (1)

where the initial state x0 is unknown Gaussian variable; i.e.,
x0 ∼ N (µ0,P0). The state vector xk ∈ Rn, and control vector
uk ∈ Rm. The measurement vector yi,k ∈ Rp with i being the
ith sensor where i = 1, 2, 3, . . . ,N . The nonlinear dynamic
and measurement function are represented by f (·) ∈ Rn and
h(·) ∈ Rp respectively. The system process and measurement
noise vectors wk ∼ N (0,Q) and νi,k ∼ N (0,R) assume zero
mean Gaussian noise with covariance matricesQ ∈ Rn×n and
Ri ∈ Rp×p.
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For the given problem our aim is to find the optimal
(in a minimum variance sense) fusion technique to
obtain x̂m(k) based on measurements yi(k), where i =
1, 2, . . . ,N which satisfies following minimum performance
requirements:

1) The fused state estimate is unbiased.
2) Optimal weights for sensor fusion minimize the trace

of error covariance.

This study explores four approaches to this problem, which
are referred to as the federated Kalman filter (FKF), The
augmented Kalman filter (AKF), and the virtual inertial mea-
surement unit (vIMU) approach.

IV. ESTIMATOR FUSION FORMULATION AND ERROR
ANALYSIS
In this section, the four different estimation fusion formu-
lation are evaluated for their performance in multi IMU
framework as shown in Fig. (1). The virtual IMU method is
most consistent with previous single-sensor estimates and this
configuration used to define a theoretical ‘‘ideal’’ improve-
ment benchmark which is used to evaluate the performance
of actual implementation. All four frameworks described are
globally optimal or sub-optimal depending on embodiment
constraints [23]–[25].

A. VIRTUAL INERTIAL MEASUREMENT UNIT (vIMU)
The virtual IMU approach first unifies the n sensor measure-
ments into a single measurement having improved noise char-
acteristics [15], [26] by an arithmetic mean of measurements
from each sensor. The approach then applies a traditional
single IMU sensor estimator and uses its output as the fused
state estimates, as shown in Fig. 1(a). More precisely, the
estimator is constructed as

xk+1 = 8kxk + 0kwk

yk =
1
N

N∑
i=1

yi,k (3)

where xk is a n dimensional state, with 8k and 0k
being discrete state and noise transition matrix respectively.
yi,k denotes the measurements obtained from each sensor
with N being total number of sensors.

An idealized estimate of the improvement in state
estimation for the VIMU approach may be derived by apply-
ing Bernoulli’s theorem, or the weak law of large num-
bers [27], which describes how a sequence of probabilities
converges. Under the assumption of multiple measurements
being independent variables drawn from the same distribu-
tion, the law describes the behavior of the average of the
results obtained from a large number of trials. Themean result
approaches the distribution’s expected value and application
of the Chebyshev inequality [28] shows the result will tend
to become closer to the expected value as more trials are
performed. Assuming the measurements x̂1, x̂2, . . . , x̂N are
N independent state estimates of equal variance (σ 2

x̂N
), the

sample mean x̂ approaches the true state as N −→∞.

var(x̂m) = var
(
x̂1 + x̂2 + · · · + x̂N

N

)
= var

(
x̂1
N

)
+ var

(
x̂2
N

)
+ · · · + var

(
x̂N
N

)

=

σ 2
x̂1

N 2 +
σ 2
x̂2

N 2 + · · · +
σ 2
x̂N

N 2

=

σ 2
x̂N

N
Given, for any ε > 0

lim
N→∞

P
[∣∣∣∣ x̂mN | − x̂N

∣∣∣∣ ≥ ε]→ 0

From Chebyshev’s inequality,

P[|x̂m − x̂| ≥ ε] ≤
var(x̂m)
ε2

=

σ 2
x̂N

Nε2
.

Thus,

lim
N→∞

P[|x̂m − x̂N | ≥ ε] = 0,

giving the ideal improvement in state estimation one can
expect to be

σx̂m =
√
var(x̂), or

σx̂m =
σx̂N
√
N
.

This idealized estimate accuracy improvement, shown in
Fig. 2, serves as a theoretical contour with which to com-
pare the measured performance improvement of the multi
IMU estimators.

B. AUGMENTED KALMAN FILTER
The augmented Kalman filter approach consists of designing
an extended Kalman filter for the problem using the aug-
mented measurement vector

y =


y1
y2
...

yN


consisting of all N available measurements as shown in
Fig. 1(b). The corresponding discrete measurement equation
may be written as

yk = Hk x̂k (4)

where,

Hk =


H1,k

H2,k

...

HN ,k

 (5)
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FIGURE 1. Estimation fusion architectures considered.

withH1,H2, . . . ,Hn corresponds to their respectivemeasure-
mentmatrix for each sensor (IMUs for scope of this research).

The nine parameter augmented estimation consists of a tra-
ditional propagation and measurement correction step [25].
The Augmented Kalman Filter differs from the typical
single-IMU Kalman filter only in the measurement equation
and measurement correction step, where it uses all gyro and
accelerometer measurements. For the five IMU case tested
in Section VI, the system has 30 observations and operates
at the same frequency as the incoming observations. The
observability matrix in equation (5) is full rank and the AKF
is a semi-optimal estimator [25].

C. FEDERATED KALMAN FILTER (FKF)
In the federated Kalman Filter approach shown in Fig. 1(c),
N individual local state estimators are implemented, each
having a single sensor (IMU) as an input and each generating
both a state estimate x̂i and corresponding covariance matrix
Pi, i = 1, . . . ,N . As defined by Carlson and Berarducci [29],
the approach

1) Scales the initial values of local filter covariance and
process noise matrices.

2) Performs local time propagation and measurement
update process.

3) Combines the updated local information into a global
information.

4) Resets local information to the scaled global
information.

FIGURE 2. Percentage improvement in estimation with numbers of IMUs
employed.

The state estimates are then fused into a single state esti-
mate x̂m using a covariance-based weighting as

x̂m = Pm

(
N∑
i=1

P−1i x̂i

)
, (6)

Pm =

(
N∑
i=1

P−1i

)−1
. (7)

The FKF approach yields a globally optimal estimate [23]
and its error covariance follows the additive equation
(Eqn. (7)).
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D. FEEDBACK FEDERATED KALMAN FILTER (FFKF)
This approach is an extension of the Federated Kalman Filter
with an added step of resetting the state and covariance to the
fused parameters for all local filters with scaled multi-IMU
covariance propagation using scaling factor β. Eqn. (8)-(11)
represents the estimation routine. This estimation method
should perform better than general FKF as it propagates
higher accuracy fused state and scaled covariance.

x̂m = Pm

(
N∑
i=1

βiP
−1
i xi

)
, (8)

Pm =

(
N∑
i=1

βiP
−1
i

)−1
, (9)

N∑
i=1

βi = 1, (10)

Q−1m =
N∑
i=1

βiQ
−1
i . (11)

The drawback of this approach is that it could diverge if
not properly tuned. One of the parameter that could result in
divergence is the choice of β. This method of information
sharing through a scaled feedback follows all the information
conservation principle outlaid byCarlson andBerarducci [29]
and followed by Brown and Sturza [24] shows that this
method of state estimation follows the same optimality as the
general federated Kalman filter.

The choice of β depends on a lot of factors such as the
quality of sensors, placement of the sensors, manufacturing
methods, etc. For this study we use the variance measure-
ment based on (Appendix B) and [30] to conclude that the
sensors used in this papers are similar in performance and
this approach is more direct and reduces computational com-
plexity and hence, β = 1/N is a reasonable assumption to
make.

V. LOCAL FILTER FORMULATION
Due to difference in implementation requirements for all
frameworks described in this paper (i.e. AKF formulation
measurements from sensors cannot be used during priori
step), we need to use two different local filter methods.
We use Bortz equation (13) to obtain an Extended Kalman
Filter framework for attitude estimation to implement Virtual
Sensor Method and Federated Kalman Filter, and we will use
six degree of freedom (6DOF) kinematic equation to obtain a
Extended Kalman Filter to be use to implement Augmented
Kalman Filter. Both local filter formulation are derived from
base sensor dynamics so the difference in performance just
due to local filter is not observed.

A. ATTITUDE ESTIMATION USING BORTZ EQUATION
The local attitude estimator algorithm used in this paper
is based on the symmetry-exploiting method proposed in
Bortz [31]. For any attitude described by a quaternion q, there

exists a rotation vector φ such that

q(φ) =

1
2

(
sin(γ /2)
γ /2

)
φ

cos(γ /2)

 ∈ R4×1. (12)

The Bortz equation for rotation error as a function of angular
rate ω may be written as

φ̇ = ω +
1
2
φ × ω +

1
γ 2

[
1−

γ sin γ
2(1− cos γ )

]
φ × (φ × ω),

(13)

where φ is the rotation vector in Eqn. (12) and γ = |φ|.
Assuming small γ and neglecting higher order terms, Eqn. 13
becomes

φ̇ = ω +
1
2
φ × ω. (14)

Equation 14 now can be augmented with constant bias
states b to form the state equation[

φ̇

ḃ

]
=

[
ω +

1
2
φ × ω

03×1

]
. (15)

Both EKF framework were derived by Pittelkau [25] for
a recursive implementation and using the same notation for
multiplicative product operator (⊗), where priori state esti-
mate in quaternion form can be estimates as per[

δφ̂k

δb̂k

]
=

[
δφ̂k−1

δb̂k−1

]
with [

δφ̂k−1

δb̂k−1

]
=

[
0
0

]
and the estimate quaternion q̂ for that state is obtained as

q̂−k = q(φ̂−k )⊗ q̂
+

k−1.

Now, considering a vector νs = [νsx , ν
s
y, ν

s
z ]
T in the sen-

sor reference measurement. The measurement function for a
three-axis magnetometer can be formulated as

y = νs + ε, (16)

with ε as additive noise. The three-axis magnetometer is
sufficient to generate an orientation estimate based on the
magnetic field, which will be used in the correction step.
All three axes are measured, thus ∂h/∂(νs)T = I . The 3D
measurement sensitivity matrix H (3)

∈ R3×3 is given by

H (3)
=
∂νs

∂φT

∣∣∣∣
φ=0
= T sbν

b

where T sb is a body-to-sensor transformation matrix and νb is
measurement in body frame.

The predicted measurement is than given by equation 16

ŷk = ν̂sb = q(φ̂bs )ν
s

where q(φ̂bs ) is the priori estimated attitude and the residual
is simply νk = yk − ŷk . Using this information we can use
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the sub-optimal Kalman Gain to obtain the posteriori state
estimates using measurements obtained from magnetometer
readings as a standalone correction to the EKF output from
the IMU estimates.

Kk = Pk−1HT
k (HkPk−1H

T
k + Rk )

−1

φ̂+k = φ̂
−

k − Kk (yk − ŷk ),

where, K is the Kalman gain and P is the covariance matrix.
Now, with updated state estimate in quaternion form is given
by

q̂+k = q(φ̂+k )⊗ q̂
−

k−1.

Similarly, the formulation outlined by Koshravian [32] can
be used to integrate information about state estimates using
heterogeneous sensors like LIDAR, optic-flow, etc.

B. ATTITUDE ESTIMATION USING KINEMATIC EQUATION
Using formulation for attitude estimation by Kane and
David [33] using quaternions we can represent the non linear
system observer in equation (1) using gyroscope angular
measurement to describe the quaternion dynamics and bias
as random walk as:[

q̇
ḃω

]
=

[1
2
S(ω − bω)q

0+ ν

]
=

[1
2
S(q)(ω − bω)

0+ ν

]
(17)

and

S(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0



S(q) =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 ,
where ν is noise, q = [q0, q1, q2, q3] are quaternion repre-
senting the orientation of the vehicle, and ω = [ωx , ωy, ωz]
are bias corrected gyromeasurements. The accelerometer and
magnetometer are then used as measurement to compensate
for drift from gyro bias error as:[

yah
ymh

]
=

[
C I
L(ae − g)+ e

a

C I
LB

N
+ em

]
, (18)

with C I
L defines the rotation from body L to intermediate

reference frame I.
Taking the nonlinear system’s Jacobian to linearize and

discretize with time step of dt = tk − tk−1 gives[
q
bω

]
k︸ ︷︷ ︸

xk

=

[
I4×4 −

dt
2
S(q)

03×4 I3×3

]
k−1︸ ︷︷ ︸

8k−1

[
q
bω

]
k−1︸ ︷︷ ︸

xk−1

(19)

and [
yah
ymh

]
k︸ ︷︷ ︸

yk

=

[
Ca 03×3
Cm 03×3

]
k︸ ︷︷ ︸

Hk

[
q
bω

]
k︸ ︷︷ ︸

xk

(20)

FIGURE 3. Experimental setup, including 24 camera motion capture
system.

with,

Ca = −2

−q2 q3 −q0 q1
q1 q0 q3 q2
q0 −q1 −q2 q3


k

Cm = −2

 q3 q2 q1 q0
q0 −q1 q2 −q3
−q1 −q0 q3 q2


k

Now the optimal estimate for the state vector can be
obtained using Kalman filter using time update and observa-
tion update. The time update process of the Kalman filter is
independent and is written as outlined by Yang and Gao [34]:

x̂k|k−1 = 8k−1x̂k−1|k−1
Pk|k−1 = 8k−1Pk−1|k−18T

k−1 + Qk . (21)

The observation update equation of the Kalman filter is
expressed as:

Kk|k =
Pk|k−1HT

k

(HkPk|k−1HT
k + Rk )

Pk|k = (I − Kk|kHk )Pk|k−1
x̂k|k = x̂k|k−1 + Kk|k (yk − Hk x̂k|k−1) (22)

where x̂k|k−1 is the a priori state estimation, x̂k|k is the a pos-
teriori state estimation, Kk|k is the Kalman gain matrix of the
Kalman filter, Pk|k−1 is the a priori covariance matrix of the
state vector, Pk|k is the a posteriori covariance matrix of the
state vector, Rk is the covariance matrix of the measurement
noise vector, Qk is the covariance matrix of the process noise
and 8k is the system transition matrix from time k − 1 to
time k .

C. ESTIMATION RUN
To evaluate the performance of all four estimation fusion
routine, estimators had to track a manual oscillatory input in
range of−90◦ to+90◦ (which includes gimbal lock singular-
ity) at an angular rate of about 36 ◦/sec in each axis. The data
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FIGURE 4. State comparison between virtual IMU filter and motion tracker.

obtained from onboard estimation and motion capture system
were time synced by an impulse strike at the start of test.

All the state estimators were initialized at zero state quater-
nion, with alignment correction using magnetometer. Conser-
vative measurement noise covariances were chosen for the
simulation.

For more intuitive interpretation and clear visual compar-
ison all the plots described below are plotted in Tait-Bryan
angles (body 3-2-1 SO(3) rotation [35])φθ
ψ

 =
atan2(2(q2q3 + q1q4), 1− 2(q23 + q

2
4)

−asin(2(q2q4 − q1q3))
atan2(2(q3q4 + q1q2), 1− 2(q22 + q

2
3)

, (23)

withψ as the heading angle of the aircraft, θ as the pitch angle
of the aircraft and φ as the roll/bank angle, and the definition
of quaternion is consistent with Eqn (12).

VI. EXPERIMENTAL IMPLEMENTATION
To illustrate the working and performances comparison of
the outlined estimator fusions in this paper, the estimation

TABLE 1. Motive OptiTracker system specification [39].

routines are implemented on an onboard unmanned aerial
system (UAS) autopilot and compared to both onboard esti-
mates using contemporary autopilots and external reference
data. The UAS implements the proposed estimators using
an onboard autopilot built on a Raspberry PI 3B+ platform
running Navio2 which includes two IMUs (MPU9250 [36]
and LSM9DS1 [37]). A Pixhawk 2.1 which includes addi-
tional three IMUs (2 MPU9250 and LSM303D [38]) running
the contemporary Ardupilot estimator as well as logging
raw IMU data is also mounted on the UAS and identifying
markers are added to use an external motion capture sys-
tem (OptiTracker) shown in Fig: (3) as a reference to expected
results due to high accuracies as given in Table (1).

The data collected from all five IMUs at a rate of 200Hz
are used as input to all the estimation fusion algorithms.
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FIGURE 5. State comparison between Augmented Kalman Filter and motion tracker.

To evaluate the performance of the estimation routines all the
state estimates are compared to the output from the motion
capture system measurement at the same rate of 200Hz.

A. PERFORMANCE ANALYSIS IN MOTION CAPTURE
ENVIRONMENT
To analyse the performance of each estimator fusion algo-
rithms, described in this paper we find Root Mean Square
Error (RMSE) for each formulation and compare it against
the data obtained from motion capture system using

RMSE =

√√√√i=N∑
i=0

(x̂i − xi)2

N
, (24)

with x̂i being the estimates obtained from the state estimator
formulations and xi are the corresponding states obtained
using motion capture system.

While motion capture was used as a reference, the formu-
lation does not always represent the true attitude. In partic-
ular, the 43◦ pitch angle transient at 13sec does not reflect

true attitude and is related to underlying coordinate frame
definition differences between the estimation routines and
the motion capture (Optitracker) system’s Robot Operating
System (ROS) toolkit (right and left handed coordinate sys-
tems). The ROS toolkit is in widespread contemporary use
and the un-altered data has been retained to provide a realistic
comparison as can be observed in Fig. (4)-(7).

The random walk and the rate random walk for the gyro-
scope were found using 12 hour data collection and analy-
sis using basic allan variance as described in Appendix B
of σIMU1 = 0.006◦/

√
s, σIMU2 = 0.016◦/

√
s, σIMU3 =

0.0206◦/
√
s, σIMU4 = 0.012◦/

√
s, and σIMU5 =

0.0231◦/
√
s.

1) COMPARISON OF vIMU TO MOTION TRACKING
When running vIMU routine we combine all the measure-
ments into one single measurement with expected noise
reduction and hence, we only have one output for comparison.
As there is only one local filter calculation taking place we
expect computational load for this method to be minimum.
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FIGURE 6. State comparison between Federated Kalman Filter, single IMU run, and motion tracker.

As shown in Fig. 4(a)- 4(c), the vIMU tracks θ very
well compared to φ and ψ . The experiment was conducted
indoors deviation from true ψ is expected. The RMSE values
of all states using equation (24) are as shown in Fig. 4(d)
and Table (2). We also see coupled effects between esti-
mates. The deviation in ψ coupled with other estimates.
This behaviour is expected as all the measurements were
combined before the fusion and hence, there is only one
input.

2) COMPARISON OF AKF TO MOTION TRACKING
AKF is very similar in implementation as vIMU, but
instead of combining measurements before fusing it to
state estimates, AKF uses all the measurements simulta-
neously in its measurement matrix and is computation-
ally heavier than vIMU. Even though it is computationally
heavy the state estimation is not as accurate as seen from
Fig. 5(a)- 5(c)

AKF deviates from its estimates during rapid motions near
the time synchronization impulses. AKF estimates deviates

significantly when ψ is far from the reference. The RMSE
values of all states using equation (24) are as shown in
Fig. 5(d) and Table (2).

3) COMPARISON OF FKF TO MOTION TRACKING
State estimates from the FKF are shown in Fig. 6(a)- 6(c).
FKF best tracks the state estimates and even though exper-
iment was conducted indoors FKF converges to the true ψ
rapidly. The RMSE values of all states using equation (24) are
as shown in Fig. 6(d) and Table (2).When compared to VIMU
and AKF, FKF has lower estimate error. Moreover, as it uses
the covariancematrix of each states to fuse the estimates there
is no coupled deviations observed.

The FKF involves a larger number of computations than
the other approaches as it requires individual state esti-
mation and then is fused in one state estimation, but
the advantage of FKF is that its structure allows easy
integration of fault detection and individual sensor health
monitoring.
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FIGURE 7. Comparison between feedback federated Kalman filter and motion tracker time histories.

4) COMPARISON OF FFKF TO MOTION TRACKING
The FFKF involves the same computational load as the FKF
which is still larger than the other approaches as it requires
individual state estimation and then is fused in one state
estimation, FFKF holds all the advantages of FKF and still
performs better than FKF.

State estimates from FKF are shown in Fig. 7(a)- 7(c).
FFKF best tracks the state estimates and even though exper-
iment was conducted indoors FFKF converges to the true ψ
rapidly. The RMSE values of all states using equation (24)
are as shown in Fig. 7(d) and Table (2). Since FFKF is an
extension of FKF, same behaviour is observed but with better
states estimates.

B. PERFORMANCE IN FLIGHT TEST
Now to see how all the state estimation perform in real flight
condition the implemented frameworks were put on am radio
controlled (E-Flite mpd Commander) aircraft. The perfor-
mance of multi-IMU estimation cannot be directly measured
quantitatively and hence, we use a qualitative comparison

against single-IMU estimation. The single-IMU estimation
was performed on Pixhawk at 200Hz and data for 5 IMUs
were recorded in the same configuration as mentioned above
at 200Hz.

The flight was performed at ambient condition with
wind speeds ranging from 8-10knots. This condition
provided noise characteristics ideal for attitude esti-
mator testing. The flight trajectory was freely chosen
by a manual pilot and covered the full attitude enve-
lope. An example of the attitude time history is shown
in Fig. 8(a)- 8(b).

Fig. 8(a) shows that the bank angle estimate is generally
consistent across all estimator frameworks, with deviations
primarily at 537-540 seconds, likely due to normalization
differences in magnetometer calibrations. Fig. 8(b) shows
that the Pixhawk attitude estimates are an outlier, deviating
at 5, 530, and 537 seconds. Although the Pixhawk esti-
mate deviates from the multi-IMU estimates, the lack of an
external attitude reference, combined with the deviations in
all estimates at 520-525 and 532 seconds do not support
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FIGURE 8. State comparison between Pixhawk state estimation, and multi-IMU state estimation.

FIGURE 9. Idealized and experimentally implemented multi-IMU
estimator performance for varying approaches.

TABLE 2. Measured state error.

a conclusion that multi-IMU estimator consistently outper-
forms the traditional single IMU case.

C. ESTABLISHED PERFORMANCE IMPROVEMENT
The actual experimental results demonstrated that feedback
federated Kalman filter with attitude estimation using Bortz
equation had the best performance as measured when com-
pared to all the other methods. Table 2 shows the root mean
square error for all the implemented runs using the 5 IMUs.
Moreover, the estimators were tested independently using
different IMUs as sensors to give the results shown in Fig. 9.

FIGURE 10. Uncalibrated magnetometer.

FIGURE 11. Calibrated magnetometer.

The results consistently indicate that Federated Kalman filter
has the best improvement in state estimation accuracy no
matter the number on IMU’s employed.

VII. CONCLUSION
In this paper, the idea of fusing multiple IMU to improve
the accuracy and reliability of the state estimation for UAS
was investigated. Four state estimation fusion methods were
tested with two different local attitude estimators. The state
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FIGURE 12. Single-axis-gyro PSD with frequency averaging.

estimators were then implemented on data collected from
5 different IMU’s (2 from Navio2 on Raspberry Pi, and
3 from Pixhawk 2.1). The estimators were tested against
the reference data obtained using motion tracker system
(OptiTracker).

The results obtained in this paper clearly show the potential
of employing multi-IMU based state estimation to not only
improve the accuracy of the estimates and also to add redun-
dancies in the system. Future work includes the extension of
the studies attitude estimation to include on board wind speed
estimation for UAS and having multiple decentralized agents
to do wind field estimation.

APPENDIX A
MAGNETOMETER CALIBRATION
Magnetometer calibration for multi-IMU was based on the
routine outlined by Ozyagcilar [40], which corrects for hard
and soft iron interference. The calibration process consists
of fitting a set of ten model parameters to the magnetometer
measurements. Four parameters model the hard-iron offset,
six model the soft-iron matrix and one models the geomag-
netic field strength.

In the multi-IMU case, the magnetometers used in the
experiment are not identical and can have biases and offsets.
After the calibration parameters were identified, a normaliza-
tion was implemented to adjust for individual magnetometer
scale variations. Fig. 10 shows an example of themagnetome-
ter reading during a rotation about all axes before calibration
and Fig. 11 shows the same calibration loop corrected for both
hard and soft interference.

APPENDIX B
ALLAN DEVIATION
The Allan deviation plot is a method of graphing the vari-
ous error sources of a time-series of data on a single plot.
The method was first introduced by David Allan in 1966 to

measure the frequency stability of clocks and oscillators. The
technique is useful for inertial navigation systems since it
allows both the angle/velocity random walk and bias stability
of the sensors to be determined in a single plot.

To compute the Allan deviation for a time series of data xi,
begin by splitting the data series into bins of size n where
N is the number of resulting bins. Let yi be the average of
bin i where i = 1, . . . ,N . The Allan variance of xi is given
by

σ 2(τ ) =
1

2(N − 1)

N−1∑
1

(xi+1 − xi)2

where τ is the time constant for consecutive samples in xi.
The Allan deviation then is found by taking the square root
of the Allan variance. For interpretation of the Allan deviation
plot, please refer to [ [30], [41]].
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