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ABSTRACT Manual inspection of textiles is a long, tedious, and costly method. Technology has solved
this problem by developing automatic systems for textile inspection. However, Jacquard fabrics present a
challenge because patterns can be complex and seemingly random to systems. Only a few in-depth studies
have been conducted on jacquard fabrics despite their important and intriguing nature. Previous studies on
jacquard fabrics are of simple patterns. This paper introduces a new and novel field in fabrics defect detection.
Complex-patterned jacquard fabrics are much more challenging. In this paper, novel defect detection models
for jacquard-patterned fabrics are presented. Owing to the lack of available databases for jacquard fabrics,
we compiled and experimented on our own novel dataset. Our dataset was collected from plain, undyed
jacquard fabrics with different complex patterns. In this study, we used and tested several deep learning
models with image pre-processing and convolutional neural networks (CNNs) for unsupervised detection
of defects. We also used multispectral imaging, combining normal (RGB) and near-infrared (NIR) imaging
to improve our system and increase its accuracy. We propose two systems: a semi-manual system using a
simple CNN network for operation on separate patterns and an integrated automated system that uses state-
of-the-art CNN architectures to run on the entire dataset without prior pattern specification. The images are
preprocessed using contrast-limited adaptive Histogram Equalization (CLAHE) to enhance their features.
We concluded that deep learning is efficient and can be used for defect detection in complex patterns.
Proposed method of EfficientNet CNN gave high accuracy reaching 99% approximately. We also found
that multispectral imaging is more advantageous and yields higher accuracy.

INDEX TERMS Complex patterns, convolutional neural networks, fabric defect detection, jacquard,
multispectral imaging.

I. INTRODUCTION
The development of a flexible, efficient, reliable, and inte-
grated real-time vision system for industrial applications is
an essential issue in quality control processes in various
industries. The textile industry is one of the most critical
industries in terms of quality assurance. In the textile industry,
fabric is classified as first-grade or second-grade fabric based
on its quality. This classification is based on the type and
frequency of the defects in the fabric. If the fabric has no
major or prominent surface defects that disturb it, the fabric
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is considered to be of first quality. Otherwise, major defects
and/or frequent minor defects reduce fabric classification to
second-grade quality. If these defects are detected during pro-
duction or before shipping, they can be treated or prevented to
conserve production resources. Second-grade fabrics lead to
major revenue losses. They can be sold for only 45%-65% of
the original first-grade fabric price. Undetected fabric defects
cause at least 50% of second-grade fabric production [1].

Quality control reduces or prevents the unwanted produc-
tion of low-quality fabrics. Traditionally, fabric defect detec-
tion has been performed both manually and offline. Weaving
machines produce fabric in the form of large rolls that are
carried to inspection stations for review. Sufficient lighting
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is applied from above or under the fabrics by machines or
tables, for better detection of defects. The fabric rolls are then
inspected at high speeds by skilled staff. Human inspection
has many shortcomings owing to tiredness, boredom, and
inattentiveness, resulting in accuracies of only approximately
60%-75% [2]. Therefore, we aim to avoid human error.

Besides human error, the late detection of defects can
lead to the production of more second-grade fabrics. In large
factories with high production rates, manual inspection can
present a bottleneck in production. The solution would be to
increase the labor force, which would lead to more expenses.
Fortunately, technological advances in computer science and
machine vision have introduced the possibility of automatic
fabric inspections. An automated visual inspection system
can be used for better quality control to increase the overall
quality, homogeneity, and reliability of fabrics.

The purpose of this study is to introduce an automatic
inspection system for jacquard-patterned fabrics to efficiently
detect defects. The rest of the paper is organized as follows:
Section II provides background information about jacquard-
patterned fabrics. Section III reviews previous related stud-
ies on fabric defect detection. Section IV provides a brief
overview of multispectral imaging and the reasoning for its
use in our study. Section V presents the proposed systems.
The results are presented and discussed in section VI. Finally,
Section VII concludes the paper.

II. JACQUARD FABRICS
For any woven fabric, there are interlaced threads of yarns
vertically aligned that are called ‘‘weft yarns’’, and horizon-
tal threads running across the fabric that are called ‘‘warp
yarns’’. These threads are efficiently interlaced together using
loom devices to create fabrics. Traditional fabrics are cre-
ated using dobby looms, which can only control the warp
yarns in groups. Because the loom can control only a limited
number of warp groups, patterns are limited in how complex
they can be.

It was challenging to create complex pattern designs in
fabrics hundreds of years ago. They had to be woven by
hand, which was a long and painful process. In 1804, Joseph-
Marie Jacquard created the Jacquard loom. This improved
device could weave patterned fabrics based on predetermined
designs by reading a long row of punched wooden cards. This
form of ‘‘code reading’’ changed how patterned fabrics were
created forever and was later adapted and used in computer
technology. The term ‘‘jacquard’’ refers to the method of
creating the pattern through weaving, not the specific pattern
itself. A jacquard loom selectively lifts warp yarns to create
a pattern. Today’s jacquard looms allow control of each warp
yarn individually. This allows the weaving of considerably
more complex designs [3].

Jacquard fabrics are more complex than plain fabrics
because they may have multiple repeated patterns in the same
fabric. The Patterns in jacquard fabrics are both macro and
micro. Multiple different micro patterns are present in the
same fabric. Macro patterns are combinations of different

FIGURE 1. Jacquard macro pattern (P05) consisting of three different
micro patterns in the same fabric.

micro patterns in a certain area, as shown in Fig.1. Jacquard
fabrics have a wide array and range of complex and contrast-
ing designs. An unlimited number of patterns and choices
are allowed. We can achieve anything from stripes, paisleys,
polka dots, and florals to very large complex, detailed, and
difficult designs. Traditional fabrics can have patterns printed
on them after they are woven. In contrast, jacquard fabrics
exhibit woven patterns. This means that the pattern is created
in conjugation with the cloth [4].

III. PREVIOUS WORK
Many previous studies have been conducted in the field of
fabric defect detection using different methodologies and
techniques. However, most of these studies were conducted
on traditional fabrics. Very little research has been conducted
on jacquard fabrics, despite the importance of automatic fab-
ric inspection in such complicated fabrics. A short recap of
some traditional fabric techniques is given. Then, a detailed
review of jacquard fabrics is presented.

A. TRADITIONAL FABRICS
Many studies have been conducted on plain fabrics with
great results and methods that achieve high accuracies. Most
published papers consider fabric as a near-regular texture
that may be degraded by defects of a repetitive background
pattern fabric. These abnormalities can be discovered through
the use of pattern and texture recognition. Hanbay et al. [5]
presented one of the most recent and detailed reviews of
traditional fabrics. The presented methods were categorized
into seven categories: structural, statistical, spectral, model-
based, learning, hybrid, and comparative studies. Among the
reviewed methods some achieved favorable results such as
cross-correlation and gray level co-occurrence in statistical
approaches. Also, Gabor filters and wavelet transform in
spectral approaches. However, those studies were mostly
conducted on plain traditional fabrics with fewer studies
conducted on patterned fabrics. However, defect detection in
complex patterned fabrics, such as jacquard fabrics, requires
more sophisticated methods and is much more challenging.

B. JACQUARD FABRICS
Based on our research, we categorize previous work on
jacquard fabrics into two main fields: texture segmentation
and defect detection. In texture segmentation, the goal is to
extract the texture or pattern from the jacquard fabrics. Dif-
ferent methods have been used in previous studies, such as:
Mumford-Shahmodel [6], phase-fieldmodel [7], [8], wavelet
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transform with K-means clustering [9], [10], multiresolution
Markov random field (MRF) modeling [11], and multi-view
image fusion [12].

Only a few contributions have been made to the field of
jacquard fabric defect detection. This leaves the field open to
new ideas. In [13], golden image subtraction (GIS) was used
for defect detection in a dot-patterned jacquard. They also
introduced a modified version combining GIS with wavelet
transforms. However, this method was tested on a very small
sample size, and the dot pattern can be considered simple
because of its high periodicity. In [14], a defect detection
method was introduced for a color-patterned jacquard fab-
ric using multiple color channel analysis. This method uses
neural networks for color separation, which segments the
jacquard image into color channel images. Then, the color
channel pattern was extracted and compared to characterize
and detect defects. However, this method focuses on the
colored jacquard fabric of square grids with no draw patterns.

From this review, we can see that there has been little
in-depth research on pattern jacquard fabric defect detec-
tion. The area of complex-patterned jacquard fabrics defect
detection is novel. Automatic defect detection in complexly
patterned jacquard fabrics is very challenging and has a long
way to go. However, it is very important and appealing. This
study opens the gateways for defect detection in it.

IV. MULTISPECTRAL IMAGING
Generally, there are shortcomings in using a visual light
source (VLS) to inspect patterned fabrics. The two main
challenges in using VLS inspection are the lighting condi-
tions and patterned fabric structure. For visual inspection,
the lighting conditions should be uniform across the fabric.
Unfortunately, this is easily affected by surrounding condi-
tions, such as room illumination and daylight severity. Sec-
ond, the pattern structures of square, line, circle, or similarly
patterned fabrics can sometimes be mistaken for superstruc-
ture noise, where the texture pattern can be considered noise
superimposed on the basic background. This could lead to the
misdetection or under-detection of defects.

In this study, we considered the use of multispectral imag-
ing in jacquard fabric inspection based on two properties.
First, jacquard fabrics often use different yarn types for
weft and warp. In addition, yarn threads can often be color-
dyed to make colorful fabrics. Second, as mentioned previ-
ously, jacquard patterns are created by selecting and lifting
warp yarns. Consequently, the patterns produced are naturally
salient [3].

The first property was tested on traditional fabrics in [15].
The spectral reflectance of different fabric types and colors
was tested. This shows that NIR imaging can provide better
results, especially for colored patterns. In addition, combin-
ing different wefts and warps yarn types in jacquard fabrics
can improve NIR imaging and image contrast. From Fig. 2,
we can see that the spectral reflectance of different colors
in an NIR image is nearly the same, with nearly uniform

FIGURE 2. Spectral reflectance of fabrics of varied colors and
compositions: (a) artificial fibers, (b) cotton and (c) wool [15].

contrast. However, in VLS images, there could be much more
contrast diversity.

The second property of saliency in jacquard fabrics makes
multispectral imaging more appealing for defect detection.
In jacquard fabrics, patterns are created by controlling hooks
that selectively lift warp yarns as desired. This allows the
creation of salient complex patterns. Fabric defect detection
based on saliency has been studied previously [16], [17].
Studying the feature saliency of defects and considering them
provided better results for defect detection. In [18] and [19],
migrating from RGB to multispectral images improved unsu-
pervised saliency detection. It was found that analyzing all
the spectral bands of an input image in parallel can provide
a higher amount of information compared to RGB images
alone. This higher amount of information can allow a convo-
lutional neural network (CNN) to find more complex features
and better detect saliency.

In the Results section, we calculate the detection rate
accuracy for RGB and multispectral imaging. The test results
proves that multispectral imaging leads to higher accuracy.

V. CNN ARCHITECTURES
Recently, there has been a series of breakthroughs in deep
learning and computer vision. Convolutional neural networks
have become significantly deeper and more complex. These
models have achieved state-of-the-art results for problems
such as image classification and image recognition. They
can solve more complex tasks and make them more robust.
Several architectures exist in the field of CNNs. In the next
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subsection, we briefly present the architecture used in our
study.

A. VGGNet
The runner-up in the ImageNet challenge (ILSVRC 2014)
was VGGNet [20], as shown in Fig. 3. It showed that the
network depth is a critical element for good performance.
Their best network consists of 16 CONV/FC layers and
has a very homogeneous architecture that only performs
3 × 3 convolutions and 2 × 2 pooling from start to end.
However, the VGGNet has two major drawbacks. It has large
network weights and is extremely slow to train.

FIGURE 3. VGGNet architecture [21].

B. ResNet
Kaiming He et al. [22] developed a residual network, which
was the winner of the ILSVRC 2015. ResNet allows training
of much deeper networks by introducing residual blocks,
as shown in Fig. 4. Residual blocks utilize the concept of skip
connections, which allows for an alternate path for the gra-
dient to flow through. This mitigates the vanishing gradient
problem. The ResNet model is one of the most popular and
successful deep learning models. ResNet skip connections
have since been used in many other model architectures, such
as the fully convolutional network (FCN) and U-Net.

FIGURE 4. Residual block [22].

C. InceptionNet
The inception network is an important milestone in the devel-
opment of convolutional neural networks (CNNs). The most
popular CNNs simply stack convolution layers deeper and
deeper, hoping to achieve better performance. The incep-
tion network, on the other hand, is complex and improves
accuracy and speed using multiple tricks. InceptionNet has
constantly improved, creating several versions.

The first inception deep convolutional architecture was
introduced by Szegedy et al. [23] as GoogLeNet and was

later named Inception-v1. Since then, the network has been
refined in various ways. First, batch normalization was intro-
duction in Inception-v2 [24]. Later, additional factorization
ideas were introduced in the third version of Inception-
v3 [25]. Inception-v4 [26] uses specialized ‘‘reduction blocks
to change the height and width of the grid.

In addition, hybrid modules combining InceptionNet and
ResNet achieve very good results. These are known as
InceptionResNet v1 and v2, respectively. In this study,
we used Inception-v3, as shown in Fig. 5, as it proved to be
more computationally efficient, both in terms of the num-
ber of parameters generated by the network and memory
cost.

FIGURE 5. InceptionNetV3 architecture [27].

D. EfficientNet
Previously, the most common way to scale up CNNs
was by one of three dimensions: image resolution (image
size), depth (number of layers), or width (number of chan-
nels). The main concept of EfficientNet [28] is com-
pound scaling. This implies scaling all three dimensions
while maintaining a balance between all dimensions of the
network.

However, the authors found that it was critical to have a
good baseline network. Therefore, they also developed a new
mobile-size baseline called EfficientNet using a neural archi-
tecture search. In particular, the baseline network is called
Efficient-B0. Next, this baseline network was scaled using
compound scaling to get Efficient B1-B7. The differences in
the compound scaling are shown in Fig.6.

FIGURE 6. Model Scaling. (a) is a baseline network example; (b)-(d) are
conventional scaling that only increases one dimension of network width,
depth, or resolution. (e) Proposed compound scaling method that
uniformly scales all three dimensions with a fixed ratio [28].

VI. PROPOSED SYSTEMS
In this section, we describe our imaging system, image
dataset, preprocessing technique, and two detection systems.
Fig. 7 shows a block diagram of the proposed systems.
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FIGURE 7. Systems block diagram.

FIGURE 8. Used image acquisition system configuration [29].

A. IMAGING SYSTEM
The system used for the image capture is shown in Fig. 8.
This approach was inspired by [29]. The imaging system
provides proper lighting for both RGB and NIR imaging.
A JAIAD-080G camera is used. The cameramodel is an area-
scan camera. It is a multispectral 2-channel CCD camera.
The camera can capture RGB and NIR images of a scene
at the same time. The camera delivers 30 frames/s with a
full resolution of (1024 × 768). In this camera model, the
visual color spectrum is separated into a wavelength band of
400–600 nm. In addition, the NIR band ranges from 760 to
1000 nm. Two Ethernet cables transfer the captured images
to a computer.

We manually collected the images used in our model
training and testing. We captured a dataset consisting of
1,348 images with different unique complex jacquard macro
patterns from multiple samples per pattern. Our dataset was
collected from plain, undyed jacquard fabrics with different
complex patterns. The dataset was further increased using
data augmentation techniques to four times the original size
(i.e., 5,392 images). Each fabric sample was simultaneously
captured using RGB and NIR at the same time. The dataset
was balanced, where half of the images were non-defective
and the other half were defective samples. The database
contained 10 different complex macro patterns with different

FIGURE 9. Defect free sample images of dataset different patterns.

FIGURE 10. Different kinds of defective dataset different image patterns.
(a) Knot, (b) Double picks, (c) Missing warp pick, (d) Broken yarn pick,
(e) Ladder, (f) Breakage.

defects. These defects included warp and weft defects, fabric
breaks, knots, and loose picks. The samples of the dataset
showing different macro patterns and sample defect types are
shown in Fig. 9 and 10, respectively.

B. PRE-PROCESSING
First, the samples were resized to smaller sizes. In addition,
RGB images were converted to grayscale for processing and
model training. We used contrast-limited adaptive Histogram
Equalization (CLAHE) [30] for image enhancement. CLAHE
differs from regular AHE in its contrast limiting by clipping
the histogram at a predetermined value before calculating
the cumulative distribution function (CDF) to overcome the
amplification of noise. The two main parameters that can
be changed to control the image enhancement quality are
the Clip Limit (CL) and Block Size (BS). First, the image
is divided into non-overlapping contextual regions, resulting
in M × N tiles. Then, the contrast-limited histogram of the
contextual region is calculated using the CL value as follows:

Navg = (Npx × Npy)/Ngray (1)

where Navg is the average number of pixels, Npx and Npy
are the region’s number of pixels in the X and Y direc-
tions, respectively, and Ngray is the gray level number of the
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contextual region. The actual clip limit can be calculated as:

NCL = Nclip × Navg (2)

where, Nclip is the normalized clip limit in the range of [0,1].
If the number of pixels is greater than the NCL , the pixels
are clipped. The part that exceeds the clip limit is better
redistributed among all the histogram bins. If the redistribu-
tion causes some values to exceed the clip limit again, the
process is repeated until the excess can be neglected. Fig. 11
shows the multispectral imaging for the dataset sample and
the preprocessing effect

FIGURE 11. Sample images of the dataset: (a) RGB, (b) NIR imaging of the
same sample and (c) Enhanced sample using CLAHE.

C. TRAINING AND TESTING
Artificial neural networks have shown promising results in
different areas, such as pattern recognition and classification.
In neural networks, input information is processed by groups
of simple elements called neurons. Signals are transferred
between neurons through the links that connect them. Each
connection link has a weight (W) that represents the multi-
plication factor for the transmitted signal. Finally, the output
is determined using an activation function that was applied to
the input.

In our work, we used convolutional neural net-
works (CNNs) running on TensorFlow’s high-level API
‘‘tf.Keras.’’

We experimented with different 2D CNNs, such as simple
CNNs, VGGNet, ResNets, InceptionNets, and EfficientNets,
to find and select the most suitable ones for defect detection
in pattern jacquard fabrics.

We propose two systems. The first system is a simple CNN
model for a semi-manual system that operates on separate
patterns. The second system is an unsupervised system that
operates on the entire dataset, uses state-of-the-art architec-
tures, and compares them. The two systems are presented,
and the advantages and disadvantages of using each system
are discussed.

VII. RESULTS AND DISCUSSION
The precision, recall, and accuracy performance metrics were
calculated for each system. These metrics were calculated
using the following equation:

Precision(P) = TP/(FP+ TP) (3)

Recall(R) = TP/(FN + TP) (4)

Accuracy = (TP+ TN )/N (5)

where, True Positive (TP) is the number of correctly labeled
defective samples, True Negative (TN) is the number of

correctly labeled defect-free samples, False Positive (FP) is
the number of wrongly labeled defect-free samples, False
Negative (FN) is the number of wrongly labeled defective
samples, and N is the total number of samples. Precision
measures the percentage of correctly detected defect samples
for all defect detections. Recall measures the percentage of
correctly detected defective samples in all defective samples.
Accuracy measures the number of correct predictions that our
system had in all samples.

The models were trained and tested on the database that
we created. First, a semi-manual system that has 10 models
is presented. System performance was studied for different
patterns. In addition, a performance comparison between
RGB and multispectral imaging is performed.

Second, an automatic system that operates on the entire
dataset without manually selecting the target pattern is
presented. A comparison between different state-of-the-art
architectural models was performed.

A. SEMI-MANUAL SYSTEM
The first proposed system utilizes a simple CNN that consists
of Conv2D, activation, and max-pooling layers, as shown
in Fig. 12. This simple CNN is sufficient for implementing
semi-manual models that operate on separate patterns. In this
system, the operator selects the pattern and then the system
loads the corresponding model.

FIGURE 12. Simple CNN architecture.

Although this system is semi-manual and not very sophis-
ticated, it is very simple and, therefore, faster. First, the
advantage of multispectral imaging was tested using this
simple CNN model across 10 different patterns. The CNN
was modeled on our dataset, where 3,774 images (70%) were
used for training and 1618 images (30%) for testing. In the
testing phase, the CNN classified the input image into a defect
or defect-free fabric.

A comparison between RGB and multispectral imaging is
presented in Tables 1 and 2, respectively. Table 1 presents the
test results for the defect detection using visual RGB imaging.
Table 2 lists the test results for multispectral imaging.

Multispectral imaging provides better performance and
higher accuracy. The detection results across separate pat-
terns were satisfactory, with an average accuracy of 95%.

However, this system is semi-manual and requires chang-
ing the models when operating on different patterns. Simple
CNN models could not achieve good accuracies on the entire
dataset when the pattern was not determined by the operator,
reaching amaximum accuracy of 65%. This led us to examine
state-of-the-art architectures in deep learning and devise a
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TABLE 1. Visual inspection by RGB.

TABLE 2. Multispectral imaging.

fully automated defect detection system using modern CNN
architectures.

B. AUTOMATIC SYSTEM
We experimented with different state-of-the-art CNN archi-
tectures to achieve the highest accuracy for the dataset.
We tested four different models, which were briefly pre-
sented in Section VI. All architectures were implemented
from scratch and then trained and tested on our dataset.
The models used our dataset, where 3,774 images (70%)
were used for training and 1618 images (30%) for testing.
The architectures had different sizes and numbers of param-
eters. The largest of these is VGG16 with approximately
138 million parameters, followed by ResNet50 with a much
lower number of parameters at approximately 25.6 million.
InceptionV3 had approximately 23.8 million parameters. The

FIGURE 13. System performance.

smallest of these is EfficientNetB3 at approximately 12.3mil-
lion parameters. Training was performed for 100 epochs, and
a batch size of 4. Fig. 13 presents the accuracy and loss for
training and validation for different architectures.

Table 3 shows a comparison of the precision, recall, and
accuracy of the four network architectures.

TABLE 3. Architectures performance comparison.

From the results, we can see that very high accuracies
were achievable, especially with EfficientNet. This shows
that CNNs with multispectral imaging are very good for
defect detection in jacquard fabrics, and they can overcome
the difficult challenge of complex patterns. In addition, this
shows that advancements in the field of CNN architectures
are meaningful and steadily improving. EfficientNets achieve
higher accuracies with a smaller network size and fewer
parameters.

C. COMPARISON
As previously mentioned, the study of defect detection for
complex-patterned jacquard fabrics is novel and no previous
studies have been done on it. In our research we implemented
and tested, on our database, several techniques that are well
established in defect detection of traditional fabrics. Two
methods that had good results were wavelet transform [31]
and gray level co-occurrence (GLCM) [32].

Table 4 shows a comparison of their results with the pro-
posed approach of using EfficientNet CNN.

From the results, we conclude that the proposed method,
of using EfficientNet CNN with multispectral imaging for
fault detection for complex-patterned jacquard fabrics, pro-
vides the best results with highest accuracy.
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TABLE 4. Different methods performance comparison.

VIII. CONCLUSION
In this study, unsupervised complex-patterned jacquard fabric
defect detection systems were introduced. A new and exten-
sive image database was collected and tested. The images
were preprocessed using CLAHE to enhance their features.
These systems use Convolutional Neural Networks (CNNs)
to detect defective fabrics. Test results for single RGB and
multispectral imaging are provided. We concluded that deep
learning is efficient and can be used for defect detection
in complex patterns. EfficientNet CNN gave high accuracy
reaching 99% approximately. We also found that multispec-
tral imaging is more advantageous and yields a higher accu-
racy. These systems exhibit high detection rates. Much work
and research can still be conducted in the field of jacquard
fabrics.

Further investigations will be conducted in the future to
further improve the performance and precisely locate the
defect area. Specifically locating the defect area is muchmore
challenging and can be further explored in future work.
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