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ABSTRACT Resistive bridge sensors are used in many application areas to measure changes in physical
parameters. To amplify the resistive changes from sensing elements with high precision, various offset con-
tributors in the resistive bridge and amplifiers should be minimized. This study proposes a low-noise resistive
bridge sensor analog front-end (AFE) using a chopper-stabilized multipath current feedback instrumentation
amplifier (CFIA) and an automatic offset cancellation loop. The proposed circuit exploits a multipath
chopper-stabilized architecture for obtaining low noise performance and wide bandwidth characteristics.
This circuit can minimize the offsets in the bridge and the high frequency and low frequency amplifiers,
while achieving high precision resistive signal acquisition. The high frequency path of themultipath amplifier
uses the CFIA topology with class-AB output stage. The offset in the high frequency path is stabilized by
the low frequency path amplifier with a high gain and low noise chopper amplifier. The up-modulated offset
in the low frequency chopper amplifier path is reduced by the AC-coupled ripple reduction loop (RRL).
An automatic offset calibration loop (AOCL) circuit was designed to calibrate the offset due to the bridge
mismatch. The AOCL reduces the bridge offset using a successive approximation register (SAR)-based
binary-search algorithm. The gain of the proposed circuit is adjustable from 15.56 dB to 44.14 dB. The
AFE is implemented in a 0.18 µm CMOS process and draws 123 µA current from a 3.3 V supply. The input
referred noise and noise efficiency factor (NEF) are 14.6 nV/

√
Hz and 6.1, respectively.

INDEX TERMS Resistive analog front-end, current feedback instrumentation amplifier (CFIA), multipath
amplifier, automatic offset calibration loop (AOCL).

I. INTRODUCTION
Resistive microelectromechanical system (MEMS) sensors
are in the spotlight for detecting various environmental
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changes such as force, acceleration, pressure, and humidity
owing to their advantages such as reliability and low price
based on their simple structure and long-lasting durability
[1]–[5]. As sensors become smaller and thinner to meet the
stringent requirements of new mobile and wearable plat-
forms, the resistive change needed to detect an amount of
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physical change is also decreased [6]. Moreover, the MEMS
sensors suffer from the severe process variations, and these
process variations are getting worse because the process vari-
ations are inversely proportional to the square-root of the
area [7]. The output variations due to these process variations
result in increased manufacturing costs. Various attempts
to compensate for these errors with low cost have been
reported [8]–[10].

A good solution for high-end resistive sensors is an analog
front-end (AFE) circuit with high precision low noise sig-
nal acquisition, high programmability, and automatic offset
cancellation capability. An instrumentation amplifier (IA) is
a key building block for amplification of the small voltage
input from the resistive bridge sensors [11], [12]. The imple-
mentation of IAs with low noise, high input impedance, and
low power is the main focus of the recent IA research [13].
To evaluate the design tradeoffs between the noise, power,
and bandwidth, the noise efficiency factor (NEF) is widely
used as the figure of merit (FoM) [14]. The NEF is
calculated as (1)

NEF = Vni,rms

√
2Itot

π · UT · 4kT · BW
(1)

where Vni.rmsVni,rms is input referred noise voltage from the
circuit, Itot Itot is current usage in the circuit summed from
ground, and BW is bandwidth of system.

The popular topologies for implementing IA include the
3-opamp IA, the capacitively coupled IA (CCIA), and the
current feedback IA (CFIA). The 3-opmap IA can achieve
a high input impedance, however, the large power and area
consumptions are main drawbacks. Also, the CMRR of the
three-op amp IA is degraded by resistive mismatches [15].
The CCIA has better low power and low noise character-
istics. In addition, it can be implemented in a relatively
small area compared to the 3-opamp IA [16]. However, the
input impedance is low due to the input capacitance, thus
an input impedance boosting circuit with positive feedback
is needed [17]. An input impedance boosting circuit based
on positive feedback can increase the input impedance of
the CCIA, but can damage the stability of the circuit. The
CFIA is widely used in resistive bridge sensors because it can
achieve a high input impedance, low noise, and low power
characteristics [18], [19]. A general topology of the CFIA is
shown in Fig. 1. The circuit consists of three amplifier stages,
and current components from the resistors at the output are
fed back to the input. The voltage Vo at the output can be
described as

Vo =
Gm1 · Gm3

1+ R1
2R2+R1

Gm2Gm3
· VDM+

1Gm1
1+ R1

2R2+R1
Gm2Gm3

·VCM

∼=

(
1+

2R2
R1

)
· VDM (2)

where assuming that Gm3 is large. The gain of the CFIA
can be controlled by changing the ratio between R1 and R2.
To obtain high gain accuracy, Gm1 and Gm2 should be

FIGURE 1. Topology of current feedback IA (CFIA).

matched, and the high open loop gain of Gm1 · Gm3 are
required.

Recently, the offset stabilized amplifier to suppress the
low frequency noise including offset, 1/f noise and long-
term drift have been extensively reported [20]. The offset
stabilized amplifier is implemented usingmultipath topology.
The main path (high frequency path, HFP) is generally a low-
gain and wide-bandwidth amplifier. The offset of the main
path is stabilized by the low noise and high gain auxiliary
amplifier (low frequency path, LFP) with various dynamic
offset cancellation (DOC) techniques.

The popular DOC techniques for the LFP implementation
include auto zeroing (AZ) and a chopper amplifier [20]–[22].
The AZ scheme can implement a smaller circuit size; how-
ever, the thermal noise level is increased because of noise
folding. In addition, the AZ operates in discrete-time and a
ping-pong architecture with doubled circuit size and power
is used to obtain continuous-time output [18]. The chopper
amplifier is another popular DOC technique. In a chopper
amplifier, the input signal is modulated to the high fre-
quency chopper band, amplified, and demodulated to the
baseband. The low frequency noise and offset of the amplifier
is up-modulated by the demodulation chopper. Thus, the sig-
nal band and the noise band can be separated. In the chopper
amplifier, the aliasing due to the sampling operation does
not occur, and a low thermal noise level can be achieved.
However, the up-modulated offsets, called ripple, should be
attenuated. To attenuate the ripple, a high order low-pass
filter (LPF) is required. To relax the LPF requirements, many
ripple reduction loop (RRL) techniques have been reported,
including the AC-coupled RRL [18], synchronous switched-
capacitor notch filter [23], and auto correction feedback [24].

This paper proposes a low-noise resistive bridge sensor
analog front-end (AFE) using a chopper-stabilized multipath
current feedback instrumentation amplifier (CFIA) and an
automatic offset cancellation loop. The block diagram of the
proposed IA with offset cancellation is shown in Fig. 2 In the
resistive AFE with multipath IA, the main offset sources can
be categorized into three parts: the offset due to the mismatch
of the resistive bridge (Vos1), the offset in the main high
frequency path (Vos2), and the offset in the auxiliary low-
frequency path (Vos3). In this design, we tried to reduce these
three offsets to achieve high precision resistive signal acquisi-
tion performance. The Vos1 is reduced by the automatic offset
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FIGURE 2. Simplified diagram of offset stabilizing multipath circuit.

FIGURE 3. Block diagram of low-noise resistive bridge sensor AFE.

calibration loop (AOCL). The offset can arise not only from
mismatching of the elements inside the CFIA circuit, but also
from resistive bridge sensors. In this case, the offset needs to
be calibrated outside the CFIA by AOCL block.

II. PROPOSED LOW NOISE ANALOG FRONT-END
A. OVERALL CIRCUIT DESIGN
In this work, we propose a low-power, low-noise AFE for
resistive bridge sensors. Fig. 3 shows the block diagram of
the proposedAFE circuit for resistive bridge sensor. Themain
block consists of fully differential multipath CFIA, 4th order
LPF, buffer, 12-bit SAR ADC, and AOCL. The current refer-
ence, voltage reference, relaxation oscillator, clock generator,
and serial peripheral interface (SPI) are fully integrated. The
circuit exploits a multi-path chopper stabilized architecture
for obtaining low noise performance while keeping wide
bandwidth characteristics.

The proposed circuit can minimize the offsets in the bridge
and in the high and low frequency amplifiers. Therefore, it
can achieve high-precision resistive signal acquisition perfor-
mance. For the high frequency path of themultipath amplifier,
a CFIA topology with class-AB output stage is used. The
offset in the high frequency path is stabilized by the high-gain
low frequency path amplifier and a low noise chopper ampli-
fier. The up-modulated offset in the low frequency chopper
amplifier path is reduced by anAC-coupled RRL. To calibrate
the offset due to the bridge mismatch, an automatic offset
calibration loop (AOCL) circuit was designed. The AOCL
can operate once when power-up, or can operate periodically.
The AOCL reduces the bridge offset using successive approx-
imation register (SAR)-based binary-search algorithm. The
input voltage signal from the resistive bridge is amplified
by the CFIA, and the gain of CFIA can be adjusted from
15.56dB to 44.14dB with a programmable 5-bit register.
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FIGURE 4. Multipath current feedback instrumentation amplifier circuit.

FIGURE 5. Block diagram and operating principle of LFP including RRL.

The CFIA output is band-limited by 4th-order LPF with
1 kHz cutoff-frequency and a 12-bit SAR ADC converts it
into 12-bit digital values.

B. MULTIPATH CURRENT FEEDBACK IA
The multipath CFIA block diagram is shown in Fig. 4. The
multipath CFIA has two main signal paths: the low frequency
path (LFP) and the high frequency path (HFP). The low
frequency path consists of 5 stages (Gm21, Gm22, Gm3, Gm4,
andGm5) and the high frequency path consists of two parallel
stages (Gm11, Gm12) and a class-AB output stage (Gm5) that

is shared with the LFP. In the LFP, the chopper technique was
used to achieve low noise characteristics at low frequencies.
To reduce the up-modulated ripple, a AC-coupled RRL is
implemented [18]. To stabilize the offset of the HFP, the gain
of the LFP should be much higher than HFP. In this design,
the gain of LFP isGm21 ·Gm3 ·Gm4 ·Gm5, and the gain of HPF
is Gm12 · Gm5.
The LFP dominates the low frequency response, the RRL

acts as notch filter at chopper frequency, and the HFP
dominates the high frequency band, resulting in an overall
smooth frequency response. To compensate for the frequency
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TABLE 1. Amplifier performances and comparisons.

FIGURE 6. Current buffer and common-mode feedback circuit.

response, the compensation capacitors, Cm11, Cm12, Cm21,
Cm22, Cm31, Cm32 are added. The value of Cm31 and Cm32
are selected so that the overall frequency response becomes
almost a first-order system. Fig. 5 depicts the LFP circuit
including the RRL and the more detailed operation of the
circuit. The choppers CH1, CH2, CH3, and CH4 are operated
with the same non-overlapping clocks of 125 kHz.

The operation of the RRL is as follows. The offset volt-
age, Vos, is converted to offset current (I1) by Gm21, and
up-modulated by CH3. The square-wave ripple current (I2)
is converted to a triangular-wave voltage (V1) by a Miller

integrator which consists of Gm3 and Cm21. The high fre-
quency components of V1 are filtered by AC-coupling ripple
sensing capacitors, Cs1 and Cs2, and are demodulated into
the baseband by CH4. The high output impedance of current
buffers (CB) and Cint form the low pass filter, and the output
current of Gm6 (I4) is negatively fed back to the summation
node of the Gm21 and Gm22 outputs.

The design of CB in RRL, common-mode-feedback
(CMFB), and sensing capacitors Cs1 and Cs2 are shown in
Fig. 6. The bias current of CB is 1.9 µA. The Cs1 and Cs2
and input resistances of CB form high pass filters. The high-
pass filtered currents fromVCB_In+,VCB_In− are demodulated
by the chopper and are buffered by common gate amplifiers,
MN3 and MN4. The output common-mode of VCB_OUT+,
VCB_OUT− is detected through parallel resistors and capaci-
tors, R1, R2, C1, C2. The single-stage error-amplifier forms
CMFB.

Fig. 7 shows the main HFP amplifier design. The two input
transconductors, Gm11 and Gm12 converts the input voltage
signal and feedback voltage signal to output current. TheGm4
converts the input voltage from LFP to the output current.
These currents are summed by the cascode summation stage.
In the current summation cascode stage, four transistors,
MN5, MN6, MP17 and MP18 are added for class-AB biasing
with the Monticelli style [25]. The output stage, Gm5, is in a
class-AB amplifier configuration.
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FIGURE 7. High frequency path circuit in multipath current feedback instrumentation amplifier.

FIGURE 8. Proposed multipath CFIA and auto offset calibration loop (AOCL) circuit block diagram.

To enhance the frequency stability and the CMRR with
smaller capacitances, the compensation capacitors, Cc1, Cc2,
Cc3, and Cc4 are placed in a nested-Miller compensation
scheme.

C. AUTO OFFSET CALIBRATION LOOP
In this design, the offsets in the main HPF amplifier and
auxiliary LFP amplifier are canceled by chopper stabilization
and RRL techniques, respectively. However, the offset in
the resistive bridge still remains. To adjust the offset in the
bridge, the automatic offset calibration loop circuit (AOCL)

is designed [26], as shown in Fig. 8. The AOCL includes a
comparator, 12-bit SAR logic block, and 12-bit R-2R digital-
to-analog converter (DAC). The AOCL can be activated for a
one-time use at power-upwith a zero-input condition, or it can
be activated when calibration is needed. During the AOCL
sequences, the amplified offset from the bridge is compared
by the comparator. The 12-bit SAR logic generates the DAC
control signal using a binary-search algorithm. The 12-bit
digital output controls the 12-bit R-2R DAC, and the DAC
generates the compensation feedback voltage. The output
voltage including the compensation voltage of DAC can be
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FIGURE 9. 12-bit R-2R DAC circuit in AOCL.

FIGURE 10. Simulation results of differential R-2R DAC.

expressed as (3).

Vout+ − Vout− = (1+ 2 ·
R2
R1

) · (Vin+ − Vin−)

+
R2
RDAC

· ((Vin+ − Vin−)− (VDACout+ − VDACout−))

(3)

where R1, R2 are feedback resistors of CFIA, Vin is the input
signal to the comparator, and VDAC_OUT is the output signal
of the DAC.

The implementation of the differential R-2RDAC is shown
in Fig. 9. The R-2R DAC is segmented to the MSB (most
significant bits) part and LSB (least significant bits) parts.
The 15 resistors are selected by the thermometer code of
the MSB control bits for better matching. The 16 parallel
connection of 2R generates 1/8R. The series-connected 7/8R
makes the output resistance of the DAC to be R.

The differential DAC outputs with varying input code are
shown in Fig. 10.

The two-stage comparator in AOCL is shown as Fig. 11.
The comparator consists of pre-amplifier stage with NMOS
latch load and positive-feedback full latch stage. The latch

FIGURE 11. 2-stage comparator in AOCL.

FIGURE 12. 12-Bit SAR control logic in AOCL.

FIGURE 13. Die photograph of AFE.

stage is reset when CLK = H. The input signal of the latch
stage is regenerated when CLK transits from L to H. The
differential outputs of the latched stage, Vout+ and Vout−,
are latched using SR-latch, and generate VCOMP_OUT . The
operating clock of the comparator is 1 kHz. Because the
comparator evaluates the amplified bridge offset at the CFIA
output node, in the point of the input referred noise of CFIA,
the input offset of the comparator is divided by the gain
of CFIA. In this design, the additional offset cancellation
scheme for comparator stage is not applied.

The SAR logic is shown in Fig. 12 [27]. The SAR logic
block is made up with 2-column and 14-row flip-flops. The
first column flip flops operate as shift register that receives

VOLUME 10, 2022 12391



M. Yoo et al.: Low-Noise Resistive Bridge Sensor AFE Using Chopper-Stabilized Multipath CFIA and AOCL

FIGURE 14. Transient response measurement result of CFIA.

FIGURE 15. Transfer function measurement results of the CFIA.

FIGURE 16. Input referred noise of the CFIA.

data from the comparator. The second column’s flip flops
store data from first column, update the comparator outputs,
and generate the DAC control input.

Initially the MSB of the DAC input is set to H, and the
LSBs are set to L. After the output offset is evaluated by
comparator, the comparator output is updated to MSB. This
operation is repeated to LSB successively. After completing
the successive output of data, the end of conversion flag is set
to high and the AOCL operation is finished.

III. EXPERIMENTAL RESULTS
A die photograph of the proposed low noise AFE for the
resistive bridge sensor is shown Fig. 13. The circuit was

FIGURE 17. CMRR of the CFIA.

FIGURE 18. PSRR of the CFIA.

implemented on a 3.4 mm × 3.4 mm die, using a 0.18 µm
1 p6m CMOS process. The active area of the circuit is
5.87 mm2. The supply voltage and current consumption are
3.3V and 123 µA. The chopper frequency is 125 kHz.

The DC gain of the CFIA is programmable with a 5-bit
register, from 15.56 dB to 44.14 dB. The gain-bandwidth
product is 1.92 MHz. The time domain measurement results
with 26.44 dB and 32.25 dB gain are shown in Fig. 14.

Fig. 15 shows the measured transfer function of CFIA.
An input sinusoidal signal of 10mV amplitude with 1.65V
DC using a dynamic signal analyzer (Agilent 35670A) was
applied.
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FIGURE 19. Input-referred offset voltage of the CFIA.

FIGURE 20. Measurement result of auto offset calibration loop process.

The measured input referred noise is shown in Fig. 16.
The blue and black lines represent the simulated and mea-
sured results, respectively. The simulated and measured
input referred noise are 28.1 nV/

√
Hz and 14.6 nV/rtHz,

respectively.
The measured common mode rejection ratio (CMRR) and

power supply rejection ratio (PSRR) of the chip are shown
in Fig. 17 and Fig. 18, respectively. Around DC frequency
(averaged from 1 Hz to 100 Hz), a high CMRR of 100.7 dB
and a high PSRR of 93.2 dB are achieved. Themeasured input
offset of the CFIA is shown in Fig. 19. The peak-to-peak input
referred offset ranges from -23.20 to 22.92 µV. The averaged
input referred offset is 1.01 µV.
The measured results of the AOCL operation are shown

in Fig. 20. The yellow, cyan, green, and purple waveforms
represent the 1 kHz AOCL clock, end-of-conversion (EOC)
output of AOCL, positive output of CFIA (VOUT+), and
negative output of CFIA (VOUT-), respectively.

The differential input signals with 200 mV differential
offset and 1.65 V (= VDD/2) common mode were applied.
After the AOCL operation, the output offset is reduced to
around 1 LSB (0.8 mV = 3.3 V/4096). The calibration time
for AOCL operation is 12 ms.

IV. CONCLUSION
In this study, we designed a low noise and low power AFE for
resistive bridge sensors. The system consists of a multipath
CFIA, 12-bit SAR ADC, 4th order LPF, buffer and SPI block.

The AFE is designed as a multipath amplifying circuit based
on chopper stabilization. To reduce the ripple signal from the
up-modulated offset through the chopper, we exploited an
RRL scheme.

The multipath configuration of the CFIA covers the notch
characteristic of RRL. To calibrate the offset caused by
the resistive bridge sensor, an AOCL using a binary search
algorithm is utilized. The AFE operates with a 3.3V sup-
ply voltage and a chopper frequency of 125 kHz. Table 1
shows the performances of proposed scheme and existing
designs. Compared to the recent state-of-the-art results, the
AFE achieved a low NEF of 6.1 with low input referred
noise (15 nV/

√
Hz) and low current consumption (123 µA).

The proposed circuit can minimize the offsets in the bridge,
and the high and low frequency amplifiers. The experimental
performance demonstrates that this design can achieve a high
precision resistive-signal acquisition performance than that of
the current state-of-the-art designs.
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