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ABSTRACT Control of the power converters in renewable energy systems for stability and efficiency poses a
technical challenge due to the intermittency of energy produced and inherent nonlinear dynamics. This paper
presents a parametric optimization framework amid the synthesis of an adaptive fuzzy with sliding mode
controller for a class of switching power converters suited for renewable energy systems. Four performance
metrics essential to the practical needs are suggested. The potential design parameters of the controller are
determined, and their influences on the performance metrics are studied and validated. A many-objective
optimization problem is formulated accordingly, and a computational platform based onMATLAB/Simulink
environment is established to solve the problem. Two multi-objective global search algorithms, i.e., particle
swarm and bat optimization, are employed to obtain a set of Pareto optimal controllers, which noticeably
enhance the performance metrics of the control system. An experimental platform with dSPACE controller
board is utilized to further justify the simulation results. With those optimal controllers, the experimental
results also demonstrate improvement of the performance.

INDEX TERMS Adaptive fuzzy control, bat optimization, many-objective optimization, particle swarm
optimization, phase-shift pulse width modulation full bridge DC-DC converter, sliding mode control.

I. INTRODUCTION
All high-performance applications require a regulated and
stable power supply, which in turn demands an intermedi-
ate voltage regulator circuit for energy conversion of high
quality. Renewable energy systems, such as photovoltaic
(PV), wind, and battery storage, have been allocated to the
power grids and electric vehicles [1]–[3]. The intermittency
of the energy, i.e., randomly varying output, generated by
those systems deems power electronic converters a vital part
of the systems [4]. Power converters, such as buck, boost,
flyback, push-pull, and full bridge converters, have been
developed to interface those energy sources for stable and
efficient power conditioning and control [5]. It is worth
notice that power intermittency and load variation would also
drag the power converter off its designated operating point,
and stimulate the nonlinear dynamics of the components
within the converter [6]–[8]. Therefore, control of power
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converters in renewable energy applications is a technically
challenging task.

Feedback controllers have been adopted to enhance the
performance of the power converter from the aspects of
transient and steady state responses [9]. Depending on the
situation of application, simple or complex control algorithm
may be considered. Simple controllers such as proportional-
integral ones are easy to implement. However, they are
usually designed for a certain operating point, thus is not
resilient to input and parameter variation (i.e., lacks robust-
ness). Robustness of these controllers have been improved
for renewable energy applications, but achieving high perfor-
mance is only possible when a thorough understanding of the
converter in various operating points [10], [11] can be done.
Control system design often comes across uncertainties. The
uncertainties are due to disturbances, unknown parameters,
nonlinear or unmodeled dynamics. To deal with nonlinear
dynamics, feedback linearization is one common technique
utilizing feedback to cancel part of or all the nonlinear terms.
Adaptive feedback linearization can tackle both unknown
parameters and nonlinear dynamics of certain structure
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TABLE 1. Optimization algorithms applied to DC-DC power converters.

(e.g., which can be linearly parameterized). For more generic
types of uncertainties, a revision, also known as adaptive
fuzzy control, has been shown to be effective [12]–[14].
Adaptive fuzzy control uses radial basis function network
(or fuzzy inference network) to approximate uncertainties
of unknown parameters and structure [15]–[17]. Due to the
network output being a linear combination of the outputs
from the hidden nodes (i.e., radial basis or fuzzy membership
function), the approximated uncertainties become linearly
parameterized. Sliding mode control is robust to external dis-
turbances and nonlinearities of no prior knowledge [18]–[20].
However, either the existence of unmodelled dynamics or
improper controller design may result in high-frequency
switching, i.e., issue of chattering. High-order sliding mode
controllers may attenuate chattering. However, chattering
caused by the unmodelled dynamics cannot be eliminated.

A few parameters of the controller can be decided by
following the design procedure of a control algorithm, mostly
related to stability or steady state convergence (the first con-
cern of control system design). Other parameters of the con-
troller, which have connection with alternative performance
indicators, are mainly customizable. Analytical relation-
ship between those performance indices and the customiz-
able parameters is usually complex or not clear. Therefore,
determination of those parameters poses a challenge when

performance requirements apart from steady state response
are also critical [21]. Optimization algorithms have been
applied to power converters pursuing better conversion effi-
ciency, lower switching losses, better time-domain response,
and other objectives. Relevant previous works can be sep-
arated into two categories. The first category focuses on
the design of converter components, e.g., transformer turn
ratio, values of capacities, and inductances [21]–[26]. The
second category concentrates on the design of controller
parameters [27]–[33]. A detailed comparison is provided in
Table 1. As can be seen, most works effectively improve the
performance of the power converters, but no particular one
outranks the others. Note also that most works only deal with
single objective optimization. Neither do they consider the
robustness of the control system.

Optimization algorithms have been applied to parame-
ter design of the sliding mode controllers, e.g., gain and
sliding surface [34]. Instead of trial and error, optimiza-
tion approach can effectively reduce the effort and time
for acquiring feasible controller parameters. Works on sin-
gle objective optimization, e.g., minimizing operation cost
or reliability, have been reported [23], [26], [35]. When
more than one performance indices are deemed essential,
resorting to multi- or many-objective optimization is sensi-
ble. Many-objective optimization refers to multi-objective
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optimization problem containing large number of objectives,
typically four or more. Two commonly used global optimiza-
tion algorithms, suited for many-objective optimization, are
particle swarm optimization and bat optimization [36]–[39].
Both are metaheuristic or swarm intelligence algorithms
in terms of their mimicking collective behavior of ants,
birds, fish, insects, or bats. Studies have shown that bat
optimization algorithm solves constrained or unconstrained
optimization problems with better robustness and efficiency.
Not only can the algorithm increase the diversity of solu-
tions in the population, it also has an automatic mechanism
to balance exploration and exploitation during the search
process.

This paper proposes a parametric optimization framework
amid the synthesis of a robust adaptive fuzzy controller
for a class of switching power converters. The open-loop
system is a phase-shift pulse width modulation (PSPWM)
full bridge DC-DC power converter, which is of practical
interest due to features such as wide-range voltage output,
high efficiency, etc. A comprehensive mathematical and the
corresponding numerical model for this converter has been
established in [40] and will be adopted in subsequent opti-
mization and simulation. The closed-loop controller is an
integration of adaptive fuzzy and sliding mode controls, and
possesses advantageous traits from both design paradigms.
The controller encompasses a set of customizable or design
parameters, which will be adopted by the optimization prob-
lem to be formulated. Besides steady state error of the out-
put voltage, alternative performance metrics, i.e., voltage
ripple, peak load current, and transient efficiency, are also
considered. To begin with, the negative or positive influ-
ence of the design parameters on performance metrics is
studied. Conflicting performance metrics are also clarified.
Next, a many-objective optimization problem is formulated.
Subsequently, two global optimization methods, i.e., particle
swarm optimization and bat optimization, are employed to
numerically solve the problem and identify a set of Pareto
optimal controller. Both simulation and experiment will be
performed to validate the effectiveness of those optimal con-
trollers. In summary, the main contributions of this work are
as follows:
• A parametric optimization framework with multiple per-
formance requirements is proposed, which is applicable
to the synthesis of a robust adaptive fuzzy controller for
a class of switching power converters.

• A many-objective optimization problem is formulated.
Performance metrics of common practical needs are
defined, and design parameters which influence the per-
formance metrics are identified.

• Both computational and experimental platforms are
established to automate and facilitate the acquirement
of Pareto optimal controllers and the validation of the
respective performance.

• The capability of the Pareto optimal controllers, in terms
of the performance metrics, are justified both by simu-
lation and experiment.

FIGURE 1. The overall control system.

The rest of the paper is organized into Section II–VII.
The operation and the state-space model for a PSPWM full
bridge DC-DC power converter is reviewed in Section II,
followed by design and synthesis of the adaptive fuzzy with
sliding mode controller. Section III introduces performance
metrics incorporated for the power converter and defines
them quantitatively. The parameters of the adaptive fuzzy
with sliding mode controller and their effect on the four indi-
cators are studied. Section IV formulates the corresponding
many-objective optimization problem. Two global optimiza-
tion algorithms along with the concept of Pareto front for
solving the problem are described in the context of this appli-
cation. In Section V, a computing framework for parametric
optimization of the controller is proposed. The control system
with various sets of Pareto optimal parameters is numerically
simulated, and the respective sets of performance metrics are
compared. In Section VI, experimental setup is described and
the results are demonstrated. Conclusion and future work are
detailed in Section VII.

II. ADAPTIVE FUZZY WITH SLIDING MODE CONTROL
SYSTEM
As illustrated in Fig. 1, the overall system has the structure
of a PSPWM full bridge DC-DC power converter and an
adaptive fuzzy with sliding mode controller. This section will
summarize the operation and first-principle modeling of the
converters, which is followed by design and synthesis of the
controller.
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FIGURE 2. Operation waveforms and timing diagram of PSPWM full
bridge DC-DC power converter.

PSPWM full bridge DC-DC power converters draw practi-
cal interest due to characteristics like wide-range voltage out-
put, high efficiency, etc. This category of converters provides
voltage translation as well as isolation from the line voltage
since the circuit topology includes a transformer. A typical
PSPWM full bridge DC-DC power converter consists of five
key components, as shown in Fig. 1(a), which are metal oxide
semiconductor field effect transistors (MOSFET) switches,
PWM signal generator, leakage inductance, high frequency
transformer, and rectification filter, from primary side to
secondary side. With the help of leakage inductance Llk and
resonance capacitances (CA, CB, CC , and CD), the power
converter accomplishes zero voltage soft switching (ZVS),
achieving high efficiency power conversion.

The waveforms of primary current iLlk , secondary current
iL , voltage between point a and b of primary side Vab, and
secondary voltage Vs, as well the timing diagram for the four
switches QA, QB, QC and QD of a PSPWM full bridge DC-
DC converter, is illustrated in Fig. 2. Specifically, the system
dynamics of the full bridge power converter can be divided
into eight (or ten) regions, labeling from one to eight, where
four of them are in positive half cycle: trailing leg transition
region from t0 to t1, active region from t1 to t2 (this region
actually contains one additional sub-region of duty cycle loss,
i.e., t1 to t12), leading leg transition region from t2 to t3, and
passive region from t3 to t4, and the other four regions are in
negative half cycle, respectively.

A set of elaborate control-oriented state variable models
comprising each operation interval were established [40].
The corresponding computational model is established using
MATLAB/Simulink. The dynamics of the established model
has been justified to be close to that of a conventional
PSPWM full bridge DC-DC power converter in a laboratory

environment. This computational model will be utilized for
subsequent parametric optimization and verification.

From the perspective of control system design, utilization
of elaborate computational model is advantageous and occa-
sionally indispensable in various scenarios (e.g., reducing
time and effort of design iteration, saving cost of experimen-
tation). When it comes to controller synthesis, a sophisticated
model is often too complex to be tackled with standard
techniques. Hence, model reduction techniques are com-
monly employed to reduce the computational cost and storage
requirement. The goal is to obtain a low dimensional model
that encompasses the imperative dynamics of the sophisti-
catedmodel. The ‘neglected’ dynamics can be addressed later
on by adopting appropriate control paradigm.

Refer to the models established for the ten (including duty
cycle loss) operation intervals [40]. Suppose that the extent
of time is 1 for completing a cycle of operation (positive
and negative half cycles). An averaging state-space model
of the PSPWM full bridge DC-DC power converter can be
formulated as

ẋ (t) = Ax (t)+ Bu (t) ,

y (t) = Cx (t) , (1)

where u(t) is the input voltage of the power converter vi(t),
y(t) is the output voltage of the power converter vo(t). With
vCA the voltage across CA, vCB the voltage across CB, vCC the
voltage across CC , and vCD the voltage across CD, the state
x(t) is defined as

x(t) = [iLlk (t) iL(t) vo(t) vCA (t) vCB (t) vCC (t) vCD (t)]
T.

(2)

The matrices A, B and C are defined in (3), as shown at
the bottom of the next page, where L and C are inductance
and capacitance of the rectification filter, R is load, and n
is turn ratio of the transformer. Note that d1, d2, d3, and d4
are percentage durations with respect to four of the operation
intervals (duration of the remaining one is 0.5 − d1 − d2 −
d3 − d4). Disregarding the uncontrollable and unobservable
parts of the model, we obtain

[
i̇L
v̇o

]
=

 0
2d2 − 1
n2Llk + L

+
−2d2
L

1
/
C −1

/
RC

[ iLvo
]

+

 2
−nd1 + nd3 + nd4

n2Llk + L

0

 vi. (4)

Further simplification can be made by letting d1 = d4
(symmetry of operation) and n2Llk + L ∼= L (L � Llk ), and
setting 2d3 = d . We have[

i̇L
v̇o

]
=

[
0 −1

/
L

1
/
C −1

/
RC

][
iL
vo

]
+

[
nd
/
L

0

]
vi. (5)
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Equation (5) can also be obtained by neglecting the transition
intervals and taking only the dynamics of active and pas-
sive regions into consideration. Choose the state [x1 x2]T as
[iL vo]T , the input as d , and the direct output as vo. We obtain[

ẋ1
ẋ2

]
=

[
0 −1

/
L

1
/
C −1

/
RC

][
x1
x2

]
+

[
nvi
/
L

0

]
u and

y = x2. (6)

By input-output linearization, the output differential model
subject to disturbance is

ÿ = f (x)+ g(x)u+ η(t, x)

=

[
−1
RC2 x1 +

(
1

R2C2 −
1
LC

)
x2

]
+

( nvi
LC

)
u+ η(t, x),

(7)

where the plant disturbance η is nonzero and assumed to be
less than a positive constant d , i.e., |η(t, x)| ≤ d . In addition,
g(x) is assumed to have a positive lower bound, i.e., g(x) ≥
gL > 0. Define the tracking error as e = [y− ym ẏ− ẏm]T =
[e ė]T . Let s = [k1 1] (with a design parameter) and σ (e) =
se. Then, {e : σ (e) = 0} represents a sliding surface in the
tracking error space. The objective is to construct a control
input u so that lim

t→∞
e = 0. If f (x) and g(x) in (7) are certain

and η = 0, the control input can be specified as

u∗ =
1
g
(−f − µσ + ÿm − kT e), (8)

where µ > 0 and k = [0 k2]T (with a design parameter). Let
V = σ 2

/
2. We have

V̇ = σ σ̇ = σ sė = σ (ë+ s1ė)

= σ (ÿ− ÿm + kT e) = σ (f + gu− ÿm + kT e). (9)

Substituting the control law given by (8) yields V̇ = −µσ 2.
Thus, the sliding surface {σ (e) = 0} is asymptotically attrac-
tive and the system restricted to the sliding surface can be

made asymptotically stable with respect to the origin by an
appropriate choice of the parameter k1.

When f (x) and g(x) in (7) are uncertain and η 6= 0, we may
approximate both functions by

f̂ (x|θ f ) = θTf ξ f (x) and ĝ(x|θg) = θTg ξg(x), (10)

where ξ f (x) or ξg(x) is a set of radial basis function, θ f and
θg are adaptation parameters. Specifically,

θ f = [θ1f , . . . , θMf ]T , θg = [θ1g, . . . , θMg]T , (11)

ξ f (x) = [ξ1f (x), . . . , ξMf (x)]T , (12)

ξg(x) = [ξ1g(x), . . . , ξMg(x)]T , (13)

where M is the number of fuzzy rules (or radial basis func-
tions) and the elements of ξ f (x) and ξg(x) can be described
by

ξl,f or g(x) =

∏2
i=1 µF li

(xi)∑M
l=1

∏2
i=1 µF li

(xi)
, l = 1, . . . ,M (14)

whereµF li (·) is a Gaussianmembership function. The optimal
parameters are denoted by{

θ∗f = argminθ f [supx∈R2
∣∣∣f̂ (x|θ f )− f (x)∣∣∣],

θ∗g = argminθg [supx∈R2
∣∣ĝ(x|θg)− g(x)∣∣]. (15)

Assume that∣∣∣f (x)− f̂ (x|θ∗f )∣∣∣ ≤ df and
∣∣∣g(x)− ĝ(x|θ∗g)∣∣∣ ≤ dg, (16)

where df > 0, dg > 0. Elements of θ∗f and θ∗g are constant
and bounded as follows:

θLfi ≤ θ
∗
fi ≤ θ

U
fi , θLgi ≤ θ

∗
gi ≤ θ

U
gi for i = 1 . . .M . (17)

Define the parametric error of adaptation as

φf = θ f − θ∗f and φg = θg − θ∗g. (18)

A =



0 0 0
−n2d1

n2Llk + L
n2d1

n2Llk + L
n2d4

n2Llk + L
−n2d4

n2Llk + L

0 0
2d2 − 1
n2Llk + L

+
−2d2
L

nd1
n2Llk + L

nd1
n2Llk + L

−nd4
n2Llk + L

−nd4
n2Llk + L

0
1
C

−1
RC

0 0 0 0

2d1
/
(CA + CB) 0 0 0 0 0 0

−2d1/(CA + CB) 0 0 0 0 0 0

−2d4/(CC + CD) 0 0 0 0 0 0

2d4/(CC + CD) 0 0 0 0 0 0



,

B =
[
0, 2
−nd1 + nd3 + nd4

n2Llk + L
, 0, 0, 0, 0, 0

]T
, and C = [0, 0, 1, 0, 0, 0, 0]. (3)
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The adaptation law is specified as

θ̇ f = Proj
(
γf σξ f

)
, θ̇g = Proj

(
γgσξgua

)
, (19)

where γf and γg are positive design parameters. The projec-
tion operator is defined by

θ̇i(t) = Proj (αi(t)) =


0 if θi = θLi and αi(t) < 0,
0 if θi = θUi and αi(t) > 0,
αi(t) otherwise.

(20)

The control law is specified as
u = ua −

1
gL
µσ + uslide,

ua =
1

ĝ(x|θg)
(−f̂ (x|θ f )+ ÿm − kT e), uslide = −ksσ,

(21)

with selection of ks described in the proof of the subsequent
theorem.
Theorem 1: The control law (21) along with parametric

adaptation law (19). If uslide satisfies{
σ
(
f − ÿm + kT e+ gua + guslide + η

)
≤ γ,

σuslide ≤ 0,
(22)

with γ > 0, we have the following:
1) σ 2(t) ≤ e−2µtσ 2(0)+ γ

/
µ.

2) If η = 0 and there exists θ∗f and θ∗g such that f (x) =

θ∗Tf ξ f and g(x) = θ∗Tg ξg, the origin of the
[
σ φf φg

]T -space
is stable and hence σ (t), φf (t), and φg(t) are bounded and
lim
t→∞

e(t) = 0.

Proof: Let V = σ 2
/
2.

V̇ = σ σ̇ = σ (f + gu+ η − ÿm + kT e)

= σ (f + gua −
g
gL
µσ + guslide + η − ÿm + kT e)

≤ −
g
gL
µσ 2
+ γ ≤ −2µV + γ. (23)

V (t) ≤ e−2µtV (0)+
γ

2µ
(1− e−2µt ) ≤ e−2µtV (0)+

γ

2µ
.

(24)

Let V = 1
2 (σ

2
+

1
γf

φTf φf +
1
γg

φTg φg),

V̇ = σ (−
g
gL
µσ + f − θTf ξ f + (g− θTg ξg)ua

+ guslide)+
1
γf

φTf φ̇f +
1
γg

φTg φ̇g

= σ (f − θTf ξ f + (g− θTg ξg)ua + guslide)−
g
gL
µσ 2

+φTf
1
γf

Proj(γf σ ξ f )+ φTg
1
γg

Proj(γgσ ξgua)

= −
g
gL
µσ 2
+ σguslide − φTf ξ f σ + φTf

1
γf

Proj(γf σ ξ f )

−φTg ξgσua + φTg
1
γg

Proj(γgσ ξgua)

≤ −µσ 2
+ σguslide ≤ −µσ 2. (25)

It follows that the system is stable and σ (t), φf (t), and φg(t)
are bounded.

Let hf ≥
∥∥ξ f ∥∥ ∥∥∥θUf − θLf

∥∥∥ and

hg ≥
∥∥ξg∥∥ ∥∥∥θUg − θLg

∥∥∥ |ua|. When ks is specified such that

ks ≥
1
gL

(
d2f + |ua|

2 d2g
2γ1

+
h2f
4γ2
+

h2g
4γ3
+

d2

4γ4
), (26)

we show that (22) is satisfied. Indeed, considering (26) and
rearranging terms gives

σ (f − ÿm + kT e+ gua + guslide + η)

≤ σ (f − θ∗Tf ξ f −
d2f σ

2γ1
)+ σ ((g− θ∗Tg ξg)ua −

|ua|2 d2gσ

2γ1
)

− σ (φTf ξ f +
h2f σ

4γ2
)− σ (φTg ξgua +

h2gσ

4γ3
)+ σ (η −

d2σ
4γ4

).

(27)

Completing the square yields

σ (f − ÿm + kT e+ gua + guslide + η)

≤ (
f − θ∗Tf ξ f
√
2 df

/
√
γ1

)2 + (
(g− θ∗Tg ξg)ua
√
2 |ua| dg

/
√
γ1

)2

+ (
φTf ξ f

h2f
/
√
γ2

)2 + (
φTg ξgua

h2g
/
√
γ3

)2 + (
η

d
/√

γ4
)2

≤
1
2
γ1 +

1
2
γ1 + γ2 + γ3 + γ4 = γ. (28)

Therefore, (22) holds. �

III. PERFORMANCE METRICS AND DESIGN PARAMETERS
An understanding of the features and parameters is crucial
for choosing applicable DC-DC power converters. Typical
‘‘static’’ parameters are input voltage range, output volt-
age range, and maximum required output current. Typical
‘‘dynamic’’ parameters are efficiency, output voltage ripples,
and load transient regulation. There are also various practical
aspects being regularly taken into consideration: EMI, size,
input voltage ripple, operating temperature, output ripple
frequency, failure rate, etc. When reviewing the features and
parameters of converters, it is important to understand the
different trade-offs between performance metrics. This helps
determine realistic expectations for the converter that best fits
the application. In this section, performance metrics incor-
porated for PSPWM full bridge DC-DC power converter are
introduced and quantitatively defined. The potential design
parameters of the adaptive fuzzy with sliding mode controller
and their effect on the four indicators are studied.

A. PERFORMANCE METRICS
Four metrics are incorporated in this paper for performance
evaluation of the PSPWM full bridge DC-DC power con-
verter: root mean square error (RMSE), voltage ripple,
switching peak load current, and transient conversion effi-
ciency. Optimize these four performance indicators at the
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same time is challenging due to some of them being conflict-
ing indices (as will be shown in subsequent study). In the fol-
lowing, we explain the practical meaning of the four metrics
and provide their mathematical definition.

The first metric is RMSE defined by

RMSE =

√√√√ 1
N

N∑
k=1

[
e (k)2

]
and e(k) = Vref (k)− Vo(k),

(29)

where k indexes the ordered samples, N is the number of
samples, e(k) is the difference between reference voltage
Vref (k) and output voltageVo(k). For this study, both transient
and steady-state responses will be accounted for this metric.
Hence, it is sensitive to large errors in a set of measurements
and well reflects the quality of transient dynamics of the
converter. The second metric is voltage ripple Vripple, which
assesses the quality of steady-state dynamics of the converter.
It is defined by

Vripple =
1
2

[
max
k

Vo(k)−min
k
Vo(k)

]
. (30)

For static reference voltage, voltage ripple can also be evalu-
ated by

max
k

Vo(k)− Vref . (31)

The third metric is switching peak load current iL,max, which
is generated as the power converter is switched on. It induces
a sudden component stress and may fasten the degradation of
the converter. The switching peak load current is defined by

iL,max = max
k
(iL (k)) , (32)

where iL(k) is the load current. The fourth metric is transient
efficiency Ef . Different from the conventional definition, the
transient efficiency focuses on the transient dynamics of the
converter between switching on and reaching steady state.
The transient efficiency is defined as

Ef =
Vo(rms)Io(rms)
Vi(rms)Ii(rms)

× 100%, (33)

where Vo(rms), Vi(rms), Io(rms), and Ii(rms) represent the effec-
tive (RMS) values of the output voltage, input voltage, output
current, and input current, respectively.

B. DESIGN PARAMETERS
Controller parameters directly related to stability or steady
state convergence (the first priority of control system design)
are mostly determined when following the algorithmic design
procedure. Other controller parameters, which have connec-
tion with alternative performance indicators, are customiz-
able. Analytical relationship between those performance
indices and the customizable parameters is usually very
complex or not clear. Therefore, determination of those cus-
tomizable parameters poses a challenge when performance
requirements apart from steady state response are also criti-
cal. In this and next subsection, we will investigate influence

of various controller parameters on the performance metrics
proposed previously.

For this study, the number of fuzzy rules (i.e., M ) is set to
six. The Gaussian membership function µF li in (14) can be
expressed as

µF li
(xi) = exp

(
−
(xi − cl)2

2w2
l

)
, (34)

where cl and wl are often called the center and RMS width
(i.e., standard deviation) of the membership function, which
can be adopted as design parameters if their impact on afore-
mentioned performance metrics can be justified. A total of
twenty-four design parameters are available if the center and
width of the membership functions for both ξ f (x) and ξg(x)
are taken into consideration. The influence of varying the
parameters (i.e., range of center distribution and width) of
the Gaussian membership function in ξ f (x) on performance
metrics is studied first (parameters in ξg(x) and others are
kept at certain nominal values). The results are summarized
in Table 2. It is concluded that both sets of parameters impact
the performance metrics. Specifically, for the same range of
center distribution, the RMSE, the voltage ripple, and the
transient efficiency degrade as the width of the membership
function increase, whereas the peak load current is barely
affected. For the same width, the RMSE and the transient
efficiency degrade as the range of center distribution widens,
whereas the voltage ripple decreases and the peak load current
is barely affected. Similar trend can be observed when vary-
ing the parameters in ξg(x) (parameters in ξ f (x) and others
are kept at certain nominal values).

Next, the influence of varying the parameters within the
control law (k1 and k2 in k and s) and the adaptation law
(γf and γg in (19)) on performance metrics are investigated
(parameters in ξ f (x) and ξg(x) are kept at certain nominal
values). The results are summarized in Table 3 and Table 4.
It is concluded that both sets of parameters also impact the
performance metrics. As shown in Table 3, as k1 increases
with other parameters fixed, both the RMSE and the voltage
ripple reduce and the transient efficiency improves, but the
peak load current deteriorates. When k2 increases with other
parameters fixed, the RMSE degrades gradually and the peak
load current decreases whereas the voltage ripple and the
transient efficiency are barely affected. As shown in Table 4,
both γf and γg affect the performance metrics analogously.
When both parameters increase, the RMSE and the voltage
ripple reduce gradually, the transient efficiency improves, and
the peak load current is hardly affected.

IV. MANY-OBJECTIVE GLOBAL OPTIMIZATION
The key elements in formulating an optimization problem are
selection of a set of decision variables (design parameters)
and objective functions (performance metrics). It is important
to only include in the formulation the decision variables that
certainly influence the objective functions. It is also useful
to understand whether the adopted objective functions are
conflicting or consonant. In the previous section, we identify
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TABLE 2. Impact of the width (w) and range of center distribution ([0,20],
[0,30], [0,60]) of the membership function in ξ f (x) on performance
metrics of the converter.

and define a set of performance metrics: RMSE, voltage
ripple, switching peak load current, and transient efficiency.
We also determine three groups of decision variables: centers
(cl) and widths (wl) of the fuzzy membership functions in
ξ f (x) and ξg(x), k1 and k2 in the control law, and γf and γg in
parametric adaptation law. Define the decision variable

p = [c1f ,w1f , c2f ,w2f , c3f ,w3f , c4f ,w4f , c5f ,w5f , c6f ,

w6f , c1g,w1g, c2g,w2g, c3g,w3g, c4g,w4g, c5g,

w5g, c6g,w6g, k1, k2, γf , γg],

(35)

TABLE 3. Impact of varying k1 and k2 in the control law on performance
metrics of the converter.

where subscripts f and g are added to further denote the
association of cl and wl with ξ f (x) and ξg(x), respectively.
This section will proceed with formulating a many-objective
optimization problem, which is stated formally as

minimize φ(p) =
[
RMSE Vripple iL,max −Ef

]T
, (36)

subject to

cmin,f ≤ c1f , c2f , c3f , c4f , c5f , c6f ≤ cmax,f ,

cmin,g ≤ c1g, c2g, c3g, c4g, c5g, c6g ≤ cmax,g,

wmin,f ≤ w1f ,w2f ,w3f ,w4f ,w5f ,w6f ≤ wmax,f ,

wmin,g ≤ w1g,w2g,w3g,w4g,w5g,w6g ≤ wmax,g,

kmin ≤ k1, k2 ≤ kmax, γmin ≤ γf , γg ≤ γmax,

(37)

where φ(p) is a vector of objective functions, cmin,f , cmax,f ,
cmin,g, cmax,g, wmin,f , wmax,f , wmin,g, wmax,g, kmin, kmax,
γmin, and γmax are lower and upper bounds for the decision
variables. The bounds on the decision variables define a
decision or search space for the problem. Setting reasonable
bounds can prevent the optimization algorithms from settling
on impractical solutions (e.g., large values, zeros, negative
values, and so on). Note that the minus sign on Ef indicates
that this objective function is to be maximized. Two multi-
objective algorithms, i.e., particle swarm optimization and
bat optimization, are utilized to search the solutions. Both
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TABLE 4. Impact of varying γf and γg in the parametric adaptation law
on performance metrics of the converter.

are swarm-based algorithms, by which they deploy a set
of decision variables (i.e., particles or bats) into the search
space and modify them based on certain rules. During the
search process, the best-so-far decision variables will be
tracked and recorded for subsequent determination of the
optimal solution. Moreover, originally both algorithms are
only applicable to single objective optimization. To extend
their usage to many-objective optimization, both algorithms
require modification and encompass the concept of Pareto
solutions.

A. PARETO FRONT
Multi-objective function assigns to each decision variable a
multi-objective vector function value in the objective function
space. Instead of decision variable space, for multi-objective
problems, we are usually more interested in the objective
space and there is no natural ordering in this space. A solution
p1 dominates p2 if the following two conditions are satisfied
(nφ is the number of objectives){
φi
(
p1
)
≤ φi

(
p2
)
, for i = 1, 2, . . . , nφ

φj
(
p1
)
< φj

(
p2
)
, for at least one j ∈

{
1, 2, . . . , nφ

}
(38)

Hence, a solution is Pareto optimal, or nondominated,
if there exists no other candidate solution that decreases

some objectives without simultaneously increasing at least
one other objective. The set of Pareto optimizers is called
Pareto front. Computationally, the Pareto front is updated per
iteration once non-dominated solutions are obtained during
the search. Specifically, the newly acquired non-dominated
solutions at each iteration are stored in an external archive
of limited size. A scheme proposed in [41] may be utilized to
decide whether a new solution enters the archive or a solution
in the archive needs to be removed (i.e., update the Pareto
front).

This study incorporated the method proposed by [37], [38].
An adaptive grid is utilized to uniformly spread the non-
dominated solution along the Pareto front. The adaptive grid
divides the objective space into hypercubes. Each hyper-
cube is a bin that contains certain number of non-dominated
solutions. When the external archive is full and a new non-
dominated solution arrives, a solution in the most clus-
tered hypercube is randomly selected and removed from the
archive. To select a global best solution from the current
Pareto front, each non-empty hypercube is assigned with
a probability inversely proportional to the number of non-
dominated solutions it holds. Then, a hypercube is chosen
by employing roulette-wheel selection. From this hypercube,
the global best may be selected randomly. Note that this will
guide the search towards the area with less density of non-
dominated solutions. As for the personal best, at first it is
equal to the initial position of each particle or bat. At each
iteration, the new position of a particle or bat and its current
personal best are compared. If one dominates the other, either
the current personal best is kept or it is replaced by the
new position. If neither of them is dominated by the other,
a random selection is made.

B. PARTICAL SWARM OPTIMIZATION
Particle swarm optimization (PSO) is a population-based
stochastic optimization technique which shares many simi-
larities with evolutionary algorithms. PSO is initialized with a
population of random solutions, i.e., particles. Each particle is
configured with velocity, position, cognitive and social traits,
and personal experience history of fitness values. Each parti-
cle flies through the search space, i.e., updates its position,
based on three information: velocity inertia, best personal
fitness, best group fitness. To apply PSO to the formu-
lated many-objective optimization problem, the selection and
adaptive grid schemes introduced previously are adopted.
At the beginning of the optimization, the particles are ran-
domly initialized in a given space satisfying (37). The fitness
of each particle is evaluated based on the performancemetrics
defined previously. An initial set of nondominated solutions
can be determined using the scheme proposed in [41] and
stored in an external archive. The particles update their posi-
tions and velocities by{
vk+1i = ωvki + c1r

k
i ◦ (p

k
i,best − p

k
i )+ c2s

k
i ◦ (p

k
best − p

k
i ),

pk+1i = pki + v
k+1
i ,

(39)
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where ◦ is Schur product, vki and pki are the velocity and
position of particle i, respectively, at iteration k . Besides,
ω is an inertial constant, c1 and c2 are cognitive and social
constants, rki and s

k
i are vectors of random numbers in (0,1).

At each iteration, the personal best pki,best and the global
best pkbest are determined by the aforementioned approach.
The algorithm (including pseudo codes) is summarized as
follows:

initialization (k = 0)
(1) Determine the numbers of particles and iterations.
(2) Initialize the position and the velocity of each
particle.
(3) Initialize an external archive of certain size for
storing Pareto solutions. This archive also stores
the personal best of each particle.
(4) Evaluate the fitness of each particle by (36).
(5) Determine the non-dominated solutions and store
them in the external archive. Generate hypercubes of
the search space and position the particles in these
hypercubes based on their objective function values.
(6) Select the global best from the archive.
(7) Set the personal best of each particle to the
corresponding initial position.

end initialization
while (k = k + 1 ≤ maximum number of iterations)

(1) Update the velocity and the position of each
particle according to (39).
(2) If any decision variable within the position of a
particle exceeds the bounds described by (37), it
will take the value of the corresponding lower or
upper bound.
(3) Evaluate the fitness of each particle by (36).
(4) Update the non-dominated solutions in the
external archive and perform adaptive grid scheme.
(5) Select the global best from the archive.
(6) Update the personal best of each particle.

end while

C. BAT OPTIMIZATION
Bat optimization (BO) is inspired by the echolocation ability
of microbats during foraging. The echolocation behavior is
similar to an active sonar system which sends out loud sound
pulses and listens to echoes. Utilizing this ability, the bats
can proactively locate their prey, distinguish the type of the
prey, and avoid obstacles in a complete darkness environ-
ment. BO is also initialized with a population of random
solutions, i.e., bats. Each bat is configured with velocity,
position, frequency of sound, loudness, and pulse emission
rate. The selection and adaptive grid schemes introduced
previously are also adopted to apply BO to the formulated
many-objective optimization problem. The bats are randomly
initialized in a given space, i.e. (37). The fitness of each bat
is evaluated according to the performance metrics. An initial
set of nondominated solutions can be determined using the
scheme proposed in [41] and stored in an external archive.

The bats update their positions and velocities by
freqki = freqi,min + β(freqi,max − freqi,min),
vk+1i = ωvki + freq

k
i (p

k
i − p

k
best),

pk+1i = pki + v
k+1
i ,

(40)

where freqki , v
k
i , and pki are the frequency, velocity, and

position of bat i, respectively, at iteration k . freqi,min and
freqi,max are the minimum and maximum frequency, β is a
random number in (0,1), and ω plays the same role as the
inertia constant in PSO. At each iteration, the global best
pkbest is determined by the aforementioned approach. Here we
adopt several nomenclatures for PSO. Equation (40) is quite
similar to (39). However, BO has one additional feature, i.e.,
local search or random walk, which may further improve the
solutions. The local search is conducted by

pki,new = pbest + εĀ
k , (41)

where pbest is a solution selected among the current set of
non-dominated solutions (different from pkbest), ε is a random
number in (−1,1), and Āk is the average of the loudness Aki
for all bats at iteration k . pki,new is the new position to replace
pki . Note that there is a probability mechanism (depending on
the loudness and the pulse emission rate) which determines
whether the local search is carried out for each bat at each
iteration. The loudness Aki and the pulse emission rate γ ki are
updated by

Ak+1i = αAki , γ
k+1
i = γ 0

i (1− e
−γ k ), (42)

where α and γ are constants typically in (0,1), the initial
emission rate γ 0

i is any value in [0,1], and the initial loudness
A0i can be set in [1,2]. α is analogous to the cooling factor in
simulated annealing, which influences the convergence rate
of the algorithm. The algorithm (including pseudo codes) is
summarized as follows:

initialization (k = 0)
(1) Determine the numbers of bats and iterations.
(2) Initialize the position, the velocity, the frequency,
the loudness, and the pulse emission rate of each bat.
(3) Initialize an external archive of certain size for
storing Pareto solutions.
(4) Evaluate the fitness of each particle by (36).
(5) Determine the non-dominated solutions and store
them in the external archive. Generate hypercubes
of the search space and position the particles in
these hypercubes based on their objective function
values.
(6) Select the global best from the archive.

end initialization
while (k = k + 1 ≤ maximum number of iterations)

(1) Update the frequency, the velocity, and the
position of each bat according to (40).
(2) Perform a local search:
for (each bat i)
If (random number > γ ki )
Perform a local search according to (41).
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TABLE 5. Specification of a laboratory PSPWM full bridge DC-DC power
converter.

If (random number < Aki and p
k
i,new is not

dominated by pkbest) Set p
k
i to p

k
i,new.

end if
end if

end for
(3) If any decision variable within the position of a
particle exceeds the bounds described by (37), it
will take the value of the corresponding lower or
upper bound. Also, the sign of the respective
decision variable within the velocity is reversed (i.e.,
positive to negative and vice versa).
(4) Evaluate the fitness of each particle by (36).
(5) Update the non-dominated solutions in the
external archive and perform adaptive grid scheme.
(6) Select the global best from the archive.

end while

V. PARAMETRIC OPTIMIZATION OF THE CONTROLLER
As described in Section II, design and synthesis of adaptive
fuzzy with sliding model controller is based on a reduced-
order model with specified uncertainty bounds. A comput-
ing framework is proposed in this section for parametric
optimization of the controller. In order to have sophisticated
dynamics in the output response for realistic evaluation of
the performance metrics defined previously, a sophisticated
model is required for the simulation framework. Specifically,
the controller is connected with the elaborate computational
model [40] (instead of the reduced-order model) in subse-
quent numerical simulation for analysis of the overall control
system. Besides the simulation results having better practi-
cability, this also reduces hardware design effort and saves
experiment cost.

A. SIMULATION SETUP
A computational platform based on MATLAB/Simulink
environment is established for parametric optimization of
the controller (see Fig. 3). The mathematical model of the
PSPWM full bridge DC-DC power converter along with the
adaptive fuzzy with sliding mode controller is realized and
implemented in Simulink. The specification of a laboratory

power converter to be used for subsequent experiment is
detailed in Table 5. The many-objective optimization algo-
rithm (PSO or BO) is implemented in MATLAB. For each
iteration, an updated set of design parameters is generated by
the optimization algorithm (in MATLAB), and given to the
controller of the adaptive fuzzywith slidingmode control sys-
tem for numerical simulation (in Simulink). After each simu-
lation is completed, performance metrics are evaluated and
provided to the optimization algorithm for further actions,
e.g., updating the design parameters and the Pareto front.

For synthesis of the adaptive fuzzy with sliding mode
controller, apart from design parameters, there are other
parameters which are relevant to stability, e.g., θLfi, θUfi ,
θLgi, θUgi , df , dg, ks, γ , µ, etc. It is advisable to ‘manually’
determine the values of those parameters. Likewise, there
are user parameters within PSO and BO algorithms, which
need to be determined beforehand., e.g., upper and lower
bounds for design parameters, number of iteration, number of
particles or bats, number of hypercubes, weights for correc-
tion terms to velocity, maximum and minimum frequencies
of bats, maximum/minimum loudness of bats, etc. Some of
those parameters might influence the convergence property.
For this study, the upper and lower bounds for centers are
set to 300 and 0, respectively. The upper and lower bounds
for widths are set to 80 and 1, respectively. The upper and
lower bounds for k1, k2, γf and γg are set to 50,000 and 10,
respectively. The numbers of iteration, particles/bats, and the
size of external archive are set to 50, 10, and 10, respectively.
Other parameters are set to typical values provided in the
literature.

Note that several sophisticated dynamics, which might
affect performance metrics, are included in the numerical
model of PSPWM full bridge DC-DC power converter: PWM
driver, phase-shift switching logic, and ZVS delay. In order
to capture the above dynamics, the sampling frequency needs
to be set to a much higher value than, for example, the
PWM frequency (50 kHz). Therefore, a sampling frequency
of 10 MHz is used for simulation. On a laboratory computer
with Intel Core i7 (9700) 3.4 GHz CPU and 16GB RAM
running MATLAB/Simulink R2020b, it takes approximately
20 minutes to complete a 2.5 seconds simulation for the
adaptive fuzzy with sliding mode control system. Execution
time of the optimization algorithm, performance metric eval-
uation, and Pareto front update also adds to the simulation
time. Therefore, a full cycle of optimization run takes around
seven days to complete. In the Conclusion section, methods or
techniques for speeding up the simulation will be discussed.

B. PARETO SOLUTIONS
The many-objective optimization problem formulated
by (36)and (37) is numerically solved based on the com-
putational framework proposed previously. Both PSO and
BO algorithms are utilized to produce separate Pareto fronts
for comparative study. Recall that at each iteration the opti-
mization algorithm will generate a set of feasible design
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FIGURE 3. A computational platform based on MATLAB/Simulink
environment for parametric optimization of the controller.

TABLE 6. A set of candidate Pareto solutions obtained amid BO.

parameters. Then the selection mechanism described previ-
ously is applied to extract candidate non-dominated or Pareto
solutions from this set of design parameters. Note that the
adopted selection mechanism can only approximate the ‘true’
Pareto front. The accuracy depends on factors such as number
of particles, number of iterations, initial positions of particles,
etc. A set of candidate Pareto solutions during BO is listed in
Table 6. As can be verified that those solutions all satisfy (38)
for the definition of non-dominated solutions.

The Pareto fronts are acquired after the specified
number of iterations. Since there are four performance
metrics, it is not possible to demonstrate the Pareto

fronts in four-dimensional space. Alternatively, ‘‘projected’’
two-dimensional metric-versus-metric presentation is
adopted and three representative results are shown in
Fig. 4. Specifically, Fig. 4(a) shows the ‘‘projected’’ two-
dimensional Pareto fronts for RSME versus voltage ripple,
Fig. 4(b) shows the Pareto fronts for transient efficiency
versus peak load current, and Fig. 4(c) shows the Pareto front
for RSME versus peak load current. Recall that the size of
the external archive for storing Pareto solutions is set to ten.
As can be seen, BO performs better than PSO in locating
the Pareto fronts for RSME versus voltage ripple and RSME
versus peak load current. Nevertheless, PSO performs better
in locating the Pareto front for transient efficiency versus peak
load current. An unoptimized case (with a set of parameters
obtained empirically) is also marked on each figure for com-
parison. All performance metrics corresponding to the unop-
timized case can be seen to be dominated by those obtained
using MOBO. They are only ‘partially’ dominated by those
obtained using MOPSO, which indicates that the Pareto
front associated with MOPSO can be further improved, e.g.,
more iterations. The unoptimized case actually almost lies
on the projected Pareto front (RMSE versus voltage ripple)
located by MOBO. Overall, both the MOPSO and MOBO
identify various sets of design parameters, with which the
corresponding controllers can noticeably improve the perfor-
mance of the PSPWM full bridge DC-DC power converter.
Note, however, that the conflicting nature of the performance
metrics are also observed from Fig. 4, i.e., having one metric
minimized for a solution comes at a price of having the other
metric maximized and vice versa. Quantitative improvement
is summarized in Table 7. The adaptive fuzzy with sliding
mode controller using one of the Pareto solutions acquired
from the MOPSO can reduce the voltage ripple by 55.81%,
reduce the peak load current by 21.73%, and improve the
transient efficiency by 2.59% despite RMSE being sacrificed.
Similarly, the controller using one of the Pareto solutions
acquired from the MOBO can reduce the RMSE by 17.00%,
reduce the voltage ripple by 31.40%, reduce the peak load
current by 29.73%, and improve the transient efficiency by
1.79%. The current and voltage responses corresponding to
the unoptimized case and two of the Pareto solutions (which
produce minimum or maximum performance metrics) are
shown in Fig. 5. The design parameters corresponding to
Fig. 5(b), rounded to the nearest integers, are k1 = 25, 134,
k2 = 40, 596, γf = 20, 071 and γg = 25, 408, and the design
parameters corresponding to Fig. 5(c) are k1 = 7, 533, k2 =
7, 557, γf = 10, 522 and γg = 25, 673. The corresponding
fuzzy membership functions are given in Fig. 6.

The Pareto solutions acquired correspond to a set of con-
trollers for the PSPWM full bridge DC-DC power converter.
One characteristic of any two controllers from this set is
that a gain in a performance metric from one controller to
the other happens only because of a sacrifice in at least
on other performance metric. This trade-off property raises
a question concerning how a practitioner makes a final
choice among the non-dominated controllers. If the decision
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TABLE 7. Quantitative improvement of the PSPWM full bridge DC-DC power converter using the Pareto optimal controllers.

FIGURE 4. Projected two-dimensional Pareto fronts.

maker has additional information regarding the preference
of each performance metric, he/she may create a hyperplane
(i.e., a single-objective function) by forming a weighted sum
of the performance metrics with the weight indicating the
importance. Locating the approximate tangent point of this
hyperplane with the Pareto front will provide the decision
maker with an optimal solution. An example is illustrated
in Fig. 4(a). Suppose that only trade-off between RMSE and
voltage ripple needs to be made. The red curve in the figure

FIGURE 5. The current and voltage responses corresponding to the
unoptimized case and two of the Pareto solutions.

is the Pareto front obtained using the MOBO algorithm. The
blue line represents a single-objective function by forming the
weighted sumor linear combination of these two performance
metrics. The approximate tangent point is around RMSE =
2.964 and Vripple = 0.011. When there is no ‘actual’ tan-
gent point, adjacent data point may be identified and used
instead.
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FIGURE 6. The fuzzy membership functions (with design parameters of
centers and widths) corresponding to two of the Pareto optimal
controllers.

dSPACE control panel

Peripheral circuit

PSPWM full bridge DC-
DC power converter 

Cement resistor

FIGURE 7. An experimental platform with dSPACE controller board.

VI. EXPERIMENTAL RESULTS
An experimental platform is utilized to further justify the
proposed parametric optimization scheme for controller syn-
thesis. This platform, as shown in Fig. 7, mainly consists of
a PSPWM full bridge DC-DC power converter (as described
in [42]) and a dSPACEDS1104 controller board (with periph-
erals and software) for rapid control prototyping. The power
converter allows voltage output ranging from 0V to 50 V. The
controller board supports models created within Simulink
environment and provides efficient method to develop and
test new control strategies quickly without manual program-
ming. More explicitly, to adopt the adaptive fuzzy with
sliding mode control system developed previously (within
Simulink environment) and implement it on the experimental
platform, certain alterations are essential: (1) The model for
the PSPWM full bridge DC-DC power converter is removed

FIGURE 8. The current and voltage responses corresponding to the
unoptimized case and two of the Pareto solutions (signal 1: load current;
signal 2: voltage output; signal 3: voltage error).

from the control system and replaced by a physical converter
(see Fig. 7). Some I/O blocks are added to the model serving
as software and hardware interface; (2) Peripheral circuits
(e.g., voltage and current sensors and transducers) connecting
the power convert to the controller board are made; (3) The
model for the adaptive fuzzy with sliding model controller
requires certain modification (e.g., replacing fuzzy member-
ship function with its numerical approximation) to ensure
compatibility with the software for the controller board.

The current and voltage responses for the converter with
a typical set of unoptimized controller parameters (formerly
used for Fig. 5(a)) are shown in Fig. 8(a). The current
and voltage responses corresponding to the Pareto solutions,
which produce minimum or maximum performance metrics
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(as formerly shown in Fig. 5(b)(c)), are shown in Fig. 8(b)(c).
As expected or predicted by the simulation results, the
responses with optimized controller parameters demonstrate
significant improvement when compared to those of the
unoptimized case. Specifically, the output voltage in Fig. 8(b)
is closer to the reference output, resulting in smaller RMSE.
The transient efficiency is also maximized in this case. The
voltage ripple in Fig. 8(c) is less than that for the unoptimized
case and the peak load current is also minimized. Overall,
the experimental results suggest that the proposed paramet-
ric optimization scheme achieves 29.62, 25.00, 30.16, and
1.69 percentage of improvement in RMSE, ripple voltage,
peak load current, and transient efficiency, respectively. Note
that the amplitude of the peak load current for the power
converter of the experimental platform is less than that for the
simulation model. This may due to the snubber circuit com-
posed by the parasitic parameters of switches or other electric
components in the hardware-implemented power converter.

VII. CONCLUSION AND FUTURE WORK
A parametric optimization framework amid the synthesis of
a robust adaptive fuzzy controller for a class of switching
power converters applicable to renewable energy systems
is presented in this paper. Four performance metrics essen-
tial to the practical needs of renewable energy application
are suggested, and the corresponding many-objective opti-
mization problem is formulated. MOPSO and MOBO are
employed to numerically solve the problem and obtain a set of
Pareto optimal controllers. Both simulation and experiment
validate that those optimal controllers significantly improve
the performance metrics of the control system.

Although the proposed optimization framework is only
demonstrated for one set of operating point, i.e., input and
output. To obtain the Pareto optimal controllers for other
operating points, simply repeat the procedure described.
Therefore, the decision maker will have numerous sets of
optimal controllers with each corresponding to an operat-
ing point. Note that individual performance metric can have
different emphasis with respect to different operating point,
i.e., various sets of weights can be designated to perfor-
mance metrics for different operating points. Afterwards,
the weighted sum method, e.g., Fig. 4(a), can be used to
choose the most appropriate controller for each operating
point. It is also feasible to apply the proposed method to the
scenario where parametric optimization is performed over
a set of operating points, which will become an expansion
of this work. However, it would be suspected that con-
trollers obtained from such greedy strategy can have superior
performance.

Another issue is regarding the lengthy off-line simulation
time required utilizing the proposed computational platform
for parametric optimization. Immediate solutions might be to
upgrade the computing hardware or consider parallel com-
puting using multiple computers (and merge the results). The
major bottleneck of time is mainly due to the elaborate model
incorporating the dynamics of the phase-shift PWM. Under

the circumstance that the impact of the PWM dynamics on
the performance metrics is negligible, the model can be fur-
ther simplified, which should significantly reduce the time
of simulation. Moreover, parts of the performance metrics
adopted for this work, e.g., RMSE and efficiency, may be
revised so that they are evaluated at each iteration or every
few iterations. The controller parameters may be updated at
the same pace. Therefore, machine learning algorithm such as
reinforcement learning may be considered to perform on-line
parametric optimization, which will require only one simu-
lation run. Note, however, that not all performance metrics
can be assessed immediately amid numerical simulation. This
will be another future expansion of this work.
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