
Received November 11, 2021, accepted December 12, 2021, date of publication January 19, 2022, date of current version February 11, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3144913

BULWARK: A Framework to Store
IoT Data in User Accounts
JEREMY LYNN REED 1 AND ALI ŞAMAN TOSUN2
1Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
2Department of Mathematics and Computer Science, The University of North Carolina at Pembroke, Pembroke, NC 28372, USA

Corresponding author: Jeremy Lynn Reed (jeremy.reed@my.utsa.edu)

ABSTRACT The explosive growth of the Internet of Things (IoT) devices raises serious concerns for a user’s
privacy and security because the existing software framework on these devices often support various default
features and generate large data sets. Moreover, many IoT devices incorporate a manufacturer-owned cloud-
based back-end support to process and store the generated data while simultaneously sharing with third
parties. Clearly, in such an industry-driven environment with the desire to use the IoT data as a revenue
stream, it is a challenge for users to control IoT data. Device manufacturers utilize an opaque software
design where user data is generated and stored with little transparency. Manufacturers use EULAs as a
legal construct to protect a manufacturer’s legal standing and to explain a device’s behavior, however this
explanation is vague and lacks the necessary details for a user to determine a device’s acceptable use and
it has become increasingly difficult for users to secure and maintain their data. Fortunately, as the privacy
minded user base of IoT devices grows, the manufacturers will be forced to implement a new framework that
can enable users to have more control on the creation of their IoT data, and to store/disseminate such data
in a secure and private manner. In this paper, we address this lack of transparency from manufacturers and
address the issues of privacy and security by proposing a new framework called Bulwark, for manufacturer
use on IoT devices and mobile applications. Proposed framework enables the user to generate and manage a
set of data controlling rules, and store the result in their personal cloud account, while providing a dashboard
data reporting tool enabling data transparency and supporting good user choices. The user’s ability to access,
disseminate and secure IoT generated data, is now available within our proposed framework. Using reverse
engineering, simulation and implementation of open source solutions, we demonstrate support for a set of
common devices. Each device executed the framework, while communicating with a mobile application and
cloud services. Rules were generated for each message and telemetry was returned to the mobile application
for dashboard rendering. We stored generated data in the cloud using our own account, while maintaining
the free tier for each of the cloud services. Network usage increased between 4% and 9% while storage size
grew between 0% and 2% larger, as compared to using the device without the framework. Our framework
demonstrates support for a multitude of devices, by either open source or support for similar feature sets.
This framework is easy to integrate and we anticipate wide spread adoption.

INDEX TERMS IoT security, IoT privacy, cloud computing.

I. INTRODUCTION
Data privacy has received a lot of attention recently [1]
driven by the explosion of new areas of data generation and
aggregation. With the advent of social networks and search
engines, users are able to interact with the Internet in new and
novel ways. Social networks give access to an unprecedented
number of people while search engines translate queries into

The associate editor coordinating the review of this manuscript and
approving it for publication was Nadeem Iqbal.

aggregated data. Both genres of software open a flood gate to
user data. For the first time we can observe social interaction
on a massive scale and data mine this behavior. IoT devices
were designed as a natural extension of this evolution. Instead
of limiting a user’s interaction to a web browser, IoT devices
were created to directly interface social media.Mobiles appli-
cations enabled access to photos, video and GPS features.
Customized devices such as Siri and Alexa directly cou-
ple home automation and home security to their respective
manufacturers. This expansion of function is not limited to

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 15619

https://orcid.org/0000-0002-7499-5747

J. L. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

compute devices as the IoT model expanded into every facet
of our lives. Cloud based architectures for IoT devices while
commonplace, raise numerous privacy concerns. Since IoT
sensor data often embeds private user information, sending
this data to the cloud service implies that the cloud analytic
service has the ability to extract and process this information.
In many cases, the embedded information is not related to
the original purpose for which the data was collected, and
can result in data disclosure with unintended consequences.
As an example consider the recent privacy issue introduced
when Strava, a popular fitness tracking app used by runners,
published anonymous heat maps of popular running routes.
Even though personal data was scrubbed from the application
and the generated maps, the location data contained in the
running routes inadvertently revealed the locations of secret
military bases [2]. In short, it was easy to extrapolate whowas
running in the desert by location, frequency and route. Main-
taining user privacy in the face of cloud-based IoT services is
a challenging problem. One approach is to use IoT devices
‘‘locally’’ without the benefit of a back-end cloud service.
This implies a user lacks control of their IoT devices while
not connected to a home network, limiting the functionality
of a device. IoT devices represent a concern for older users,
as the difference between devices which have occupied their
homes for many years and their corresponding ‘‘smart’’ iter-
ation is not obvious. For example, smart refrigerators track
device usage, generate shopping lists and translate each list
to a supermarket order, however the functionality needed to
generate an accurate list and communicate with a grocer’s
API may not be obvious to the average consumer. Cameras
are needed to observe the contents and remote computing is
used to discern food type and quantity. An account is used
to correlate this data to a grocer’s account and historical
food consumption is stored with both the refrigerator account
vendor, as well as the grocer account. It is this disconnect in
device function that presents a challenge to the security and
privacy of user data. It is projected that more than 100 billion
devices will be Internet-connected by 2025 [3], and with
a current value of $267 billion per year [4], an investment
of security spending at about 1% [5] is under funding the
problem. Given the lack of security engagement, we chose to
tackle this problem as an opportunity to build new research
around these devices. Our work focuses on storing IoT data
in cloud services user accounts such that a user gains control
over the creation, dissemination and storage of their own data.
Figure 1 (left) represents a common network for a manu-
facturer’s solution. The device is executing a closed source
solution which brokers data between the mobile application
and the cloud. The user is required to register an account with
the device manufacturer, which serves to identify the user,
while the underlying cloud services account is not disclosed
by the device manufacturer and serves as a single account
storage repository. Third-party services are implemented at
the device manufacturer’s discretion, often not disclosed in
a clear manner to the consumer. Figure 1 (right) represents
our vision of a secure and transparent IoT network solution.

By controlling data routing, we control when data is gen-
erated, how it propagates through the network and where it
is stored in the cloud. Our framework is called BULWARK
as it serves to build a wall between user data and non user
software. Contributions of the paper are as follows.

• We propose a framework which stores IoT data in a
user’s chosen cloud account and provide the user full
control of the data.

• The proposed framework has many desirable features
including easy to use interface, easily scales as device
support grows, low cost, data transparency, secure data
storage and enforceable rules.

• The proposed framework is extensible to a wide range
of devices, reducing complexity of development.

• Cost of the framework falls under the free tier of all
major cloud service providers.

• Using the framework benefits device manufacturers by
eliminating the need to support cloud function for IoT
devices.

The rest of the paper is organized as follows: In section II,
we describe related work. Section III presents motivation and
section IV explains desirable features of such a framework.
Proposed framework is explained in section V and experi-
mental results are described in section VI. We discuss various
issues in section VII, framework extensions in section VIII
and conclude with section IX.

II. RELATED WORK
In this section, we describe related work on various aspects of
IoT systems including networking, security, data collection,
processing, device identification and practical implementa-
tion issues.

Various aspects of IoT Networking have been investigated
in the literature. Unlike traditional networked applications
or devices like a web browser or a PC, IoT applications
and devices serve narrowly defined purposes and do not
require access to all services in the network. Therefore, IoT
device communications should be default-off and desired
network communications must be explicitly enabled [6].
Resilient overlays for reliable delivery of sensor data from
IoT devices to distributed cloud service instances in the
face of localized failures for event detection, community
infrastructure management, and emergency response is pro-
posed [7]. One-to-many data transmission in smart devices at
close range is investigated in [8]. Prior methods require the
use of an extra application service where the operating sys-
tem differs between smart devices. In contrast, the proposed
method makes use of the smart device’s built-in speaker and
microphone to confirm the transmission signal. Data is then
transmitted via Wi-Fi or long term evolution. A scalable and
adaptivemodel which efficiently and quickly enforces control
schemes for IoT via a novel command messaging service is
proposed [9]. It is achieved by utilizing the n-tier scalability
of the cloud to generate vast networks of virtual machines.
Smart home IoT traffic is characterized in terms of its volume,

15620 VOLUME 10, 2022

J. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

temporal patterns, and external endpoints alongwith focusing
on certain security and privacy concerns [10].

IoT security has received a lot of attention recently.
LogSafe is a scalable, fault-tolerant logger that leverages the
use of Intel Software Guard Extensions (SGX) to store logs
from IoT devices efficiently and securely [11]. A utility-
preserving privacy technique, which intelligently obfuscates
smart energy meter data to prevent leaking a home’s private
occupancy information, while retaining the ability to per-
form useful energy disaggregation analytics is proposed [12].
An open-source toolkit for construction and deployment of an
authorization service infrastructure for IoTs is proposed [13].
The infrastructure uses distributed local authorization enti-
ties, which provide authorization services that can address
heterogeneous security requirements and resource constraints
in the IoT. Challenges of the IoT data communication frame-
work with authenticity and propose two approaches called
Dynamic Tree Chaining and Geometric Star Chaining that
provide authenticity, integrity, sampling uniformity, system
efficiency, and application flexibility to IoT data communica-
tion are addressed [14]. The problem of efficiently and effec-
tively securing IoT networks by carefully allocating security
tools is the focus of [15]. Theymodel the problem using game
theory, and provide a Pareto-optimal solution, in which the
cost of the security infrastructure, its energy consumption,
and the probability of a successful attack, are minimized.

Data collection and processing is another core issue of IoT
systems and attracted a lot of attention. Tethys [16] crowd-
sources the data collection process to residents’ smartphones
acting as gateways. These gateways are untrusted and unreli-
able, so Tethys implements end-to-end reliability and security
between the sensing device and a cloud backend. An indus-
trial IoT architectural framework that allows data offloading
between the cloud and the edge is proposed [17]. This frame-
work is used for telemetry of a set of heterogeneous sensors
attached to a scale replica of an industrial assembly plant. The
use of buildingWi-Fi data for quantitative evaluations of both
planned and unplanned evacuation events is explored [18].
Query processing for IoTs is investigated and analytic con-
ditions for the optimal coupling between the device energy
consumption and the incurred cloud infrastructure billing
is derived [19]. In a related paper, an analysis of standby
energy problem is provided, and four primary issues that
contribute to the standby energy problem based on a study
of commercially available smart devices are identified [20].

Device association and identification have also been
investigated extensively. New approaches take advantage of
ubiquitous light sources around to perform continuous device
grouping based on the similarity of light signals [21]. To con-
trol the spatial granularity of user’s proximity, it provides a
configuration framework to manage the lighting infrastruc-
ture through customized visible light communication. IoT-ID,
a device-specific identifier, that captures the device charac-
teristics and can be used towards device identification [22].
IoT-ID is based on physically unclonable functions (PUFs),

that exploit variations in the manufacturing process to derive
a unique fingerprint for integrated circuits. A calibration-
free passive sensing approach that utilizes human-device
motion to determine the user, body location of each device
is proposed [23].

Recently, approaches based on machine learning are
applied to IoT systems. The impact of timing errors on a
multimodal fusion classifier for human activity recognition is
quantified [24]. For compact CNNmodels, it is challenging to
sustain high inference performance due to limited and varying
inter-device bandwidth. A streaming inference framework to
simultaneously improve throughput and accuracy by commu-
nication compression is proposed [25].

Edge computing support for IoT, fault tolerance and
testbed design are practical aspects of the work done on
IoT systems. Data replication strategies and a real-time and
fault-tolerant edge computing architecture for IoT applica-
tions are investigated [26]. ECCO [27] is an orchestration
framework that enables edge-cloud collaborative computing
for road context assessment to detect and react efficiently
to road hazards. IoTREPAIR [28] is a fault-handling sys-
tem for IoT that integrates with fault identification modules
to track faulty devices, provides a library of fault-handling
functions for effectively handling different fault types and
provides a fault handler on top of the library for autonomous
IoT fault handling, with deployed devices, user prefer-
ences, and developer configuration as input. LinkLab [29]
is a scalable IoT testbed for heterogeneous devices that
not only supports running experiments but also supports
remote development via a web-based IDE and remote
compiling.

Other relevant work includes design and development
issues including architecture, modular approaches and design
patterns. Horizontal integration, where sensors and actuators
from different applications can interconnect with any compu-
tational IoT application is investigated and a layered protocol
architecture for scalable innovation and identification of
network economic synergies in IoTs is proposed [30]. IoT
applications are generally black-box, end-to-end application-
specific implementations, and cannot keep up with timely
resolution of all this live, continually updated, heterogeneous
data. A modular approach to context-aware applications,
breaking down monolithic applications into an equivalent
set of functional units, or context engines is proposed [31].
By exploiting the characteristics of context-aware applica-
tions, context engines can reduce compute redundancy and
computational complexity. Awide range of design disciplines
involved in creating IoT systems, that act as a seamless
interface for collaborating heterogeneous things, and suit-
able to be implemented on resource-constrained devices
are identified [32]. The IoT patterns covered vary in their
granularity and level of abstraction. They are inter-related,
well-structured design artifacts, providing efficient and reli-
able solutions to recurring problems discovered by IoT sys-
tem architects.

VOLUME 10, 2022 15621

J. L. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

FIGURE 1. Comparison of Default and Bulwark Environment.

III. MOTIVATION IN PROVIDING A SECURE
AND PRIVATE FRAMEWORK
An examination of IoT manufacturing practices has yielded
a common thread in device behavior. In almost every device
examined, back end storage and processing via cloud services
was used to enable remote functionality. When considering a
small set of devices allowing users to opt out of remote fea-
tures, a majority of these devices continued to communicate
with a cloud provider. It is a concerning trend when incorpo-
rating Internet connectivity into everyday products requires
remote storage and the dissemination of user data. As an
example, consider the many consumers who have purchased
IoT enabled refrigerators and are enjoying the remote capabil-
ities of the device, while lacking a fundamental understanding
of the included cloud services. Realizing the excitement of
issuing a command to an appliance and have it respond
accordingly, a user’s satisfaction might be tempered when
it becomes clear that their refrigerator contains an always
on always listening remotely connected microphone. In the
course of researching the subject, we observed a fundamental
disconnect between a user’s expectation of device behavior
and actual observed behavior. We believe this disconnect is
driven by years of interaction with non-networked devices
and developing an implicit expectation of device behavior and
carrying over this assumption to the IoT versions.

Another example of this disconnect is the introduction of
computingwithin automobiles. For many, the idea of combin-
ing an automobile with a concierge service and computing
resources represents a paradigm shift in vehicle interac-
tion. We forego paper maps and instead speak directly with
remotely connected humans, consult in car and Internet based
navigation services, and utilize an Internet connection for a
wide range of features. Vehicles guide us to our destination,
provide luxury services such as setting restaurant reserva-
tions, and connect us with emergency medical services as
needed. Introduce a mobile application and the autonomous

features expand further. Locating a vehicle is trivial using
nothing more than a phone and mapping software. Property
security is increased as mobile apps report alarm activation,
vehicle movement and real time location data. Consider-
ing these features, how many owners have considered the
scope of intrusion from multiple parties or the generated
data needed to support these services. To frame the ques-
tion in clearer terms, are we comfortable with automobile
manufacturers and third party vendors accessing real-time
audio, video and data. Communication of route and speed is
a necessary component for many of the outlined features, yet
most people feel that operating an automobile is an relatively
anonymous process. The result of an always on microphone
and camera, coupled with real time data generation, is real
time tracking.

Manufacturers acknowledge sharing aggregated data with
third parties and law enforcement, but stop short of clarify-
ing the data type and usage [33]. An industry has emerged
which caters to use formal aggregation of device data for
the purposes of criminal investigation [34]. One often asked
question is ‘‘Can generated data serve as a foundation for
prosecuting a crime?’’ Not only is this data used in criminal
prosecution, there are companies devoted to facilitating this
behavior [35]. These are the types of questions which raise a
red flag concerning the proliferation of IoT devices. We also
consider the issue that the current application of these fea-
tures is based on legal precedent and social norms, both of
which change over time. Based on this broad examination we
propose a set of boundaries, representing a clear delineation
between a user’s privacy and security, and the manufacturer’s
desire to include a user’s data as a revenue stream. The easiest
method of enforcing these boundaries is enabling a user to
maintain control of their data through the use of cloud account
ownership and a set of clearly defined rules. We propose this
change as a replacement for the current IoT device develop-
ment process.

15622 VOLUME 10, 2022

J. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

IV. DESIRABLE FEATURES OF AN IDEAL FRAMEWORK
An IoT framework supports communication between one or
more IoT devices, a mobile application and cloud services.
An ideal framework focuses on inserting boundaries into
these features, such that a user’s security and privacy are
respected. This is in contrast to a policy based model where
legal terms are defined within EULAS. EULAS represent
among other policies, a legal stance on a user’s data. Users
can accept or decline a EULA, but not modify the terms.
With this all or nothing approach, it’s clear to see how the
policy model favors device manufacturers. An ideal frame-
work should assert a set of limits which enforce a balance
between business needs and user rights. Desirable properties
of an ideal framework include the following.
• Ease of Use. Cloud services and associated credentials
are an additional layer of complexity to IoT ownership.
An ideal framework streamlines the process for creating
or using existing cloud credentials.

• Scalability. Pairing multiple devices to a single envi-
ronment is possible. When pairing, the framework will
recognize and reuse common parameters and reduce the
pairing steps. Instead of an application and cloud service
for each device, one environment serves a number of
devices.

• Cost. The cost of storing one’s data in the cloud
should not be prohibitively expensive. Most cloud ser-
vice providers offer a free tier. When possible, the cost
of an ideal framework would fall under the free tier.

• Data Transparency. A user should be able to view and
disseminate IoT generated data. An ideal framework
provides the ability to observe the generation, transmis-
sion and storage of data in real time.

• Secure Data Storage. A core tenant of an ideal frame-
work is the ability to remove a user’s data from a manu-
facturer’s access. Generating data within the framework
and storing the result in a user’s cloud account, ensures a
secure end to end process of data generation, observation
and storage.

• Enforceable Rules. Enforce the requisite boundaries
using a rules engine. Rules allow a user to accept or
reject device features, control data flow and lock down
the creation and sharing of data.

V. PROPOSED FRAMEWORK
Using the tenants outlined in an ideal framework, we designed
a framework to control data and empower the user with a
set of choices. Our framework executes on the device, in the
cloud and on the user’s mobile device. The framework con-
trols data flow with a permission, backed by corresponding
rules. The mobile application renders the user’s choices in
a set of dashboards, clarifying the current environment and
giving the user the ability to change their choices.

The framework design accounts for both user and man-
ufacturer needs by separating execution into three regions.
Amodular approach is used through object oriented program-
ming and design. Implementing a specific IoT device is as

easy as defining a set of interfaces. The framework consumes
these definitions and generates a set of dashboards and rules
for use within the mobile application. The Java programming
language was our choice for implementing our framework as
it’s object oriented approach and support for Remote Method
Invocation (RMI) was a natural fit for an abstract solution.
RMI also provides object versioning and a remote object
repository, which solves many of the problems associated
with intermittent network communication.

The framework executes in three environments. On the
IoT device the framework executes an API to listen for
commands and generates responses when appropriate. The
commands are validated and compared against the current set
of rules. If a command passes the verification process, it is
translated into a native device command and executed. The
mobile application is tasked with the initial configuration
of the device and the cloud service. Once configuration is
complete, the application will use three user interface panels
to interface with the device and the cloud service. Panel one
provides a user interface to control the device while panel two
reports telemetry data from the device and the cloud. A third
panel contains a set of rules generated by the framework and
the appropriate user interface to set their respective values.
The cloud service is a preconfigured environment, executing
within the context of the user’s cloud credentials. Data and
telemetry is stored within the cloud and commands are bro-
kered between the mobile application and the device enabling
remote interaction.

A. MODULAR APPROACH TO IoT DEVICE SUPPORT
The framework is built on Java RMI technology, such that
message passing between the device, the controlling appli-
cation and the cloud backing service is implemented as
remote objects. The framework defines a message schema
and enforces a strict message shape. Beyond this schema,
manufacturers are free to define meaningful messages based
on the available framework types and the implemented IoT
device.

In the Bulwark framework a Message represents the
basic building block of a manufacturer’s implementation.
A message is an abstract Java RMI object, implementing
Serializable and Message < T >. The schema enforces a
strict message type and a dynamic data payload. The associ-
ated message type has constraints associated with it, which
are used to enforce the user’s permission set. A message is
currently defined as follows as described in JSON format.

For example, consider a GPS enabled IoT device such as
a drone. We could define the command GetLatitude, which
returns the current devices’ latitude value, with the response:
‘‘Double’’. The response implementation is API: getGPSLat,
which returns the current device latitude. The portion of the
framework executing on the user’s application will query the
permission set, for permission to call the GPS API. If a com-
mand is prohibited by the current permission set, the message
is not sent. PKI is used to sign messages, such that mes-
sages injected on the network are ignored by the IoT device.

VOLUME 10, 2022 15623

J. L. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

PKI data is generated on first pairing of the controlling appli-
cation and the IoT device and stored in the cloud, which is
controlled by the user.
Object Wrapper: Messages are wrapped within RMI

objects and signed by the generating application. Commands
are generated by the user via the controlling application.
Responses are generated by the IoT device, and both types of
messages can be created and received within the cloud frame-
work. Messages are validated, wrapped, signed and classi-
fied as ‘‘Queue-able’’, or ‘‘real-time’’. Valid RMI objects
are prioritized by class and delivered based on this priority.
Expiry data is set within the RMI object, with default values
for ‘‘real-time’’ as ‘‘deliver or expire’’ and ‘‘queue-able’’ as
‘‘cache and deliver.’’ Cached commands are passed based
on the order of generation and the responding application
acknowledges the message by including the GUID.Messages
which do not generate a response will receive an acknowl-
edgement containing the message GUID.

1) CLOUD SERVICES
a: CONCRETE IMPLEMENTATION AND INHERITANCE
At the lowest level, each message contains data which
is unique to the specific IoT device. For example, the
getGPSLat implementation contains a formatted API call
to the GPS hardware and wraps the device response in a
response message. The message is formatted to only include
the latitude and is then inserted into an RMI object, signed,
stamped and executed. Given the previous steps, consider
two disparate IoT devices. Device A and B contain differing
hardware. The implementations differ only at the hardware
definition level. Inheritance allows both messages to contain
a single implementation, up to the hardware definition. This
approach overcomes the challenge of reducing message size,
publishing of prepared message templates, and for multiple
implementations to share message components.

B. FRAMEWORK COMPONENTS
The framework is divided into three areas: The mobile appli-
cation, Cloud services and the IoT device. The mobile appli-
cation controls the IoT device and displays telemetry. The
IoT device executes an API listener for message passing,

verification and rules enforcement and cloud services is used
to facilitate remote device interaction and storage.

1) IoT DEVICE
The device executes its own firmware and an instance of
the framework. Within the framework we execute cloud
telemetry, an instance of the authentication and rules engine
and in some cases a cloud OS, as shown in Fig. 2. The
device firmware is provided by the manufacturer and is used
to control the device. Commands are passed to the device
via the mobile application and the cloud. The command is
parsed, authenticated and matched against a set of rules. if the
command doesn’t match a rule or a deny rule matches, the
command fails with a telemetry entry. Entries are pushed to
the cloud and utilized for postmortem debugging of anoma-
lous behavior. Finally, framework commands are translated to
firmware commands via the message implementation and the
device executes the request. The telemetry engine represents
a common cloud interface to measure, aggregate and store
data. Measurement and aggregation is both controlled and
reported by the rules engine. The results are sent to the both
cloud and mobile application as telemetry data, where the
mobile application renders the data to the user and cloud
storage acts as a long term repository. A Cloud OS repre-
sents a unique configuration, where the user’s preferred cloud
supports the firmware implementation of the IoT device.
In this case, a portion of the framework authentication and
rules engine will execute within the cloud OS, authenticating
commands and generating telemetry data. Communication
between the device and the two counterpoints will continue
to pass through the framework, but in this case the framework
requests are processed in the cloud.

2) MOBILE APPLICATION
The mobile application contains the Command and Con-
trol and Telemetry and Rules panels, as shown in Fig. 3.
Command and Control exposes user interface objects for
device control and in the case of a smart switch, the panel
contains a toggle switch and user interface power button. The
switch toggles power and the user interface button lights up
on power activation. Telemetry contains a set of reporting
graphs, sharing real time and historical data. Historical data
is aggregated from the cloud and real time usage is reported
from the device. The rules panel contains rules for a given
IoT device and the appropriate controls to set the rule. In the
case of a smart switch the panel can contain a rule to allow
the reporting of switch state to the cloud and to allow remote
control, via any network. The first rule is a Boolean value
and the second is a user interface dialog box representing the
user’s choice. An example value could be

localNetwork:Yes,
RemoteAny:No,
10.0.0.0/8:Yes

In the example rule, rule one allows remote control from
any address on the local network. The second rule denies all

15624 VOLUME 10, 2022

J. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

FIGURE 2. IoT Device.

remote control outside of the device’s network and rule three
allows remote control from all class A network addresses.
Rules parsing stops at the first deny match, and otherwise
parses to completion. In the example rule, a local network
communication would parse as ‘‘Yes’’, as rule one allows
the communication and rule two does not prohibit it. If the
communicating network is remote and within a class A, the
result would be disallow, as rule two prohibits all non local
networks, regardless of rule three’s value.

3) CLOUD SERVICES
As shown in Fig. 4, cloud services represent the remote
compute and storage engine and is deployed as a single
instance per cloud account. To clarify this work and highlight
our challenges we will introduce an example implementation
based on Terraform [36] and AmazonWeb Services. We keep
the solution abstract, allowing crossover function in other
cloud providers, but use an AmazonWeb Services example to
avoid a vague discussion. The framework contains the initial
web APIs for all three cloud services. After generating the
shared secret and aggregating a user’s cloud credentials, the
mobile application references the appropriate cloud API and
initiates authentication. In the case of AmazonWeb Services,
the user’s credentials are used to determine the existence of
an instance of an executing cloud framework. If none exists,
Terraform is used to configure cloud objects. Initial deploy-
ment creates an instance of an Edge Lambda [37], a back
end Lambda [38], an Elasticache instance [39], a database
and an S3 bucket [40]. Each of these objects contain an inter-
nal network route enabling low latency inter-communication.
A nodeJS script is deployed to each of the Lambdas to process
requests.

a: EDGE LAMBDA
Executes at the edge of the cloud service and serves as the sin-
gle point of contact for the framework solution. The lambda
receives a request and unwraps the contents. The authenti-
cation token is verified as belonging to the user, the shared
secret is verified as belonging to a single iOS device and
the request is sanitized and validated for correctness. If the

request does not require a response, or the response is served
through caching, the Edge Lambda will respond via a call-
back and thework is complete. If the response requires further
computation, the sanitized request is forwarded to the back
end Lambda.

b: BACK END LAMBDA
Connects to an instance of Elasticache, a database and an S3
bucket. The purpose of this Lambda is to aggregate dependent
data from either Elasticache, the database or an S3 bucket.
The response is computed within the Lambda, cached within
the Elasticache instance and simultaneously sent back to the
mobile application and stored within the database and the S3
bucket.

c: ELASTICACHE INSTANCE
Stores the last nth% of cached responses, serving as an in
memory cache. Responses lacking the ‘‘no cache’’ property
and found within Elasticache are immediately returned to
the back end Lambda, reducing response time to 10s of
milliseconds.

d: S3 BUCKET
Used to store and return flat files, such as images and text.
If a request requires a file, the file is pulled from the bucket,
cached in Elasticache and returned to the back end Lambda.

e: DATABASE
Stores row entry items. We currently utilize the database for
device state and logging. Each of the rows can be cached
within the Elasticache instance, so long as the data is not
notated with ‘‘no-cache’’. A common example would be stor-
ing the current state of a smart switch and caching the result.
Subsequent state queries are returned from Elasticache, giv-
ing sub 10s of millisecond response times.

C. COMMUNICATION BETWEEN
FRAMEWORK COMPONENTS
Reliable cross environment communication is necessary for
a functioning framework and represents a core challenge.

VOLUME 10, 2022 15625

J. L. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

FIGURE 3. Mobile Application.

FIGURE 4. Cloud Services.

We introduced the use of local zone caching and a resilient
fall back process as a means to combat intermittent network
loss. Our broader design approach uses themobile application
as both a portal for human interaction and the initiating appli-
cation for device setup. The device executes a portion of the
framework formessage authentication and rules enforcement,
ensuring a user’s permissions are respected. The cloud service
is a remote layer between the application and the device, serv-
ing as a facilitator in interaction and storage. In the following
subsections, we dive deeper into this design philosophy and
highlight our solutions to common wireless IoT challenges.

The underlying technology for all network messaging is
Java Remote Method Invocation (RMI). We chose RMI as
it brings three key technical solutions: The remote registry,
object versioning and the ability to supersede an implemen-
tation. The remote registry provides an implemented caching
repository for messages. Message versioning is built into
RMI object versioning, allowing us to effortlessly super-
sede older implementations with newer solutions. In short,
messages are implementations of RMI objects. The object
wraps a message type, which contains an implementation

for message execution. Object fields store applicable rules
and extraneous data needed to process a message. When a
development team chooses to implement an IoT device the
process is streamlined to defining and implementing RMI
objects.

1) MOBILE APPLICATION AND CLOUD SERVICES
Using one our supported devices as an example, we walk
through the communication process of a smart switch.
A smart switch is a network enabled home light switch,
used in home automation to remotely control lighting. In our
framework, initial setup executes between the mobile appli-
cation and the device. The user’s cloud credentials are queried
and the Terraform file is executed. Upon completion the
shared secret and serial number are shared with the cloud and
the device receives the cloud API from the mobile applica-
tion. The mobile application is now paired to the device and
the device is paired to the cloud, allowing the application to
enter normal execution. Communication between the mobile
application and cloud services is represented in the following
steps:

15626 VOLUME 10, 2022

J. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

1) Upon first run of the mobile application, a shared
secret is generated and the user’s cloud credentials are
requested.

2) The mobile application contacts the provided cloud
service and authenticates the user and the framework
account. The framework cloud account contains a Ter-
raform application file, which is used to deploy the
framework cloud infrastructure as an instance within
the user’s account. The shared secret is stored in the
cloud, which completes cloud deployment. In the case
of an existing cloud infrastructure, the shared secret is
stored for the new iOT device.

3) The mobile application will periodically request
telemetry data from the cloud as initiated by the user
or a programmatic process, as part of the telemetry
dashboards.

2) MOBILE APPLICATION AND IoT DEVICE
Continuing our example of a smart switch, we focus on
communication between the mobile application and the IoT
device. The mobile application executes a multi-cast network
request for the smart switch. Lacking a response, the mobile
application blocks with the error that no device was found and
repeats interval request. When a response is received, an IP
address, sub-net mask and serial number are shared between
device an application. The mobile application generates a
shared secret using entropy, and the serial number. Cloud
services setup executes and the resulting cloud API is shared
with the device. Upon successful execution, the mobile appli-
cation is now paired to the device and the device is paired to
the cloud, allowing the application to enter normal execution.

1) The generated shared secret and cloud credentials are
shared with the IoT device and the device returns the
current set of feature rules. Feature rules represent a set
of generated rules, created during device implementa-
tion. For example, a feature which queries a GPS radio
will contain a set of corresponding rules providing user
controlled limits of the feature. These rules are stored
in the mobile application and a user interface panel is
generated.

2) Once a user finalizes the device rules, the results are
pushed to the device and stored as a set of hardware
permissions. Deployment is complete and the device
enters normal execution.

3) iOT DEVICE AND CLOUD SERVICES
a: EXAMPLE: SMART SWITCH
Upon completion of the mobile application and cloud ser-
vices setup, the device contains the generated shared secret,
the cloud API, cloud credentials and the user rules. Remote
commands are received from the cloud service and acted
upon appropriately. If an active connection exists between
the mobile application and the device, the responses for the
remote commands are mirrored to the application. Responses
are generated and sent to the cloud for processing and storage.

The device moves into a paired state, executing the following
steps.

1) The device is dormant until such time as it receives the
generated shared secret and cloud credentials.

2) Device rules are exchanged with the mobile application
and the device pushes the rule results to the cloud for
processing and storage.

3) Commands are received, validated and acted upon
based on the current rule set. If a cloud response exists
for a given rule, the response is packaged with the
shared secret, credentials and timestamp, and sent to
the cloud service for storage.

4) The IoT OS generates a response which is sent to both
the mobile application and the cloud service. This data
is used to track device interaction, health and provide an
audit trail for postmortem analysis of device behavior.

D. RULE IMPLEMENTATION
A Bulwark rule is an object representing the result of a user
permission. The rule is evaluated by the rules engine and a
Boolean is returned. This result is used to enforce a user’s
choice. When a message is implemented, the manufacturer is
in effect registering an RMI object and enlisting it into a set of
permissions. For example, the getGPSLat message requires
permission to access the GPS device. When the manufacturer
implements this call, the framework automatically generates a
set of user interface permissions, which are made available to
the user. The getGPSLat message generates the permissions
{Access GPS, return Absolute Values, return relative values,
return invalid values}. The last choice is important as it
allows a user to bypass a process where a feature is blocked.
Permissions are not implemented by the manufacturer and
are therefore inaccessible. Messages which are executed con-
tain a list of their associated permissions to track the types
of generated data. In our example, the getGPSLat message
has the ‘‘access GPS’’ permission associated with it. This
autonomously generates a user interface entry in the user’s
dashboard, which is used for reporting. The user is free to
change permission in real time, generating a superseding
rule value which propagates between the environments. Each
environment shares the latest version of a rule value and
previous values are logged within telemetry and deleted.

E. REPORTING
A dynamic dashboard is built into the user’s controlling
application. This dashboard is generated by the framework,
as driven by the manufacturer’s messages and displays a
set of user chosen data points. Continuing our example of
the getGPSLat command, the dashboard will contain a pic-
tograph of the number of message executions based on a
user chosen duration. In this example, we could display the
number of GPS coordinate queries, within a single day. Below
the pictograph, a user can scroll through an enumerated list
of return coordinates. This two fold process ensures a user
knows when a GPS device is queried, and what data has

VOLUME 10, 2022 15627

J. L. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

FIGURE 5. Translation Flow.

been returned. A user can subscribe to the available messages
and pivot on the returned data as well as unsubscribe to
dashboard entries which are no longer interesting. We pro-
vide a user the ability to customize the reporting tool and
choose the duration and format of the report, a solution to the
challenge of clearly reporting generated data. The framework
contains built in templates to ease the customization process,
where the templates represent a driven goal. For example,
the default dashboard template aggregates all generated data
which contains personally identifiable information. When a
user registers a device with the manufacturer, the manufac-
turer creates a form for the user to fill out. This form gener-
ates a set of permissions, which generate dashboard entries.
Entries which are either flagged by the manufacturer or the
user as personally identifiable information, are included in the
default template. The framework tracks its access and storage.
Messages containing the registration data are reported to
the dashboard as part of the default template. Blocking this
information is as easy as setting the associated permission to
deny, blocking all subsequent messages containing this data.

F. TRANSLATION LAYER
Bulwark’s translation layer, shown in Fig. 5 is designed to
authenticate, sanitize and verify a message. The rules engine
extracts and applies each rule to the framework command.
If allowed, The framework command is translated to a native
IoT command and is executed on the device. The translation
layer exists on both the cloud and the device and the code is
nearly identical, with the exception of differences as represent
within cloud dependencies. These dependencies are needed
to assist with execution of cloud object commands. This
pipeline uses a modular software paradigm, making it easy
for a manufacturer to extend a device’s command set, the
framework to add rules and the development team to leverage
revisions for deprecating and superseding an implementation.

1) AUTHENTICATION
A message’s shared secret and signature are extracted, the
message is unwrapped and the two security objects are veri-
fied. The signature and certificate are checked for validity and
revocation, the shared secret is verified and the framework
message is forwarded to the next step in the pipeline.

A framework message is passed in and the message is
checked for lexical correctness. A comparison is made for
each sub component of a message and an exception is created

FIGURE 6. Rule Validation.

for any malformed data. The message is verified and extra-
neous data is stripped from the message as preparation for
forwarding. If an exception exists, the process is halted and
the exception is forwarded to the cloud service for logging.
In the absence of an exception, the sanitized message is
forwarded to the next step.

2) RULE TRANSLATION
A framework message is passed in and the message Globally
Unique Identifier (GUID) is extracted. In this case, a GUID
provides a method to uniquely identify a message. The exis-
tence of the GUID in the rules hash table is checked and an
exception is created for its absence. A list of rules is extracted
from the hash table as shown in Fig. [6] and each rule is
parsed as a match for the current message. The logic of the
rules engine follows a default deny scheme, where this value
is overridden by the current rule result. If any rule resolves to
deny, parsing ends and the process halts with an explicit deny.
If none of the rules resolve to an explicit approve, the result
is the same as before. Upon parsing completion if a deny rule
is not matched and we at least one approve rule, the process
continues to the next step.

3) COMMAND TRANSLATION
A framework message is passed in and the GUID is extracted.
At this point we assume the passed in data is valid and we
attempt to look up the message GUID in the command hash
table as shown in Fig. [7]. If the table returns no data, the
process ends without a result or an exception. The assump-
tion is that the framework message is a stub and has yet
to receive a corresponding native implementation. If a valid
native command is returned, the command is executed within
the IoT device and if applicable, a response is generated. Not
all commands generate responses and all exceptions silently
fail, with the exception of logging.

VI. EXPERIMENTAL RESULTS
The experiment process consists of either implementation
or device simulation. We implement a device within our
framework, or we simulated a devices’ function within a
Raspberry Pi. Our results include measuring the number of
features, the complexity in implementation, the size of the
resulting permission set and dashboard and the cost of hosting
this device on a user’s cloud account. We further define a
feature as a function visible to the user and we define an
internal feature as one or more functions, designed to support

15628 VOLUME 10, 2022

J. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

FIGURE 7. Command Translation.

a feature. This is the most difficult challenge within our effort
as most IoTmanufacturers lock down device implementation.
For devices which supported an open source model, we were
able to implement much of the device, however the remaining
devices require either reverse engineering or simulation.

A. SMART PLUG
A smart Plug is a WIFI enabled electrical plug which uses
a local application and a cloud service to provide the smart
plug’s state and user control. We Implemented the device,
mobile application and cloud services within our framework
and we simulated the home automation features. The frame-
work produced seven permissions for six commands and
a single permission to cover home automation extensions.
Given additional work, the schema can support a granular
breakdown of a feature’s commands and produce a tree of
permissions and messages. The cloud services cost for this
device is within the free tier as network communication is
on the order of kilobytes per hour. Storage is on the order of
kilobytes and Lambda executions occur approximately once
per minute. Each of the metrics fall within the free tier all
three cloud services. The experimental data points are as
follows.
• Feature - Query device state: {On, Off}. Encap-
sulates as a single message and contains a single
permission. Perm: RemoteStatus {Allow, Deny, CIDR:
Allow,Deny}. Returns the device state.

• Feature - Toggle device state: {On, Off}. Encap-
sulates as a single message and contains a single
permission. Perm: RemoteStatus {Allow, Deny, CIDR:
Allow,Deny}. Returns the device state.

• Feature - Smart Home Access: Set of native com-
mands. Encapsulates any number of home automa-
tion native commands. Perm: AllowHomeAutomation
{Allow, Deny, CIDR :Allow,Deny}. Native command
response.

• Internal Feature - Email registration for Remote
Access: Bypassed by the framework. The manufacturer
currently requires a user to submit an email address,
before enabling remote access and control. This feature
is enabled by default and is controlled with the appro-
priate permissions.

• Internal Feature - Store device State in the Cloud: {On,
Off}. Controls storing the device state as a database row

TABLE 1. Smart Plug Summary.

TABLE 2. Smart Scale Summary.

and updating on request. Encapsulates as a single mes-
sage and contains a single permission. Perm: StoreState
{Allow, Deny, CIDR: Allow,Deny}. No response.

• Internal Feature - Return GPS Data: {On, Off}.
Encapsulates as a single message and contains
three permissions. Perm: EnableGPS {Allow, Deny}.
Perm: AllowRemoteAccess {Allow, Deny, CIDR:
Allow,Deny}. Perm: ReturnRelativeData {Allow, Deny,
CIDR: Allow,Deny}. Return GPS Data based on
permissions.

A summary of the smart plug is given in table [1].

B. SMART SCALE
A smart scale is a Wi-Fi enabled body scale designed to
capture human weight and store the results in a mobile appli-
cation and a cloud service. The product supports multiple
users, but requires the registration of an email account for
each. Lack of registration limits the function a local display
of weight. The device generates a timestamp, a weight and
correlates the data to a user. The data is shared with a mobile
application and stored in a cloud account associated with the
manufacturer. The device ships with a mobile application,
but supports the more common fitness applications alluding
to a common communication language. Both the scale and
the associated mobile application store previous data, while
the scale supports an API call to return stored data to the
application. In Bulwark, we treat historical data the same as

VOLUME 10, 2022 15629

J. L. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

TABLE 3. Garage Door Opener Summary.

current data, in that all data contains a time stamp, a weight
and a user. We de-duplicate responses by storing data as a
database row, keyed off of the user and the timestamp. The
cloud database is treated as the authority for user data and
deletion requests require a follow up user data request to the
cloud, which updates the mobile application.
• Feature - Query User Data: A query request, blocking
on device response. Encapsulates as a single message
and contains two permissions. Perm: AllowUserQuery
{Allow, Deny} and Perm: AllowUserQuery(User)
{Allow, Deny}. Returns historical user data null.

• Feature - Query Cloud User Data: A query request,
blocking on device response. Encapsulates as a sin-
gle message and contains two permissions. Perm:
AllowUserQuery {Allow, Deny} and Perm: AllowUser-
Query(User) {Allow, Deny}. Returns historical user
data.

• Feature -Remote Delete: A request to delete an instance
of data. Currently supported in the cloud, but not the
device. Encapsulates as a single message and con-
tains a single permission. Perm: AllowRemoteDeletion
{Allow, Deny}.

• Feature - Allow Third Party Integration: A boolean
value to set third party support. Encapsulates as a
single message and contains a single permission.
Perm: AllowThirdParty (Optional third party parameter)
{Allow, Deny}.

A summary of the smart scale is given in table [2].

C. OPEN SOURCE GARAGE DOOR CONTROLLER
A smart garage door controller is a Wi-Fi enabled home
automation device which is designed for third party home
automation solutions. This device contains an open source
solution which supports determining door position andmove-
ment of a user’s garage door. The device accepts commands to
open and close a garage door and returns the current position.
The open source nature of the software and the supplied SDK
allows us to easily integrate this device into Bulwark. The
device supports a number of third party solutions as well as
programming language clients.
• Feature - Query Door State: A query request, blocking
on device response. Encapsulates as a single message
and contains two permissions. Perm: AllowDoorState
{Allow, Deny} and Perm: AllowDoorStateRemote
{Allow, Deny CIDR: Allow, Deny}.

TABLE 4. Smart Switch Summary.

TABLE 5. Device Summary.

• Feature - Toggle Door State: Activate garage door
opener. Encapsulates as a single message and contains
two permissions. Perm: ToggleDoor {Allow, Deny} and
Perm: ToggleDoorRemote {Allow, Deny CIDR: Allow,
Deny}.

• Feature - Store Door State in the Cloud: A Boolean
value settings the remote storage option for the door
state. Encapsulates as a single message and contains
a single permission. Perm: StoreStateCloud {Allow,
Deny}.

A summary of the smart garage door opener is given in
table [3].

D. CLOSED SOURCE SMART SWITCH
A smart switch is a Wi-Fi enabled electrical light switch,
designed for third party home automation solutions. The
switch is part of a larger home automation solution, designed
to interact with a closed source mobile application. The
switch contains firmware which is modified via flashing and
the process is automated by periodic remote checks for a
new version of firmware. The switch hardware incorporates
on-off functionality and a five step dimmer switch, which is
designed to control any number of light bulbs. The hardware
constrains the supported devices to a limit of 300 watts and
does not support any item of electrical motor. It was a chal-
lenge to incorporate this device into our framework, as the
work required reverse engineering the on-off and dimmer
function commands. We were able to successfully control
the switch, albeit with intermittent success. Utilizing the two
control states, we were able to implement the commercial
features and expand on the feature set by including our own
design. The new feature includes a rules based engine, which
is designed to support simple variables. Variables are defined
with simple assignment or an API call. In the case of an API

15630 VOLUME 10, 2022

J. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

call, a timer is set to query an API and set the variable to
the returned value. This case supports dynamic function such
as setting $sunrise and $sunset to the current day’s values.
We can then set a rule to enable the switch at $sunset and
disable at $sunrise.

• Feature - Query Switch State: A query request, block-
ing on device response. Encapsulates as a singlemessage
and contains two permissions. Perm: AllowSwitchState
{Allow, Deny} and Perm: AllowSwitchStateRemote
{Allow, Deny CIDR: Allow, Deny}.

• Feature - Toggle Switch State: Activate lights via the
switch control. Encapsulates as a single message and
contains two permissions. Perm: ToggleSwitch {Allow,
Deny} and Perm: ToggleSwitchRemote {Allow, Deny
CIDR: Allow, Deny}.

• Feature - Set Dimmer Switch State: Activate lights
using one of the five dimmer states. Encapsulates
as a single message and contains two permis-
sions. Perm: SetSwitchint {Allow, Deny} and Perm:
SetSwitchRemoteint {Allow, Deny CIDR: Allow,
Deny}.

• New Feature - Toggle Switch State Based on Rules:
Dependent upon the rules for toggle switch and dim-
mer settings. Perm: ProcessRules{Allow, Deny CIDR:
Allow, Deny} and Perm: DefineByAPI{Allow, Deny
CIDR: Allow, Deny}

A summary of the smart switch is given in table [4].

E. OVERHEAD
In it’s current form there is little overhead to account for
when using our framework. Cloud manufacturers offer free
accounts, with generous limits on free tier usage. Where
applicable, the rules creation and translation process uses
a negligible amount of additional battery and storage. The
cloud component of the framework can be constrained to the
free tier and the overall network overhead is less than 10%,
when compared to a device implementation sans framework.
Overhead of our proposed framework can be summarized as
follows.

• Single digit percentage increase in traffic size.
• A small increase in the number of simultaneous connec-
tions as we introduce as greater coupling between the
device, the cloud and the mobile application.

• Storage growth is minimal as we remove duplicate
messages and older message versions.

In summary, the growth in storage and network communica-
tion is offset by the security and privacy features built into the
product. A summary of device results is given in table [5]

VII. DISCUSSION
Convincing users at scale to host their own cloud service
and manufacturers to compromise on data access is a sig-
nificant challenge to our success. Although some users may
see the immediate benefit to self hosting their device’s cloud
services, most people are not adept in software security and

would consider the change to be overly complex. Conversely,
devicemanufacturers will favor the current system as it favors
monetizing user data. Despite having a high bar of entry,
we believe inroads can be made by emphasizing the positive
attributes of a privacy minded framework. The key to success
is the combination ofmaking it easier to acquire and use cloud
credentials and a framework which reduces a manufacturers
cost to implement and maintain a myriad of devices.

A. USER PERSPECTIVE
Advantages of the proposed framework from a user’s perspec-
tive are as follows.
• Ease of Use: Themobile application enables a user to set
up a cloud services solution using their own credentials.
Once setup is complete the framework doesn’t require
additional maintenance to operate a device.

• Scalability: The framework supports any number of IoT
devices with a single application and instance of cloud
services.

• Data Transparency: The mobile application contains a
telemetry panel, which can be customized for tailored
data reporting. We support the ability to render data
generation by message and location as well as by data
propagation and storage location. The cloud service is
available for inspection and the user can log in to parse
their data.

• Secure Data Storage: A user’s data is secured in the
cloud, using their own credentials. The manufacturer
does not have access to the data and the user has sole
discretion in the data life-cycle.

• Enforceable Rules: The user is presented with a set of
rules per device message. the rules govern the scope and
nature of message behavior and the user can modify the
rules at will.

B. DEVICE MANUFACTURER PERSPECTIVE
Advantages of the proposed framework from a device manu-
facturer’s perspective are as follows.
• Manufacturing Costs: The fixed cost of implementing
our frameworkworkswell within the forecasting process
of determining the overall manufacturing cost. It’s easy
to determine engineering cost when design and imple-
mentation can be sized correctly for a project.

• The modular approach to the framework allows a man-
ufacturer to implement and support multiple devices,
using a single suite of software. When engineering over-
lap is found between devices, our framework makes it
easy to plugin previous solutions, reducing the overall
cost of a project.

• Development overlap is used to further reduce costs.
Once a development team successfully implements a
device, the cost of supporting additional devices is
reduced. As a developer becomes adept in using the IDE,
more of the work will involve the core implementation
and less of the time will be spent solving ancillary
problems.

VOLUME 10, 2022 15631

J. L. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

• Ease inManufacturing: The automation process works
well with a factory model where manufactures can
choose to create dynamic manufacturing lines, E.G.
lines which switch seamlessly between devices, without
having to adjust the software process.

• Our approach can lead to shorter device manufacturing
times, less bugs, which leads to fewer support resources
post shipping, and a positive experience by working in a
single ecosystem.

VIII. FRAMEWORK EXTENSIONS
We are exploring the use of private cloud services, credential
auto-generation and pooling, and the use of a single cloud
service which would securely support multiple users.

A. PRIVATE CLOUD
The private cloud is an instance of cloud services executing
in a customers local environment and each of the cloud ser-
vice providers offer a private cloud solution. Leveraging the
advantages of the framework and the private cloud to include
the following.

• Encapsulation of Network Traffic: A private cloud
enables network traffic containment within a customer’s
secure environment.

• Control of Cloud Services: Executing an instance of
a private cloud enables a customer to retain ownership
of cloud administration. Removing the attack vector of
a publicly accessible cloud, facilitates the hardening of
the cloud service’s security.

• Greater Control of Monitoring: Although a public
cloud offers a diverse set of environment monitoring,
a private cloud enhances this ability. Given the location
of a private cloud, a customer can lock down network
routers and further control cloud access. Telemetry can
be deployed to the private cloud servers, providing data
outside of the virtual environment.

B. SECURE COALESCING OF CLOUD SERVICES
A cloud service is by design a set of virtual objects which are
designed to provide function at an extraordinary scale. The
design of our framework calls for a per user credential deploy-
ment of a cloud service environment to ensure the separation
of user data from the manufacturer and from other users. This
aspect of the design is a compromise of our original design,
where we worked to derive a brokered solution. A abstracted
brokering form would accept messaging from all customers,
based on the supported IoT device and then securely store
data in a way that prevents data leakage. Further research into
a provably secure broker would include.

• A Single API Per Collection of Devices: Given a set
of supported IoT devices, an ideal solution would
accept all network communication from the devices and
securely process the result.

• Centralized Database: A secure solution would allow
for the storage of all customer data into a single

set of databases and storage buckets, using a schema
which prevents any one user from accessing another
user’s data. This includes the prevention of a manufac-
tured ‘‘back door’’ giving customer data access to the
manufacturer.

• Data Encryption and Authentication Schema: By uti-
lizing a process which signs and encrypts user data,
we mathematically prove data is hidden from unautho-
rized users and the data has not been tampered with.

C. SECURE ACCESS ACROSS CREDENTIAL BOUNDARIES
Part of the unfinished design for this framework includes a
feature which allow users to broker temporary permission
to other user accounts. Given that much of this framework’s
design involves the enforcement of permissions, it is a natural
fit to include the ability to extrapolate permissions across
user accounts. For example, user one could allow user two to
access his webcam, but only for a short period of time. At the
conclusion of the duration, we could provably revoke access
and restore the original permission set. An ideal design for
this feature would be the following.
• Cross Account Permissions: A schema which supports
the ability to grant another user access to your own data.
The schema requires the ability to describe a delineated
pool of data, access type and the ability to set a duration,
revoking on expiration. Cross account permissions are
stored in the same permissions table as local permis-
sions, and function in the exact same manner. The only
difference between the permission’s type is an expansion
of meta-data, to support cross credential and transitional
responses.

• Transitional Encryption Schema: An ideal solution
would have a default behavior of encrypting a user’s
data. When a cross account permission is set, the
affected data is decrypted and encrypted using the new
user’s account. The certificate used to encrypt and sign
the data contains an expiry data which coincides with
the permission expiration. DRM is used to prevent client
side copying of the data and the data is destroyed upon
expiration.

• Brokering Process: The last component of this design,
is an engine which processes cross credential permis-
sions and schedules decryption, storage, encryption and
destruction of data jobs. The process executes in real-
time, using encryption and certificates to enforce job
result. A job’s response contains the execution result and
job meta-data, which is used to support post execution
logging and a reference to the acted upon data. The result
is logged as a database entry and used for postmortem
analyses.

IX. CONCLUSION
The proliferation of IoT devices raises serious concerns for
a user’s privacy and security. Features such as video and
audio capture, real time location data and remote processing
are normal industry practices. The expectation of growth

15632 VOLUME 10, 2022

J. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

in this area lends a sense of urgency to finding a balance
between feature rich products and a user’s privacy. We pro-
pose building a unified solution into a development frame-
work to provide the needed balance between product revenue
and privacy. Using a smart plug and garage door controller,
we incorporated a basic implementation into the framework,
enabling secure interaction over remote networks and stored
the device state and an historical record of interaction in a
user’s cloud account. We autonomously generated rules for
each message, enforcing device behavior and bypassed the
manufacturer’s cloud account. The smart scale and switch
required reverse engineering and simulation of behavior to
function within our framework. We created an implemen-
tation which provided basic interaction with the device and
then extended this function to features not provided by the
manufacturer. The smart scale stored a user’s weight in the
cloud and used dashboards to render a user’s result over
a selected period. We expanded on the switch’s function
such that a user can create executable variables using local
assignment and remote APIs. We created a pair of variables
to represent sunrise and sunset, assigned date-time values
from a remote website and created a pair of rules to toggle
the switch state based on the position of the sun. Proposed
framework can be incorporated to include other IoT devices.
Finally, overhead was negligible as compared to a non frame-
work implementation. Network usage grew by less than 10%
while storage grew less than 2%. Devices with open source
solutions execute our framework with no impact to perfor-
mance and network latency did not increase, while simulation
rendered a small growth in network and memory usage.

REFERENCES
[1] Analyzing Research Trends. Accessed: Oct. 1, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0167404817300603
[2] Us Troops Accidentally Reveal Secret Bases. Accessed: Oct. 1, 2021.

[Online]. Available: https://www.popularmechanics.com/technology/apps/
a15912407/strava-app-military-bases-fitbit-jogging/

[3] Cisco Internet of Things. Accessed: Oct. 1, 2021. [Online]. Avail-
able: https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-
of-things/at-a-glance-c45-731471.pdf

[4] IoT Market Predicted to Double, Reaching $ 520b. Accessed:
Oct. 1, 2021. [Online]. Available: https://www.forbes.com/sites/
louiscolumbus/2018/08/16/iot-market-predicted-to-double-by-2021-
reaching-520b/#82674f91f948

[5] IoT Security Spending to Reach $ 1.5 Billion. Accessed: Oct. 1, 2021.
[Online]. Available: https://www.zdnet.com/article/iot-security-spending-
to-reach-1-5-billion-in-2018

[6] J. Hong, A. Levy, L. Riliskis, and P. Levis, ‘‘Don’t talk unless i say so!
securing the Internet of Things with default-off networking,’’ in Proc.
IEEE/ACM 3rd Int. Conf. Internet Things Design Implement. (IoTDI),
Oct. 2018, pp. 117–128.

[7] K. E. Benson, Q. Han, K. Kim, P. Nguyen, and N. Venkatasubramanian,
‘‘Resilient overlays for IoT-based community infrastructure communica-
tions,’’ in Proc. IEEE 1st Int. Conf. Internet Things Design Implement.
(IoTDI), Apr. 2016, pp. 152–163.

[8] M. Chung, ‘‘One-to-Many data transmission for smart devices at close
range,’’ in Proc. IEEE 1st Int. Conf. Internet Things Design Implement.
(IoTDI), Apr. 2016, pp. 265–270.

[9] J. Hall and R. Iqbal, ‘‘CoMPES: A command messaging service for IoT
policy enforcement in a heterogeneous network,’’ in Proc. IEEE/ACM
2nd Int. Conf. Internet Things Design Implement. (IoTDI), Apr. 2017,
pp. 37–44.

[10] M. H. Mazhar and Z. Shafiq, ‘‘Characterizing smart home IoT traffic
in the wild,’’ in Proc. IEEE/ACM 5th Int. Conf. Internet Things Design
Implement. (IoTDI), Apr. 2020, pp. 203–215.

[11] H. Nguyen, R. Ivanov, L. T. X. Phan, O. Sokolsky, J. Weimer, and I. Lee,
‘‘LogSafe: Secure and scalable data logger for IoT devices,’’ in Proc.
IEEE/ACM 3rd Int. Conf. Internet Things Design Implement. (IoTDI),
Oct. 2018, pp. 141–152.

[12] P. Bovornkeeratiroj, S. Iyengar, S. Lee, D. Irwin, and P. Shenoy, ‘‘RepEL:
A utility-preserving privacy system for IoT-based energy meters,’’ in Proc.
IEEE/ACM 5th Int. Conf. Internet Things Design Implement. (IoTDI),
Apr. 2020, pp. 79–91.

[13] H. Kim, E. Kang, E. A. Lee, and D. Broman, ‘‘A toolkit for construc-
tion of authorization service infrastructure for the Internet of Things,’’
in Proc. 2nd Int. Conf. Internet Things Design Implement., Apr. 2017,
pp. 147–158.

[14] X. Li, H. Wang, Y. Yu, and C. Qian, ‘‘An IoT data communication frame-
work for authenticity and integrity,’’ in Proc. 2nd Int. Conf. Internet Things
Design Implement., Apr. 2017, pp. 159–170.

[15] A. Rullo, D. Midi, E. Serra, and E. Bertino, ‘‘A game of things: Strategic
allocation of security resources for IoT,’’ in Proc. 2nd Int. Conf. Internet
Things Design Implement., Apr. 2017, pp. 185–190.

[16] H. Chiang, J. Hong, K. Kiningham, L. Riliskis, P. Levis, and M. Horowitz,
‘‘Tethys: Collecting sensor data without infrastracture or trust,’’ in Proc.
IEEE/ACM 3rd Int. Conf. Internet Things Design Implement. (IoTDI),
Apr. 2018, pp. 249–254.

[17] F. De Vita, D. Bruneo, and S. K. Das, ‘‘A novel data collection framework
for telemetry and anomaly detection in industrial IoT systems,’’ in Proc.
IEEE/ACM 5th Int. Conf. Internet Things Design Implement. (IoTDI),
Apr. 2020, pp. 245–251.

[18] I. PasquelMohottige, H. H. Gharakheili, A. Vishwanath, S. S. Kanhere, and
V. Sivaraman, ‘‘Evaluating emergency evacuation events using building
WiFi data,’’ in Proc. IEEE/ACM 5th Int. Conf. Internet Things Design
Implement. (IoTDI), Apr. 2020, pp. 116–127.

[19] F. Renna, J. Doyle, V. Giotsas, and Y. Andreopoulos, ‘‘Query processing
for the Internet-of-Things: Coupling of device energy consumption and
cloud infrastructure billing,’’ in Proc. IEEE 1st Int. Conf. Internet Things
Design Implement. (IoTDI), Oct. 2016, pp. 83–94.

[20] W. Wang, J. Su, Z. Hicks, and B. Campbell, ‘‘The standby energy of smart
devices: Problems, progress, potential,’’ in Proc. IEEE/ACM 5th Int. Conf.
Internet Things Design Implement. (IoTDI), Oct. 2020, pp. 164–175.

[21] M. Haus, J. Ott, and A. Y. Ding, ‘‘DevLoc: Seamless device associa-
tion using light bulb networks for indoor iot environments,’’ in Proc.
IEEE/ACM 5th Int. Conf. Internet-of-Things Design Implement. (IoTDI),
May 2020, pp. 231–237.

[22] G. Vaidya, A. Nambi, T. V. Prabhakar, V. Kumar T, and S. Sudhakara,
‘‘IoT-ID: A novel device-specific identifier based on unique hardware
fingerprints,’’ in Proc. IEEE/ACM 5th Int. Conf. Internet Things Design
Implement. (IoTDI), Apr. 2020, pp. 189–202.

[23] C. Ruiz, S. Pan, A. Bannis, M.-P. Chang, H. Y. Noh, and P. Zhang, ‘‘IDIoT:
Towards ubiquitous identification of IoT devices through visual and iner-
tial orientation matching during human activity,’’ in Proc. IEEE/ACM
5th Int. Conf. Internet Things Design Implement. (IoTDI), Apr. 2020,
pp. 40–52.

[24] S. S. Sandha, J. Noor, F. M. Anwar, and M. Srivastava, ‘‘Time awareness
in deep learning-based multimodal fusion across smartphone platforms,’’
in Proc. IEEE/ACM 5th Int. Conf. Internet Things Design Implement.
(IoTDI), Oct. 2020, pp. 149–156.

[25] D. Hu and B. Krishnamachari, ‘‘Fast and accurate streaming CNN infer-
ence via communication compression on the edge,’’ in Proc. IEEE/ACM
5th Int. Conf. Internet Things Design Implement. (IoTDI), Apr. 2020,
pp. 157–163.

[26] C.Wang, C. Gill, and C. Lu, ‘‘Adaptive data replication in real-time reliable
edge computing for Internet of Things,’’ in Proc. IEEE/ACM 5th Int. Conf.
Internet Things Design Implement. (IoTDI), Apr. 2020, pp. 128–134.

[27] V. Cozzolino, J. Ott, A. Y. Ding, and R. Mortier, ‘‘ECCO: Edge-cloud
chaining and orchestration framework for road context assessment,’’
in Proc. IEEE/ACM 5th Int. Conf. Internet Things Design Implement.
(IoTDI), Jul. 2020, pp. 223–230.

[28] M. Norris, B. Celik, P. Venkatesh, S. Zhao, P. McDaniel,
A. Sivasubramaniam, and G. Tan, ‘‘IoTRepair: Systematically addressing
device faults in commodity IoT,’’ in Proc. IEEE/ACM 5th Int. Conf.
Internet Things Design Implement. (IoTDI), Apr. 2020, pp. 142–148.

[29] Y. Gao, J. Zhang, G. Guan, and W. Dong, ‘‘LinkLab: A scalable and
heterogeneous testbed for remotely developing and experimenting iot
applications,’’ in Proc. IEEE/ACM 5th Int. Conf. Internet Things Design
Implement. (IoTDI), Jan. 2020, pp. 176–188.

VOLUME 10, 2022 15633

J. L. Reed, A. Ş. Tosun: BULWARK: Framework to Store IoT Data in User Accounts

[30] T. Wolf and A. Nagurney, ‘‘A layered protocol architecture for scalable
innovation and identification of network economic synergies in the Internet
of Things,’’ in Proc. IEEE 1st Int. Conf. Internet Things Design Implement.
(IoTDI), Apr. 2016, pp. 141–151.

[31] J. Venkatesh, C. Chan, A. S. Akyurek, and T. S. Rosing, ‘‘A mod-
ular approach to context-aware iot applications,’’ in Proc. IEEE 1st
Int. Conf. Internet Things Design Implement. (IoTDI), Feb. 2016,
pp. 235–240.

[32] S. Qanbari, S. Pezeshki, R. Raisi, S. Mahdizadeh, R. Rahimzadeh,
N. Behinaein, F. Mahmoudi, S. Ayoubzadeh, P. Fazlali, K. Roshani,
A. Yaghini, M. Amiri, A. Farivarmoheb, A. Zamani, and S. Dustdar,
‘‘IoT design patterns: Computational constructs to design,
build and engineer edge applications,’’ in Proc. IEEE 1st Int.
Conf. Internet-of-Things Design Implement. (IoTDI), Apr. 2016,
pp. 277–282.

[33] Utilizing Vehicle Data in Law Enforcement Investigations. Accessed:
Oct. 1, 2021. [Online]. Available: https://www.iacpcybercenter.org/wp-
content/uploads/2020/09/Vehicle-Data_LECC-Article.pdf

[34] 12 Days of Vehicle Forensics. Accessed: Oct. 1, 2021. [Online]. Available:
https://berla.co/12-days-of-vehicle-forensics/

[35] MSAB Raven. Accessed: Oct. 1, 2021. [Online]. Available: https://
www.msab.com

[36] Terraform. Accessed: Oct. 1, 2021. [Online]. Available: https://
www.terraform.io/

[37] AWS Lambda@edge. Accessed: Oct. 1, 2021. [Online]. Available:
https://aws.amazon.com/lambda/edge/

[38] AWS Lambda. Accessed: Oct. 1, 2021. [Online]. Available:
https://aws.amazon.com/lambda/

[39] Amazon Elasticache. Accessed: Oct. 1, 2021. [Online]. Available:
https://aws.amazon.com/elasticache/

[40] Amazon S3. Accessed: Oct. 1, 2021. [Online]. Available:
https://aws.amazon.com/s3/

JEREMY LYNN REED received the B.S. and M.S.
degrees in computer science from The University
of Texas at San Antonio, San Antonio, TX, USA,
in 2007 and 2016, respectively, where he is cur-
rently pursuing the Ph.D. degree.

He spent eight and half years at Microsoft as a
Software Security Engineer, developing and secur-
ing web technologies. He is currently a Perfor-
mance and Security Engineer at DocuSign. His
research interests include software security with an

emphasis in web-based technology and IoT performance and security.

ALI ŞAMAN TOSUN received the B.S. degree
in computer engineering from Bilkent University,
Ankara, Turkey, in 1995, and the M.S. and Ph.D.
degrees from The Ohio State University, in 1998
and 2003, respectively.

He worked at the Department of Computer Sci-
ence, The University of Texas at San Antonio,
from 2003 to 2021. He is currently the Allen
C. Meadors Endowed Chair of computer sci-
ence at The University of North Carolina at

Pembroke, Pembroke, NC, USA. His research interests include software-
defined networking, network security, storage systems, and large-scale data
management.

15634 VOLUME 10, 2022

