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ABSTRACT Active power losses of distribution systems are higher than transmission ones, in which these
losses affect the distribution operational costs directly. One of the efficient and effective methods for power
losses reduction is distribution system reconfiguration (DSR). In this way, the network configuration is
changed based on a specific power demand that has been already predicted by load forecasting techniques.
The ohmic loss level in distribution system is affected by energy demand level, this is while an error in load
forecasting can influence losses. Accordingly, including load uncertainty in DSR formulation is essential
but this issue should not lead to change of the reconfiguration results significantly (i.e. the model should
be robust). This paper presents a robust and efficient model for considering load uncertainty in network
reconfiguration that is simple enough to implement in available commercial software packages and it is
precise enough to find accurate solutions with low computational time. The analysis of results shows high
efficiency and robustness of the proposed model for reconfiguration of distribution systems under demand
uncertainty.

INDEX TERMS Distribution network reconfiguration, power losses reduction, robust model, uncertainty in
demand.

I. INTRODUCTION
Distribution network has a prominent role in delivering the
electricity provided by transmission system to individual
electric energy customers [1]. Nonetheless, part of power
supplied by transmission system is lost as thermal energy
because of distribution line resistance. The distribution power
losses are higher than transmission ones as they affect the
system operational costs and voltage profile. Therefore, mini-
mization of power delivery losses is important for distribution
network operators [2].

Distribution system reconfiguration (DSR) is an efficient
way to reduce the distribution losses, in which network
topology is changed by opening normally closed sectional
switches and closing normally open tie line switches in
a specific load level [3]. Although loss minimization has
been always important in DSR, voltage stability [4], load

The associate editor coordinating the review of this manuscript and

approving it for publication was S. Ali Arefifar .

balancing [5], reliability criteria [6], distributed generation
(DG) costs [7], power restoration [8], and maintenance
expenses [9] may be optimized beside losses.

Many approaches have been proposed for reconfigura-
tion of radial distribution systems till now. Most of these
approaches have solved the DSR as a deterministic prob-
lem [10]–[29]. Some of them included uncertainty issues
in the DSR formulation without considering model robust-
ness [7], [30]–[33], while some of them proposed robust
models for uncertain DSR problems [34]–[37]. However, the
proposed robust models are complex with high computational
efforts. Therefore, the present paper intends to introduce a
more efficient and simpler robust model with lower com-
putational efforts. Simple implementation is important for
practical applications.

A. DETERMINISTIC MODELS
Some approaches proposed for deterministic DSR prob-
lem have minimized estimated power losses using simple
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heuristic methods [10]–[13]. In spite of simple implemen-
tation of these methods, estimation of power losses reduces
the efficiency of reconfiguration models. The linearized [14],
simplified [15], and approximated [16] load flow techniques
for loss minimization are discussed in the DSR literature.
However, the introduced linearizations, simplifications, and
approximations cause inaccurate solutions for DSR problem.
Some other researchers have divided distribution network
into several parts and minimized the power losses existing
in these parts [17], [18]. However, partitioning large-size
distribution systems is not an easy task.

In order to increase the accuracy of reconfiguration mod-
els, discrete ascent [19] and linear programming [20], [21],
as well as Benders decomposition (BD) [22] were proposed
to minimize network losses. Nonetheless, addition of loads
as discrete steps to each bus in [19] and approximation
of power losses using piecewise linear functions in [20]
and [21], as well as linearization of non-linear terms in [22],
degrade performance of the proposed models for
reconfiguration applications. Therefore, more formal mod-
eling proposals are required to represent DSR formulation
in a precise way, as those presented in [23] and [24]. These
works present increasingly complex mathematical models.
Thus, nonlinear and quadratic programming approaches were
proposed tominimize power losses in [25] and [26]. Although
the nonlinear and quadratic programming could solve the
DSR problem more efficiently than linear programming
and BD, respectively, rewriting the nonlinear power flow
equations in terms of rotated conic quadratic constraints
in [25] and allocation of two continuous variables instead of
binary ones to power flow direction of each line in [26] have
decreased the efficiency of the proposed methodologies.

Recently, in [27], a fast decoupledNewton–Raphson power
flow approach was employed to solve a DSR problem, show-
ing its lower computing time compared to conventional power
flow methods. Nevertheless, the efficiency of the proposed
method in [27] is reduced in networks with high ratio of
ohmic resistance to reactance (R/X) of distribution lines.
Also, in [28], General Algebraic Modeling System (GAMS)
was employed to solve multi-objective DSR problem in
presence of demand response (DR). More recently, in [29],
an approximated dynamic programming (ADP) approachwas
applied to minimize DG curtailment and load shedding in
DSR, but uncertainty in power demand has not been consid-
ered in [29] and any above-mentioned models.

B. STOCHASTIC MODELS
Power demand is predicted by load forecasting techniques
according to real consumption data of previous years and
prediction of factors such as future climate changes, inflation
rate, energy prices and policy, population immigration, load
growth and so on. Every probable change in above factors and
appearance of unpredicted events such as pandemic diseases
(e.g. COVID-19 today) affect load amount and consumption
pattern. Therefore, the electrical energy demand is uncertain
in distribution systems. On the other hand, any increase or

decrease in load level can affect network loss level. For this,
reference [30] proposed a probabilistic model for uncertain
DSR problem using Monte Carlo simulation (MCS). The
MCS is a probabilistic method for handling uncertainties,
but it is computationally intensive. This difficulty is more
evident in problems in which themain optimization algorithm
is solved based on evolutionary methods [7]. In order to
remove this drawback, the point estimate method (PEM) was
used for calculation of uncertainties in [31]. In the proposed
model, active power losses, voltage deviation, generation
costs, and greenhouse gas emissions were minimized in a
multi-objective framework using a particle swarm optimiza-
tion (PSO) algorithm. The results show that the PEM is
simpler and more flexible method than the MCS to analyze
uncertainties in complex DSR problems. However, evolu-
tionary algorithms such as PSO [7] cannot guarantee global
optimality of the solutions. Therefore, in [32], a simultane-
ous network reconfiguration and DG allocation problem was
solved by a classic optimization tool (GAMS) rather than evo-
lutionary algorithms. In the proposed approach, uncertainties
in demand and wind were formulated by a scenario-based
technique. However, scenario-based approaches are time-
consuming methods for solving uncertain DSR problems.
Moreover, the accuracy of the proposed model depends on set
of selected scenarios. In simple terms, solution accuracy and
computation time are decreasing and increasing, respectively,
by choosing improper scenarios. Furthermore, in [33], a DSR
problem was solved in order to increase the hosting capacity
of distribution network for DG by minimizing the number of
switching operation. In this approach, fuzzy C-means (FCM)
method was used to cluster different scenarios of switching
operation and output uncertainties of DG units. Nevertheless,
reference [33] and any model reviewed above has lack of
robustness against uncertainties.

C. ROBUST MODELS
The uncertain DSR models should have high robustness
against uncertainties, i.e. the reconfiguration plans should not
be changed easily with every increase or decrease in load
amount. Therefore, in [34] and [35], robust mixed-integer
linear and nonlinear programming models were proposed for
DSR considering load and generation uncertainties, respec-
tively. The piecewise linear approximation model of [34] and
nonlinear model of [35] were solved by master-slave decom-
position algorithms implemented in the classic mathematical
programming language, AMPL. However, linearizations and
approximations used in [34] and high complexity of nonlinear
model of [35] have decreased the efficiency of the proposed
approaches for reconfiguration of large distribution networks.
Furthermore, probabilities of uncertainties have not been con-
sidered in both formulations. In [36], a two-stage stochastic
robust optimization model was proposed for optimal recon-
figuration of distribution network under load uncertainty con-
sidering switching cost, DG operation expenses, and cost of
power supplied by substation. However, determining the net
load of each bus by processing nodal voltages and branch
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current flows via a linear state estimation in the first stage
and finding out the best configuration using second order
conic programming in the second stage cause high computa-
tional efforts and accordingly hard implementation issue [36].
In order to remove difficulty of deriving accurate probability
distributions (PD) of uncertain loads and DG outputs, first
a deep neural network was used to learn the reference value
of PD from historical data and then the optimal configuration
under the worst case of loadwas determined. At this stage, the
DG PDs were obtained by the proposed robust model in [37].
However, scenario decomposition-based method used in [37]
adds more complexity to the problem.

The DSR models should be adequately accurate (which
requires proper linearization and approximation techniques),
simple enough (without high computational burden and
efforts), and relatively fast (with lower computational time)
for practical applications. However, accuracy improvement
may decrease the model simplicity and increase processing
time of computations. On the other hand, simplicity improve-
ment may reduce accuracy of the model.

D. CONTRIBUTIONS
Considering advantages and disadvantages of models pro-
posed in [7], [30]–[37] and importance of including load
uncertainty in network reconfiguration, this paper presents
an efficient stochastic model for reconfiguration of distribu-
tion systems under demand uncertainty, which is simple to
implement and is characterized by both high accuracy and
short computational time. The simulation results show high
efficiency and robustness of our proposed model for recon-
figuration of distribution systems in uncertain environments.
In summary, the current paper presents an efficient robust
formulation for reconfiguration of radial distribution systems
which is:
• Accurate and simple for implementation in commercial
software packages.

• Efficient, as it requires short computing times without
introducing decompositions and complexities.

• Providing only radial solutions during the whole opti-
mization process (it guarantees network radiality).

• Prohibiting isolation of any buses from proposed radial
topologies (it guarantees network connectivity).

• Applicable for reconfiguration of distribution networks
of any size (from small to large systems).

• Considering uncertainty probability beside uncertain
amounts in the objective function.

• Flexible to consider distributed generation uncertainty in
the desired problem.

II. LOAD UNCERTAINTY MODELING
As mentioned earlier, electricity demand has a stochas-
tic nature that its uncertainty should be considered in dis-
tribution network reconfiguration. In this way, uncertain
demands as well as their possibilities should be included in
DSR formulation. Unlike [31], [32], and [37], probability of
uncertainties has not been considered in [34]–[36]. This fact

can decrease efficiency of the models for solving large-scale
DSR problems under high uncertainty. Probability density
function (PDF) is an efficient way for embedding proba-
bility of uncertainties in stochastic problems. Among dif-
ferent PDFs, normal one is used efficiently for handling
uncertainties in power system operation studies [32]. In nor-
mal probability distribution, PDF can be generally described
by (1).

f (x) =
1

σ
√
2π

e
−

1
2

(
x−µ
σ

)2
(1)

Parameters µ and σ are expected value and standard devi-
ation of probability variable x, respectively. Figure 1 shows
normal probability density function (f (x)) for an uncertain
load.

FIGURE 1. Normal probability density function of load.

In Fig. 1, Pd is nominal power demand that has been
predicted by load forecasting (expected demand). Pdmin and
Pdmax are minimum and maximum deviated load amounts,
respectively. 1Pdmin and 1Pdmax are minimum and max-
imum deviations from expected (nominal) demand, respec-
tively. According to Fig. 1, PDF in terms of load power can
be written as follows.

f (P) =
1

σ
√
2π

e
−1
2

(
P−Pd
σ

)2
∀Pdmin ≤ P ≤ Pdmax (2)

In an uncertain DSR, value of P varies from Pdmin to
Pdmax and should be determined by solution algorithm dur-
ing reconfiguration. However this process can be compu-
tationally intensive because of wide range of real numbers
in interval [Pdmin, Pdmax]. One way to resolve this issue is
employing scenario-based methods [32], in which only spe-
cific discrete numbers between Pdmin and Pdmax are selected.
In these methods, a set of possible scenarios (�s) and their
probabilities are defined as (3).

�s
= {Pd1, . . . ,Pdm, . . . ,PdS}

∀Pd1 ≥ Pdmin, PdS ≤ Pdmax

f (�s) = {f (Pd1), . . . , f (Pdm), . . . , f (PdS )} (3)
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where, S is number of possible scenarios and f (Pdm) is
calculated by (4).

f (Pdm) =
e
−1
2

(
Pdm−Pd

σ

)2
σ
√
2π

∀Pdmin ≤ Pdm ≤ Pdmax,

m = 1, . . . , S (4)

Although search space of the solution algorithm can be
reduced by using (3) and (4), choosing proper values for
�s and selecting proper number of scenarios are challenging
tasks [34]. The computational burden and processing time
of DSR problem is increased by selecting more scenarios.
On the other hand, reducing the number of scenarios has an
adverse effect on the accuracy of the reconfiguration model.
In addition, choosing proper scenarios using probabilistic
methods such as MCS and PEM [31] cannot lead to a real-
istic solution because selection of effective scenarios needs a
precise evaluation of system behavior, while this analysis is
really complex.

The whole deviated load can be represented by load devi-
ation changes. In this case, zero expected demand devia-
tion (1Pd = 0) represents nominal demand for network
consumption (P = Pd + 1Pd). Unlike minimum deviated
load (Pdmin), minimum load deviation change (1Pdmin) is a
negative value. Therefore, Fig. 1 should bemodified as Fig. 2.

FIGURE 2. Normal probability density function of load deviation.

From Fig. 2, we have the following:

f (1Pd) =
1

σ
√
2π

e
−1
2σ2

(1Pd)2
∀1Pdmin ≤ 1Pd ≤ 1Pdmax

(5)

In power system studies, standard deviation (σ ) value
for load uncertainty is considered to be a small number
(e.g. 0.05 [31]).

Therefore, the normal PDF curve of load deviation is really
sharp (see Fig. 3) and can be efficiently approximated by
pricewise linear functions as (6) and (7).

f (1Pd)= f (1Pdm)+
f (1Pdm)− f (1Pdm−1)
1Pdm −1Pdm−1

FIGURE 3. Normal PDF of load deviation for small standard deviations.

× (1Pd −1Pdm)

∀0 ≤ 1Pdm−1 ≤ 1Pd ≤ 1Pdm ≤ 1Pdmax (6)

f (1Pd)= f (1Pdm)−
f (1Pdm)− f (1Pdm−1)
1Pdm −1Pdm−1

× (1Pd +1Pdm)

∀1Pdmin ≤ −1Pdm ≤ 1Pd ≤ −1Pdm−1 ≤ 0

(7)

High sharpness of PDF curve (dashed lines) and steep
linearized functions shown by Fig. 3 indicate the following
important notes:

1) Considering probability of load uncertainty is essential
in real DSR applications because of significant dif-
ference between start and end points of each line on
vertical axis. However, this important issue has been
neglected in [34]–[36].

2) Equations (6) and (7) can accurately model the prob-
ability of load uncertainty without any concerns about
selection of scenarios [32], [37], formulation complex-
ity [31], [36] and need for the real analysis of the
network.

3) Choosing appropriate values for m is simple due to
curve shape symmetry, little difference in slopes of
each two consecutive lines, and the small interval
[1Pdmin, 1Pdmax].

Moreover, (6) and (7) present a flexible formulation because
of their applications for both linear and nonlinear models and
possibility of optimization of parameter m during reconfigu-
ration.

III. PROBLEM FORMULATION
In this section, conventional and proposed robust and deter-
ministic DSR models are described.

A. CONVENTIONAL DSR MODEL
The DSR problem for balanced distribution networks, aim-
ing minimization of power losses (PLoss) and considering a
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certain load demand can be formulated by (8) to (18).

Min PLoss =
∑
ij∈�l

Rij
∣∣Iij∣∣2 (8)

subject to : Psi+
∑
ki∈�l

Pki −
∑
ij∈�l

Pij−
∑
ij∈�l

Rij
∣∣Iij∣∣2=Pdi

∀i ∈ �b (9)

Qsi +
∑
ki∈�l

Qki −
∑
ij∈�l

Qij −
∑
ij∈�l

Xij
∣∣Iij∣∣2

= Qdi ∀i ∈ �b (10)

|Vi|2 −
∣∣Vj∣∣2 = 2

[
RijPij + XijQij

]
+
∣∣Zij∣∣2 ∣∣Iij∣∣2 + bij ∀i 6= j ∈ �b, ij ∈ �l

(11)∣∣Sij∣∣2 = P2ij + Q
2
ij ∀ij ∈ �

l (12)∣∣Sij∣∣2 = ∣∣Vj∣∣2 ∣∣Iij∣∣2 ∀j ∈ �b, ij ∈ �l (13)∑
ij∈�l

yij =
∣∣∣�b

∣∣∣− 1 (14)

V 2
min ≤ |Vi|

2
≤ V 2

max ∀i ∈ �
b (15)

0 ≤
∣∣Iij∣∣2 ≤ (Imax

ij

)2
yij ∀ij ∈ �l (16)∣∣bij∣∣ ≤ M (

1− yij
)
∀ij ∈ �l (17)

yij ∈ {0, 1} ∀ij ∈ �sw (18)

where: sets�l ,�sw, and�b include normal branches (distri-
bution lines and transformers), switches, and network buses,
respectively. |Zij| and |Sij| are magnitudes of impedance and
complex power for branch ij, respectively. Pij and Qij are
active and reactive power flows of branch ij, respectively. Psi
and Qsi are active and reactive powers of substation and Pdi
and Qdi are nominal active and reactive demands of bus i,
respectively. |Iij| and Imax

ij are magnitude of current flow and
its maximum value for branch ij. |Vi|, Vmax, and Vmin are the
voltage magnitude of bus i and its maximum and minimum
amounts, respectively. bij is a variable for representing the
Kirchhoff’s voltage law (KVL) in the loop formed by line ij.
Also, yij is a binary variable, indicating the operation status of
switch located on line ij (0 for open and 1 for closed switches).

Equations (9) and (10) express active and reactive power
balances of each bus (Kirchhoff’s current law, KCL).
Equation (11) describes the net summation of voltage drops
of all branches in a planar loop, which must be equal to zero
(KVL). In this equation, bij will be zero, when the switch
of line ij is closed (KVL must be established) and will be
a real number for open switches (KVL is not necessary).
Also, (12) represents the line power flow in terms of its active
and reactive components. Equation (13) shows relationship
between power flow of each branch and its current and end
bus voltage. Equation (14) models the radiality constraint.
Accordingly, the total number of branches under operation
(total number of closed switches) has to be equal to the
total number of buses minus one (according to graph the-
ory). Constraints (15) and (16) represent voltage and current

limits, respectively. It should be mentioned that (15) provides
an acceptable voltage level for network buses in order to
compensate voltage drop. (17) makes sure that the value of
bij will be zero, if the switch of line ij is closed (yij = 1)
and a real number betweenM and−M when the correspond-
ing branch is disconnected (yij = 0). In order to determine
the value of M , let’s consider that the switch of branch ij
is open. From (16), it is obtained that |Iij| will be zero
because of yij = 0, and therefore Pij = Qij = 0 due
to (12) and (13). Thus, the maximum value of M is V 2

max −

V 2
min because bij = |Vi|

2
− |Vj|2 from constraint (11) and the

maximum difference between lower and upper voltage limits
from constraint (15).

B. OUR PROPOSED ROBUST MODEL
In order to consider demand uncertainty in DSR using the
proposed idea, active and reactive load deviations (1Pd and
1Qd) have to be embedded in constraints (9) and (10),
in which the deviation amounts should not exceed their
permissible intervals (e.g. [1Pdmin, 1Pdmax] for active and
[1Qdmin, 1Qdmax] for reactive demand deviations). The
strategy should be maximization of load deviations because
the zero (certain load situation) or negative values are sug-
gested for 1Pd and 1Qd in minimization process, while
the network users have more concerns about demand incre-
ment. On the other hand, maximization strategy has to be
considered correctly, otherwise the solution algorithm tries
to find the maximum values for load deviations and this
issue raises the power losses considerably. Therefore, the
best strategy is maximization of total demand deviation as
it cannot increase the power losses significantly (minimum
possible losses besides maximum probable deviations), i.e.
the proposed model has to be robust enough. Also, the prob-
ability of uncertainties should be included in the problem
formulation. Regarding the relationship between active and
reactive demands at each bus through load power factor,
maximization of active load deviation is adequate [35].

It should be noted that, the model described by (8)–(18)
is a hard nonlinear optimization problem with non-convexity
(constraint (12)) and accordingly hard to solve. Also, (14)
cannot guarantee radial topologies for large-sized distribution
systems and networks with transfer nodes. Whereas real dis-
tribution networks often contain buses without substation and
demand (transfer nodes). Moreover, additional constraints
should be included in the problem formulation in order to
increase the accuracy of the model and reduce its execution
time. Consequently, following robust model is proposed for
the DSR problem under uncertainty with the aim of active
losses minimization.

Min

∑
ij∈�l

RijI
sqr
ij −

∑
i∈�b

1PdiPdif (1Pdi)

 (19)

where, f (1Pdi) =
f (1Pdm,i)− f (1Pdm−1,i)
1Pdm,i −1Pdm−1,i(

1Pdi −1Pdm,i
)
+ f (1Pdm,i)
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∀0 ≤ 1Pdm−1,i ≤ 1Pdi ≤ 1Pdm,i
≤ 1Pdmax (20)

f (1Pdi) =
f (1Pdm−1,i)− f (1Pdm,i)
1Pdm,i −1Pdm−1,i(

1Pdi +1Pdm,i
)
+ f (1Pdm,i)

∀1Pdmin ≤ −1Pdm,i ≤ 1Pdi
≤ −1Pdm−1,i ≤ 0 (21)

s. t. : Psi +
∑
ki∈�l

Pki −
∑
ij∈�l

Pij −
∑
ij∈�l

RijI
sqr
ij

= Pdi +1PdiPdi ∀i ∈ �b (22)

Qsi +
∑
ki∈�l

Qki −
∑
ij∈�l

Qij −
∑
ij∈�l

XijI
sqr
ij

= Qdi +1QdiQdi ∀i ∈ �b (23)

V sqr
i − V

sqr
j = 2

[
RijPij + XijQij

]
+
∣∣Zij∣∣2 I sqrij + bij

∀i 6= j ∈ �b, ij ∈ �l (24)

V sqr
j I sqrij ≥ P

2
ij + Q

2
ij ∀ij ∈ �

l (25)

yij = βij + βji ∀ij ∈ �l (26)∑
ij∈�l

βij = 1 (27)

βij = 0 ∀i ∈ �0, ij ∈ �l (28)

βji = 0 ∀j ∈ �0, ij ∈ �l (29)

V 2
min ≤ V

sqr
i ≤ V 2

max ∀i ∈ �
b (30)

0 ≤ I sqrij ≤

(
Imax
ij

)2
yij ∀ij ∈ �l (31)∣∣bij∣∣ ≤ (V 2

max − V
2
min

) (
1− yij

)
∀ij ∈ �l (32)

1PdminPdi ≤ 1PdiPdi ≤ 1PdmaxPdi ∀i ∈ �b

(33)

1QdminQdi ≤ 1QdiQdi ≤ 1QdmaxQdi ∀i ∈ �b

(34)

Pmax
ij = VmaxImax

ij ∀ij ∈ �l (35)

Qmax
ij = VmaxImax

ij ∀ij ∈ �l (36)∣∣Pij∣∣ ≤ Pmax
ij yij ∀ij ∈ �l (37)∣∣Qij∣∣ ≤ Qmax
ij yij ∀ij ∈ �l (38)

βij ∈ {0, 1} ∀ij ∈ �sw (39)

In above constraints, I sqrij and V sqr
i are square of branch

current and bus voltage magnitudes, respectively (I sqrij =

|Iij|2, V
sqr
i = |Vi|

2, and V sqr
j = |Vj|

2). �0 is set of substation
buses and βij is the binary variable to show direction of
power flow in branch ij. Pmaxij and Qmaxij are the maximum
active and reactive powers of branch ij, respectively. 1Pdm,i
and 1Qdm,i are m-th deviations of active and reactive power
demands at bus i, respectively. Equations (26) to (29) guar-
antee network radiality and connectivity in large distribution
systems with any number of substation and transfer nodes.
Also, (37) and (38) show that active and reactive power flows
of branches should be limited by their maximum values.

Although constraints (30) and (31) provide these conditions,
(37) and (38) improve computation time and accuracy of solu-
tions. Moreover, (25) indicates a convex constraint because it
includes an area inside a circle with radius |Vj| |Iij| and center
of (0, 0).

The main differences and similarities of our proposed
model with models presented in [34]–[37] are:

1) In [34]–[36], probabilities of uncertainties have not
been considered in the formulations, while this impor-
tant issue has been considered in our proposed model.

2) In our proposedmodel similar to [34], the ratio of active
and reactive load deviations at each bus is propor-
tional to ratio of its active and reactive demands, while
in [35]–[37], active and reactive demand deviations of
each bus do not depend on their active and reactive
loads.

3) Models of [34]–[37] do not include constraints (35) to
(38).

4) Both load and generation uncertainties have been con-
sidered in [35]–[37], while just load uncertainty has
been included in our proposed model and [34].

5) Objective functions of our proposed model and models
presented in [34] and [35] include only power losses,
while those of [36] and [37] consider switching and DG
operational costs in addition to losses cost.

C. PROPOSED DETERMINISTIC MODEL
The deterministic model obtained by choosing values of zero
for 1Pdi, 1Qdi, and 1Pdm,i in the robust model.

Min
∑
ij∈�l

RijI
sqr
ij (40)

s. t. (26) to (31) and : (41)

Psi +
∑
ki∈�l

Pki −
∑
ij∈�l

Pij −
∑
ij∈�l

RijI
sqr
ij

= Pdi ∀i ∈ �b (42)

Qsi +
∑
ki∈�l

Qki −
∑
ij∈�l

Qij −
∑
ij∈�l

XijI
sqr
ij

= Qdi ∀i ∈ �b (43)

V sqr
i − V

sqr
j = 2

[
RijPij + XijQij

]
+

(
R2ij + X

2
ij

)
I sqrij + bij ∀i 6= j ∈ �b, ij ∈ �l

(44)∣∣Sij∣∣2 ≥ P2ij + Q2
ij ij ∈ �l (45)∣∣Sij∣∣2 = V sqr

j I sqrij ∀j ∈ �b, ij ∈ �l (46)(
V 2
min − V

2
max

) (
1− yij

)
≤
∣∣bij∣∣

≤

(
V 2
max − V

2
min

) (
1− yij

)
∀ij ∈ �l (47)∣∣Pij∣∣ ≤ VmaxImax

ij yij ∀ij ∈ �l (48)∣∣Qij∣∣ ≤ VmaxImax
ij yij ∀ij ∈ �l (49)

where: Rij is the resistance and Xij is the reactance of
branch ij.
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IV. METHODOLOGY
The proposed robust mathematical model is a mixed-integer
conic programming problem including binary variables yij
and βij, real variablesPij,Qij,PSi ,Q

S
i , I

sqr
ij ,V sqr

i ,1Pdi,1Qdi,
and bij, a linear objective function (19), linear equations (20),
(21), (24), (26)–(29), (35) and (36), linear constraints (22),
(23), (30)–(34), (37) and (38), and convex restriction (25).
The problem can be solved using analytical methods, heuris-
tic techniques, and metaheuristic algorithms. It should be
noted that heuristics and metaheuristics cannot guarantee the
global optimum. Analytical methods, based on mathematical
programming, are widely used to solve the DSR problem. For
this purpose, AMPL as an algebraic modeling language has
been designed for mathematical programming. The AMPL
software is notable for the similarity of its arithmetic expres-
sions to customary algebraic notation, and for the general-
ity and power of its set and subscripting expressions. The
AMPL also extends algebraic notation to express common
mathematical programming structures, such as network flow
constraints and piecewise linearities. This software offers an
interactive command environment for setting up and solving
mathematical programming problems. A flexible interface
enables several solvers to be used simultaneously, so user can
switch among solvers and select options that may improve
solver performance. Once optimal solutions have been found,
they are automatically translated back to the modeler’s form,
so they can be viewed and further analyzed. All of the gen-
eral set and arithmetic expressions of the AMPL modeling
language can also be used for displaying data and results; a
variety of options are available to format data for browsing,
printing reports, or preparing inputs to other programs [38].
The AMPL is a powerful optimization tool that can be used
efficiently to solve the proposed problem. One of the most
efficient solvers of AMPL is CPLEX. Therefore, in the cur-
rent paper, the CPLEX solver in AMPL is used to solve our
developed optimization problem in (19)–(39) and the one
in (40)–(49).

V. MODEL ANALYSIS AND SIMULATION RESULTS
In order to show the efficiency of our proposed reconfigura-
tion approach in uncertain environments, the proposed robust
model was tested on several distribution systems and our
results were compared with the ones presented by [34]–[37].
The models of [34]–[37] have been selected to verify our
obtained results because of their robustness against uncer-
tainties. The models in [34] and [35] have been imple-
mented in AMPL and solved by CPLEX solver. Similarly,
we used AMPL and CPLEX in our paper. The models of [36]
and [37] have been simulated in GAMS and MATLAB,
respectively. Also, only load uncertainty has been consid-
ered in reference [35] (similar to our model in the current
paper), while in [34], [36], and [37], generation uncertainty
has been taken into account in addition to uncertain demand.
Moreover, for providing an accurate comparison between
the obtained results and solutions proposed by [34]–[37],
according to [35], the ratio of active and reactive load

deviations of each bus are assumed to be fixed and propor-
tional to ratio of its active and reactive demands when the
results are compared with those of [35]. Otherwise, according
to [34], [36], and [37], load deviations are considered to
be independent from active and reactive demands when the
results are compared with solutions of [34], [36], and [37].
Also, the same load deviation limits as [35] (1Pdmax =

5% and 1Pdmin = −5%) were considered for our proposed
robust model. Regarding ignorance of load uncertainty prob-
ability in [34]–[36], the standard load deviation used by [31]
(σ = 0.05) was applied to our proposed formulation. The
horizontal axis of Fig. 3 has been divided into 10 intervals of
0.01 step length (m = 5) between minimum and maximum
load deviations. This partition can simulate efficiently the
sharp curve of PDF by piecewise linear functions.

The models of [35], [36], and [37] have been performed
on processors with CPUs of 2.53, 1.8, and 3.2 GHz and 8,
16, and 16 GB of RAM, respectively, while our proposed
model in the current paper was run on a computer with
a 3.6-GHz CPU and 16 GB of RAM. In order to have a
fair comparison between computational times of all models,
difference between CPU times of deterministic and robust
models of [35]–[37] are compared with that of our proposed
models.

A. 16-BUS TEST SYSTEM
A three-feeder 23 kV distribution system connected to sub-
station buses 1, 2, and 3 including 13 sectional switches and
three tie switches (dashed lines) is shown in Fig. 4. All data,
such as resistances and reactances of branches, and nodal
active and reactive power demands are reported in [39]. The
maximum currents of branches 11, 16, and 18 are consid-
ered 500 A, 500 A, and 300 A, respectively, while those
of all other branches are considered to be 250 A. Also, the
network loss before reconfiguration is 511.4 kW. The model
was applied to the 16-bus distribution system and proposed
configurations, nominal and maximum power losses, and
computing times are presented in Table 1.

FIGURE 4. The 16-bus test system.

According to results presented in Table 1, our pro-
posed robust model can find lower maximum power losses
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TABLE 1. Numerical results for 16-bus test system.

(2.57 kW less) as compared to the models of [35]. This fact
shows higher robustness of our proposed model compared
to robust model of [35]. Also, comparing difference of CPU
times between deterministic and robust models of [35] with
the difference in CPU times of proposed models shows that
the robust model presented by this article can solve the
reconfiguration problem much faster than [35] in uncertain
environments. Therefore, the proposed robust model is more
efficient than that of [35] for reconfiguration of small distri-
bution networks with uncertain loads.

B. 33-BUS TEST SYSTEM
The system shown in Fig. 5 includes two radial feeders with
three 12.66 kV laterals, five tie switches, and 32 normal
branches. The data of this test system are available in [12]
and its initial loss (before reconfiguration) is 202.7 kW. The
voltage of the substation bus (node 0) is assumed 1 per unit.
The maximum current flow of each branch is 500 A. The
proposed formulation was applied to this test system and the
results in comparison with alternative models of [35] and [37]
are listed in Table 2.

From Table 2, deterministic and robust models of [35]
present non-radial solutions because opening switch
29 resulted in non-radial configurations and isolation of some
buses such as 29, 30, and 31 from the network, while our
proposed robust model finds the optimal radial solution in
shorter computational time than the robust models of [35]
and [37]. The same nominal losses and configurations found
by both proposed models in current paper show high robust-
ness of the presented formulation for reconfiguration of radial
distribution networks in uncertain situations.

C. 70-BUS TEST SYSTEM
This test system is an 11 kV radial distribution network with
two substations, four feeders, 68 load buses, 11 tie lines, and
68 sectional switches, as shown in Fig. 6. Data for this system
are available in [5]. The initial power loss of the network
is 227.5 kW. Table 3 shows proposed configurations, power
losses amounts, and computation times of both deterministic
and robust models.

Different radial topologies presented in Table 3 when the
demand uncertainties are considered show non-robustness
of all deterministic models. However, the proposed robust
model is more efficient than those of [34] and [35] because

FIGURE 5. The 33-bus test system.

TABLE 2. Numerical results for 33-bus test system.

it suggests a configuration with less nominal and maximum
losses than the ones from configuration in [34] and [35].

Also, our proposed robust model can find better solution
in shorter computational time than the one from robust model
of [35]. These facts confirm higher efficiency of our proposed
robust model compared to those of [34] and [35] for reconfig-
uration of 70-bus distribution system under load uncertainty.

D. 94-BUS TEST SYSTEM
As shown in Fig. 7, this real 11.4 kV network consists of
two substations on buses 84 to 94, 11 radial feeders, 83
sectionalizing switches, and 13 tie lines, with data presented
in [41].

The current-carrying capacity of each line (Imaxij ) is 410 A.
The active power loss of initial network is 532 kW. Per-
formance of the proposed models compared to alternative
models of [35] is shown in Table 4 for this real distribution
system.

Table 4 represents that the configuration found by our
proposed robust model causes less nominal and maximum
losses than switching sequences proposed by robust model
of [35]. As we can see, our proposed deterministic model
obtains less nominal power losses as compared to the nominal
power losses in [35] (469.88 kW as compared to 471.9 kW).
Our proposed robust model is much faster and more efficient
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FIGURE 6. The 70-bus test system [40].

TABLE 3. Numerical results for 70-bus test system.

than model of [35] in reconfiguration of real distribution
networks.

E. 118-BUS TEST SYSTEM
An 11 kV distribution network, as shown in Fig. 8, with three
radial feeders, one substation bus, 118 and 15 sectional and
tie switches was chosen to show efficiency and robustness
of the proposed formulation in large distribution systems.
The parameters and related data of the system are available

TABLE 4. Numerical results for 94-bus test system.

TABLE 5. Numerical results for 118-bus test system.

in [42], where the initial power loss is 1298 kW. Table 5 shows
the relevant results compared to alternative model of [34].

Table 5 shows that the proposed deterministic and robust
models find better configurations with lower power losses
compared to configurations presented in [34]. As seen, pro-
posed robust model could find a configuration with closer
nominal losses to that of proposed deterministic formulation
when compared to [34]. Also, the maximum power loss found
by our proposed robust model is much lower than that found
by robust model of [34]. Therefore, our proposed formulation
is more efficient and robust than that of [34] for reconfigura-
tion of 118-bus test system with uncertain loads.

F. 136-BUS TEST SYSTEM
This real network is part of the Tres Lagoas distribution
system in Brazil, with data available in [43] and configuration
shown in Fig. 9. It has eight radial feeders, one substation bus,
135 sectionalizing switches and 21 tie lines, with nominal
voltage and initial power losses of 13.8 kV and 320.37 kW,
respectively. The results are presented in Table 6, showing
that the robust model finds configurations with lower nominal
and maximum losses than those of [35] and [36], while loss
level of our proposed robust model in nominal scenario is

10648 VOLUME 10, 2022



M. Mahdavi et al.: Efficient Stochastic Reconfiguration Model for Distribution Systems With Uncertain Loads

FIGURE 7. The 94-bus test system.

FIGURE 8. The 118-bus test system.
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FIGURE 9. The 136-bus test system [43].

TABLE 6. Numerical results for 136-bus test system.

very close to that of deterministic models. This indicates high
robustness of our proposed model for reconfiguration of large
and real distribution systems when compared to deterministic
and robust models of [35] and [36].

TABLE 7. Changes of maximum power losses versus load deviation limits.

VI. DISCUSSION
In order to control overall load variations and reduce the
search space of reconfiguration algorithm, a set of uncertain-
ties have been designed and limited in [34]–[37]. As a result
of this assumption, some buses cannot have uncertain loads
and this issue decreases the efficiency of themodels [34]–[37]
for solving large-scale reconfiguration problems. Whereas
our proposed robust model solves the DSR problem much
faster and more accurate than models of [34]–[37] with-
out imposing any uncertainty sets and limits. The limited
uncertainty-set assumption and high complexity level are
some weaknesses of the models proposed in [34]–[37].
The high complexity of the models presented in [34]–[37]
compared to our proposed robust model causes their hard
implementation for real applications. In addition, non-radial
solutions found in [35] for 33-bus test system show that mod-
els of [35] may fail in reconfiguration of some distribution
systems. For more analysis, robustness of both models versus
different load deviation limits is demonstrated in Table 7 for
94-bus distribution system.
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Table 7 shows better robustness of our proposed model
compared to the model of [35] in all cases of load uncertainty.
It can be seen that maximum power loss is increased by
expanding load deviation limit. Also, it is observed that the
performance of our proposed model becomes better in higher
uncertainty levels as compared to robust model of [35]. This
fact indicates high efficiency and robustness of our proposed
model for reconfiguration of real distribution systems with
severe uncertainties.

VII. CONCLUSION
Distribution networks are designed and operated based on an
expected power demand predicted by load forecasting. The
load consumption has an important impact on network oper-
ation conditions as every increase or decrease in its amount
significantly affects network losses and operational costs.
Reconfiguration of distribution systems is an effective way
to reduce distribution losses, in which the states of switches
are changed according to the expected (nominal) demand,
while the technical and operational conditions have to be sat-
isfied. Therefore, any change in power demandmay affect the
proposed reconfiguration topologies through its influence on
operational costs, network losses, and operational conditions.
On the other hand, load uncertainty should be considered
in network reconfiguration in an efficient way such that the
proposed switching sequences cannot be changed easily by
any change in demand value (adequate robustness).

Accordingly, this paper presents an efficient robust model
for reconfiguration of distribution systems with uncertain
loads. The evaluation of the numerical results shows high
efficiency and robustness of our proposed model when dis-
tribution networks are under load uncertainty. Main features
of our proposed formulation compared to existing reconfig-
uration models are simple implementation, high computa-
tional efficiency, and adequate robustness. In our proposed
approach, load uncertainty and its probability are embedded
in the reconfiguration model effectively such that the devia-
tion ofmaximumpower loss from its nominal amount is small
(sufficient robustness) while configuration of networks may
be changed due to load uncertainties (high effectiveness). Our
proposed model can be a good alternative for reconfiguration
of real distribution systems because of its simple implemen-
tation, high computational efficiency, enough robustness, and
low computational time compared to other proposed models
in the relevant literature.
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