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ABSTRACT Decoding communication signals in a non-cooperative environment has always been a
challenging task. Even after the estimation of various transmission-related parameters, the unknown received
signal still cannot be decoded without the correct classification of the incorporated line coding scheme.
In this paper, a robust short-sample feature-based approach is presented which recognizes line coding
schemes in a sequential manner by an in-depth examination of linked characteristic features. The proposed
approach provides an overall correct classification accuracy higher than 90 percent with an input of
just 13 bit-waveforms whereas perfect classification accuracy (100 percent) is achieved with just 30 bit-
waveforms of the unknown received signal. A detailed comparison considering noiseless as well as noisy
channel environment is also carried out vis-à-vis existing approach based on extensive simulation results.
Additionally, the paper bridges the gap between theory and simulations to justify the obtained accuracy
results for conventional line codes under consideration. The substantial increase in classification accuracy
for a smaller number of input bit-waveforms shall aid effective decoding of the unknown received signal even
at the initial stages of reception. In general, it can benefit many practical spectrum surveillance applications,
where proactiveness is paramount.

INDEX TERMS Line codes, short-sample recognition, characteristic features, feature-based approach.

I. INTRODUCTION
The process of encoding a digitized message signal using
electrical waveforms for transmission over the channel is
commonly referred as line coding. Various line coding
schemes have been introduced for different transmission
environments [1]–[3]. The desirable attributes of line code
schemes include, small transmission bandwidth, power effi-
ciency, built-in error detection and correction capability,
noise immunity, favorable power spectral density (zero dc
value), self-synchronization and transparency [4]. Due to
these advantageous properties linked to the line codes, it is
mostly certain for a message signal to be encoded with a
particular line coding scheme before transmission. Techni-
cal standards such as Inter-Range Instrumentation Group
(IRIG) [5], have regulated the use of conventional line
coding schemes for telemetry and telecommand signals.
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These conventional schemes include unipolar, polar, bipolar
and Manchester signaling.

Fast decoding of telemetry, telecommand and telecom-
munication signals in a non-cooperative environment is rec-
ognized as a pivotal source of information for undertaking
timely precautions against unforeseen circumstances. The
information signal intercepted in a non-cooperative context
shall not contain transmission related parameters required by
the receiver for decoding purposes. Therefore, estimation of
transmission parameters is the only viable solution.

Several methods for estimation of various transmis-
sion related parameters have sprung up in the recent
past. In [6]–[10], likelihood-based methods for recogni-
tion of digital modulation techniques are discussed whereas
feature-based methods identifying different modulation
schemes using respective characteristic constellations are
presented in [11]–[15]. A survey of modulation classification
methods based on both traditional approaches is covered
in [16]. Classification of channel codes in a non-cooperative
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FIGURE 1. Plots of conventional line coding schemes for an arbitrarily selected 10-bits binary sequence. It can be clearly seen that unipolar
signaling has no negative polarity present in the signal, whereas Manchester and polar NRZ lacks the presence of zero signal level. The
maximum possible count of consecutive high, zero, and low constant level minimum intervals can also be visualized for each scheme by closely
observing the nature of the respective encoded signal.

context is discussed in [17], [18], and particularly, recogni-
tion of space-time block codes and turbo codes is presented
in [19], [20] and [21], [22], respectively. Blind estimation
of interleaver parameters has been addressed in [23]–[26],
moreover, methods to estimate convolutional and block inter-
leaver parameters are discussed in [27]–[30] and [31], [32],
respectively.

It is pertinent to highlight here that even after the estimation
of various transmission-related parameters discussed above,
the unknown received signal still cannot be decoded with-
out the correct classification of the incorporated line coding
scheme. Moreover, early extraction of hidden information
in the unknown received signal, which is of crucial impor-
tance for the performance of many spectrum surveillance
applications, demands from these classification / estimation
algorithms to not only be accurate but fast as well. To the
best of our knowledge, research specific to classification
of line coding schemes is still a pending task. No litera-
ture except [33] (discussed later) is available in this regard.
This paper therefore contributes to this field by proposing
a robust approach to recognize conventional line coding
schemes using relevant characteristic features. Our classifi-
cation algorithm takes unknown received signal as input and
identifies the incorporated line coding scheme in a sequential
manner based on short-sample bit waveform characteristic
features.

Themain contributions of our work are summarized below:
1. A robust feature-based approach is proposed to recog-

nize conventional line coding schemes with an aim to

assist effective decoding of unknown received signal at
initial stages of reception.

2. The shortcomings of the most recent related approach
presented in [33] are first highlighted and subsequently
resolved using simple but effective techniques.

3. Classification accuracy with respect to received num-
ber of unknown bit-waveforms in noiseless as well
as noisy environment is recorded and analyzed using
extensive simulation-based results.

4. The theoretical foundation behind the obtained
simulation-based classification accuracies is estab-
lished in order to show coherence between theory and
simulations.

5. Our proposed approach outperformed the existing
state-of-the-art algorithm by achieving perfect classi-
fication accuracy with significantly reduced number of
input bit-waveforms of the unknown received signal.

II. RELATED WORK
The only existing state-of-the-art approach with regards to
feature-based classification of line codes is given in [33],
where Janghoon Oh et al. have presented a sequential
classification algorithm, which classifies conventional line
coding schemes based on characteristic features. The algo-
rithm achieves a correct classification probability higher
than 90 percent, provided, more than 30 bit-waveforms of
the unknown signal are received. Our feature-based approach
proposed in this paper is inspired by the work presented
in [33].
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The rest of the paper is organized as follows; Section 3
briefly presents the details of classification algorithm pre-
sented in [33]. Section 4 explains the proposed approach.
Section 5 describes the methodology used for evaluation
whereas Section 6 carries out detailed comparison between
both approaches by highlighting the obtained results. Finally,
Section 7 offers conclusion.

III. PREVIOUS APPROACH
In [33], four characteristic features inherent to respective line
codes have been utilized in order to classify conventional line
coding schemes. All conventional schemes based on polar,
unipolar, bipolar and Manchester signaling along with their
Non-Return-to-Zero (NRZ) andReturn-to-Zero (RZ) variants
are considered for classification purposes. Fig. 1 refers to the
signal dynamics for each of the respective line coding scheme
considering an arbitrarily selected same binary sequence.
The simplest of all is the unipolar / on-off scheme which
represents bit 1 as a high voltage pulse (>0) and bit 0 with
zero signal level or no pulse. The polar scheme encodes bit 1
same as the unipolar case but bit 0 as a low voltage pulse
(<0). With equally likely bit states (1 or 0) in the message
signal, the power of DC component in polar signaling is zero.
When polar signaling is used with modified pulse shapes
which encode bit 0 and 1 with low to high and high to low
voltage transitions, respectively, with a zero crossing at half
of pulse width, the resulting signal is known as Manchester
line code. Besides zero DC component, it provides valuable
information for receiver bit synchronization irrespective of
bit states. Finally, the bipolar scheme also known as alternate
mark inversion (AMI) encodes bit 0 as no pulse and bit 1 as
an alternating high or low voltage pulse based on whether
the pulse representing preceding bit 1 is of the low or high
voltage, respectively. The characteristic features of the above
discussed conventional line codes include:

A. PULSE POLARITY
This feature detects the presence of negative polarity in the
unknown received signal. As unipolar signaling does not
incorporate negative polarity in the transmitted signal, thus
this feature distinguishes unipolar signaling from rest of the
conventional schemes.

B. DETECTION OF ZERO LEVEL
The feature is responsible for identifying schemes that incor-
porate zero amplitude level in the message signal. As by
design virtue, polar NRZ and Manchester scheme does not
incorporate zero signal level, hence both of these schemes can
be separated from others using this simple feature.

C. NUMBER OF CONSECUTIVE CONSTANT LEVEL
MINIMUM INTERVAL (CLMI)
This feature counts the maximum number of consecutive
high constant level minimum interval (CLMI) and zero
constant level minimum interval (CLMI) present in the
unknown received signal. As the count for maximum possible

TABLE 1. Characteristic features of conventional line coding schemes.

consecutive high CLMI for the message signal incorporated
with Manchester signaling cannot exceed 2, hence this fea-
ture assists in distinguishing the already separated group of
Manchester and polar NRZ line coding schemes. Similarly,
the count for maximum possible consecutive zero CLMI
provides distinctiveness to certain line codes which results
in ease of identification of that particular scheme using the
unknown received signal only.

D. PEAK-TO-AVERAGE-POWER-RATIO (PAPR)
PAPR is the ratio of peak power to average power. It depends
on the number of 1’s (marks) and 0’s (spaces) present in the
signal which makes this feature a probabilistic one in con-
trast to deterministic features discussed above. Intuitively, the
probability that PAPR value for RZ and NRZ pulse becomes
equal is approximately negligible. Hence this feature can
be utilized to distinguish RZ and NRZ sequences of the
same signaling source. It therefore assists in differentiating
respective RZ and NRZ counter parts of unipolar and bipolar
signaling.

FIGURE 2. Block diagram of algorithm presented in [33] for classification
of conventional line coding schemes.
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The features discussed above are consolidated in Table 1.
Each one of the four features are computed for all con-
ventional line coding schemes, respectively. The first three
features are generic and deterministic, no matter what binary
sequence the input signal carries as can be validated using
plots in Fig. 1. The last feature is probabilistic in nature
and computes the inverse of respective PAPR value which
normalizes the output between 0 and 1, thus, rendering the
extracted PAPR feature independent of the amplitude, the
received signal carries. The values of PAPR depicted in
Table 1 are for a message signal with a mark ratio of 0.5.
Thus, these values may change depending upon the change
in 1’s and 0’s the message signal carries.

The sequential algorithm presented in [33] is shown in
Fig. 2. It takes the received unknown signal as input and
carries out the pulse polarity check. If no negative signal
polarity is found in the message signal, then it distinguishes
between unipolar RZ and NRZ signaling based on PAPR
threshold. In case negative pulse polarity is present, then
the input is checked for the presence of zero signal level.
If no zero amplitude is found, then Manchester and polar
NRZ schemes can be separated by counting the maximum
number of consecutive high CLMI, which inManchester case
cannot exceed 2. Lastly, if both the checks above are true then
the search is narrowed down to remaining three choices that
include bipolar RZ and NRZ along with polar RZ scheme.
The algorithm distinguishes between bipolar RZ and NRZ
sequences based on PAPR threshold as discussed, whereas
polar RZ is separated using the count for maximum number
of consecutive zero CLMI which is always equal to unity for
this scheme. The PAPR−1 threshold for distinguishing the
unipolar and bipolar RZ / NRZ counter parts, respectively,
is modestly assumed in [33] to be 0.375 which is the median
of the PAPR values depicted against these schemes in Table 1.

The algorithm presented in [33] achieves classification
accuracy higher than 90 percent, provided that more than 30
bit-waveforms of the unknown signal are received. The
results shall be further discussed in Section 6.

IV. PROPOSED APPROACH
In the previous approach, unipolar RZ and NRZ schemes
were distinguished based on PAPR threshold which is a
probabilistic parameter. The authors in [33] have reported no
unique difference information between these schemes consid-
ering the first three robust features due to which they had to
rely on probabilistic PAPR value for distinguishing purposes.
As correct classification probability using robust features is
bound to be better than when using probabilistic features,
hence the classification accuracy of RZ and NRZ schemes
for unipolar and bipolar signaling, suffered a lag period in
convergence which demanded a greater number of input bit-
waveforms (discussed later). If we observe closely the nature
of signal in case of unipolar RZ signaling as shown in Fig. 1,
it can easily be visualized that the count of maximum number
of consecutive high CLMI in the received signal can never
exceed unity. This is because the RZ pulse has to return to

FIGURE 3. Block diagram of proposed robust recognition algorithm.

zero level before initiating response for the subsequent mes-
sage bit. Thus, irrespective of the binary sequence contained
in the message signal, the pulse has to return to zero after
representing the respective message bit. This insight proved
to be very useful, as unlike [33] it has given us the opportunity
to separate unipolar RZ and NRZ schemes based on the
robust feature of No of consecutive high CLMI instead of the
probabilistic PAPR value.

In order to disassociate the bipolar RZ and NRZ coun-
terparts from PAPR threshold-based discrimination we have
here exploited the inherent relationship between bipolar
and unipolar schemes which allows us to convert a bipolar
encoded signal to a unipolar encoded signal just by applying
a simple absolute value or modulus function. The modulus
function provides the non-negative value of signal amplitude
irrespective of the sign it carries which enables us to adopt
same discrimination standards for separating bipolar NRZ
and RZ schemes as declared for the unipolar case. Thus,
the absolute valued bipolar NRZ and RZ schemes can now
be distinguished using the characteristic feature of No of
consecutive high CLMI.

The proposed robust classification algorithm is shown in
Fig. 3. The algorithm operates in a similar manner as in [33],
except now the unipolar and bipolar cases are distinguished
based on robust feature of No of consecutive high CLMI
instead of probabilistic PAPR value. Thus, the proposed algo-
rithm is less volatile in nature. The results obtained using the
proposed robust classification approach for conventional line
coding schemes depicted a significant improvement in correct
classification probabilities of unipolar and bipolar signaling.
This resulted in an overall increase in classification accuracy
even for short-sample of received signal bit-waveforms. The
details of the obtained numerical and simulation results along
with comparisons are presented in Section 6.

As discussed earlier our approach distinguishes unipo-
lar counterparts using the feature of No of consecutive
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high CLMI. We have also already established that there is
no possibility for the existence of consecutive high CLMI in
the received signal encoded with unipolar RZ scheme. Our
algorithm checks for the presence of consecutive high CLMI
in the received signal and then classifies the underlying line
code as appropriate. Although the algorithm is classifying
the line code as unipolar / bipolar RZ in the absence of
consecutive high CLMI, there still exists the probability of
misclassification for the cases where the received signal is
encoded with unipolar / bipolar NRZ scheme and contains
no consecutive bits. In short, we are interested in finding
the probability of consecutive high CLMI in the signal with
respect to the received number of bit-waveforms. This will
assist us in theoretically validating the classification accuracy
of the proposed algorithm.

Suppose we have N received signal bits and we are inter-
ested in the probability of consecutive ones, P(N). We shall
be adopting a reverse approach in which we initially will
work our way to find the probability of no consecutive ones,
P∗(N), in aN-bit sequence, whichwill subsequently lead us to
the desired probability. It is well-known that a set containing
N-bit sequences and avoiding consecutive ones is enumerated
by generalized Fibonacci sequence, [34]–[36], given as

FN = FN−1 + FN−2, (N > 2). (1)

Basically, the cardinality of the set containing binary strings
of length N with no consecutive ones follows the same recur-
sive relation as of Fibonacci sequence. This can easily be
proved as follows.

Consider Sk (N − 1) to be the count of binary sequences
of length N− 1 without consecutive ones and starting with k ,
where k ∈ {0, 1} . Then, the total count of N−1 bit sequences
without consecutive ones can be given as

S(N− 1) = S0(N− 1)+ S1(N− 1).

Utilizing the binary tree in Fig. 4, it can be observed that
the count of binary strings of length N which contain no
consecutive ones and with left-most bit 1, exactly equals the
count of preceding binary sequences of length N− 1 without
consecutive ones but with 0 as the initial digit. Similarly,
the count of N-bit sequences starting with 0 but without
consecutive ones, exactly equals the total count of preceding
N − 1 bit sequences without consecutive ones. This can
mathematically be written as,

S1(N) = S0(N− 1) (2)

S0(N) = S0(N− 1)+ S1(N− 1) = S(N− 1) (3)

S(N) = S0(N− 1)+ S(N− 1) (4)

where (4) is obtained by adding (2) and (3). Using (3), we can
write S0(N− 1) = S(N− 2), which can be substituted in (4)
to get the desired recursive relation same as (1).

S(N) = S(N− 1)+ S(N− 2), (N > 2) (5)

From Fig. 4, we have two outcomes with no consecutive
ones for N = 1 whereas for N = 2 we have three such

FIGURE 4. Binary tree for N > 0, where each subsequent level is obtained
by prefixing 0 and 1 respectively, to the outcomes of preceding level.

outcomes out of 2N = 4 total possibilities in the sample
space and so on in accordance with (5). Thus, looking at the
Fibonacci sequence (1, 1, 2, 3, 5, 8, 13 . . .), we can say that
the number of outcomes without consecutive ones for a N-bit
sequence essentially equals (N + 2)th Fibonacci term. The
generalized expressions for the probability of no consecutive
ones in a N-bit sequence, and the desired probability of
consecutive high CLMI can then be given as

P∗(N) =
FN+2
2N

and

P(N) = 1− P∗(N), (6)

respectively.

V. EVALUATION METHODOLOGY
To evaluate our algorithm’s performance, we simulated ran-
dom bit sequences, where each bit can be equally likely 1
or 0. Each randomly generated bit sequence was represented
using conventional line codes under consideration. These line
coded signals were then individually given as input to the
proposed algorithm to obtain classification results in a non-
cooperative context. In principle, without the knowledge of
bitrate associated with the incoming unknown signal, it is
not possible to recognize the presence of consecutive high,
low, or zero CLMI’s. Due to this limitation, a normalized unit
bitrate was assumed for the entire evaluation process.

To facilitate performance comparison with existing
approach in [33], we varied the number of bit-waveforms in
the simulated signal from 5 to 100 with a step size of 5 for
noiseless environment. Secondly, to analyze the performance
of the proposed approach in noisy environment, we incorpo-
rated additive white Gaussian noise (AWGN) in the incoming
unknown signal and assumed a fixed number of received
bit-waveforms to only focus on evaluating classification
performance vis-à-vis signal-to-noise-ratio (SNR). Lastly,
we set high and low CLMI values of the input signal as 1 and
−1, respectively and adopted thresholding with ε = 0.5 for
initial signal-level decision in noisy channel environment as
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FIGURE 5. Simulation results highlighting the correct classification
probability using the proposed approach for the conventional NRZ
schemes versus the theoretically derived probability of consecutive 1s.

given by level = 1, 1− ε < x(t) ≤ 1+ ε

level = 0, −ε ≤ x(t) ≤ ε

level = −1, −1− ε ≤ x(t) < −1+ ε

 .

During the entire evaluation process, the correct classifica-
tion probability was recorded using Monte-Carlo simulations
involving 100,000 iterations.

VI. RESULTS AND COMPARISON
Intuitively, P(N) derived in Section 5 shall directly dictate the
correct classification probability of the proposed algorithm in
case of NRZ signaling. This is because the algorithm relies

on the presence of consecutive ones in received signal to
separate the NRZ scheme from its RZ counterpart. We simu-
lated the conventional NRZ schemes (unipolar, bipolar and
polar) following the evaluation methodology discussed in
previous section. Fig. 5 highlights the simulation results in
combinationwith the theoretical results given in (6). As all the
curves are strictly following each other, thus, the coherence
between the theoretical and simulation results has been estab-
lished which justifies the classification accuracy achieved by
our proposed algorithm.

Next, to carry out detailed performance comparison, the
previous and proposed algorithms presented in Fig. 2 and
Fig. 3, respectively were validated under same noiseless test
scenario using again comprehensive Monte-Carlo simulation
results involving 100,000 iterations as shown in Fig. 6. The
graphs clearly highlight the substantial improvement in clas-
sification accuracy introduced by the proposed algorithm.
The unipolar and bipolar NRZ schemes which previously
required more than 100 bit-waveforms are now converging
to 100 percent accuracy with just 30 bit-waveforms of the
unknown signal. This significant increase in terms of clas-
sification accuracy is credited to the disassociation of these
schemes from the PAPR based probabilistic feature for dis-
tinguishing purposes. Moreover, the unipolar RZ signaling is
offering a perfect classification accuracy with just 5 signal
waveforms. This is because, the proposed algorithm shall
classify the underlying line code as unipolar RZ, only if no
consecutive ones are present in the received signal, which
shall always be the case if the signal is encoded with the
RZ scheme. The Manchester and polar signaling have shown
a classification accuracy approximately similar to previous
algorithm as no change in the classification procedure of
these schemes has been introduced in the proposed algorithm.

FIGURE 6. Estimated correct classification probability over 100,000 iterations of Monte-Carlo simulations versus received number of bit-waveforms in a
noiseless environment. The number of input bit-waveforms is varied from 5 to 100 with a step size of 5. Common legends have been assigned to each
conventional line coding scheme in both graphs for ease of comparison: (a) Previous approach, (b) Proposed approach.
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FIGURE 7. Correct classification probability vis-à-vis signal-to-noise-ratio
(SNR) for 50 input bit-waveforms considering AWGN channel.

Thus collectively, the proposed approach offers an overall
classification accuracy higher than 90 percent for all con-
ventional line coding schemes with the intake of just 13 or
more signal bit-waveforms as compared to more than 30
bit-waveforms required by the previous approach presented
in [33]. It is pertinent to highlight here that the previous
approach required more than 100 bit-waveforms for perfect
classification accuracy (100 percent), which the proposed
approach offers in just 30 bit-waveforms of the unknown
received signal, thus, three to four times more efficient than
its predecessor.

In case of noisy channel environment, subsequent to the
signal-level decision using thresholding criterion defined
in previous section, the classification of conventional line
codes can be carried out using the noiseless framework
already discussed in Section 4. We recorded accuracy statis-
tics with respect to SNR for an input signal encompassing
50 bit-waveforms and passing through an AWGN channel as
shown in Fig. 7. In comparison to [33], where the correct clas-
sification probability for unipolar and bipolar NRZ signaling
considering 50 input bit-waveforms resulted into conver-
gence around 0.97 even in the high SNR region (>25 dB) due
to PAPR based separation, the proposed approach achieves
perfect classification accuracy for all conventional line cod-
ing schemes considering same number of bit-waveforms
with a significantly lowered SNR of 18 dB. However, the
graph also highlights that decreasing the received signal SNR
degrades the performance of the proposed approach, thereby
the classification accuracy is very limited under a noisy
channel environment. Due to this, the prerequisite of a good
SNR value (>15 dB) for the unknown received signal can
be viewed as a limitation for achieving high classification
accuracy using the proposed approach.

VII. CONCLUSION
In this paper, a robust short-sample feature-based approach
for recognition of conventional line coding schemes is

proposed which showed significant improvement in classi-
fication accuracy with respect to received bit-waveforms.
By highlighting the characteristic difference in unipolar NRZ
and RZ schemes, the paper initially addressed the conver-
gence lag issue of classification probability, encountered by
unipolar and bipolar NRZ schemes in the existing approach
due to PAPR based separation. The highlighted difference
acted as sufficient evidence for rejecting probabilistic PAPR
feature as a potential candidate for distinguishing unipolar
and bipolar signaling. Revealing the inherent relationship
based on modulus function between unipolar and bipolar
signaling allowed for the mutual sharing of the already estab-
lished short-sample classification procedure among these
sister schemes. The performance of existing and proposed
approaches was subsequently put through validation process
using extensive simulations under same test scenario. Sig-
nificant improvement in the overall classification accuracy
with respect to the received number of input bit-waveforms
was observed for all targeted line coding schemes considering
both noiseless and noisy environments, respectively.

The substantial increase in classification accuracy for
smaller number of bit-waveforms shall aid effective decoding
of the unknown received signal even at the initial stages
of reception. Early extraction of the information contained
inside the unknown received signal can provide an unparal-
leled edge to many practical spectrum surveillance applica-
tions where split-second decisions matter.
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