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ABSTRACT Software plays a central role in our life nowadays. We use it almost anywhere, at any time,
and for everything: to browse the Internet, to check our emails, and even to access critical services such as
health monitoring and banking. Hence, its reliability and general quality is critical. As software increases in
complexity, developers spend more time fixing bugs or making code work rather than designing or writing
new code. Thus, improving software understandability and maintainability would translate into an economic
relief over the total cost of a project. Different cognitive complexity measures have been proposed to quantify
the understandability of a piece of code and, therefore, its maintainability. However, the cognitive complexity
metric provided by SonarSource and integrated in SonarCloud and SonarQube is quickly spreading in the
software industry due to the popularity of these well-known static code tools for evaluating software quality.
Despite SonarQube suggests to keep method’s cognitive complexity no greater than 15, reducing method’s
complexity is challenging for a human programmer and there are no approaches to assist developers on
this task. We model the cognitive complexity reduction of a method as an optimization problem where the
search space contains all sequences of Extract Method refactoring opportunities. We then propose a novel
approach that searches for feasible code extractions allowing developers to apply them, all in an automated
way. This will allow software developers to make informed decisions while reducing the complexity of their
code. We evaluated our approach over 10 open-source software projects and was able to fix 78% of the
1,050 existing cognitive complexity issues reported by SonarQube. We finally discuss the limitations of the

proposed approach and provide interesting findings and guidelines for developers.

INDEX TERMS Software quality, software maintenance, optimization, cognitive complexity.

I. INTRODUCTION
Most of the cost during software development is due to
its maintenance [1], [2]. In complex software systems the
time spent for validation could even be longer than the
development time. Previous studies showed that debugging
errors could be up to the 50% of the total cost of software
projects [3]. This is due to the fact that software maintenance
tasks are usually performed by hand instead of using auto-
matic approaches.

Software metrics provide a quantitative basis for the devel-
opment and validation of models of software development
process. Information gained from metrics can be used in
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managing the development process in order to improve the
reliability and quality of software products [4]. Cognitive
informatics plays an important role in understanding the fun-
damental characteristics of software and cognitive complex-
ity metrics are a good indicator for this [5]. A number of
such measures have been proposed in the literature. However,
there is no single metric which has the capability of measur-
ing the complexity of a program based on multiple object-
oriented concepts [6]. One of the most popular software
metrics is the Cyclomatic Complexity, proposed by Thomas
McCabe in 1976 [7]. This metric quantifies the control flow
complexity of a piece of code and it has been extensively
used in Object Oriented Programming (OOP) to compute the
minimum number of test cases to cover a method. However,
this metric is not adequate to quantify the understandability
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// Cognitive complexity 7
int sumOfPrimes(int m)

{

int total = 0;

/1 +1

B: for (int i=1; i<=m; ++i)

/1 +2 (1 by nesting)
for (int j=2; j<i; ++j)

// Cognitive
complexity 1
String getWords(int n)
{

/1 +1
switch (n)

{

case 1:

{

. t "
/I +3 (2 by nesting) C;fe”rzn, one s
if (i %j==0) ) - "
{ return "two";
. case 3:
continue B; // +1 case " "
return "three";

}

}

total += i;
) )
return total;

}

FIGURE 1. Two methods with equal Cyclomatic Complexity (4) but
different SSCC.

default:
return "> three";

}

and maintainability of a code and, therefore, its cognitive
complexity. Recently, a novel cognitive complexity metric
has been proposed and integrated in the well-known static
code tools SonarCloud! and SonarQube,2 an open-source
service and platform, respectively, for continuous inspection
of code quality, which are extensively used by developers and
software factories today. This cognitive complexity metric,
which we refer to as SonarSource Cognitive Complexity
(SSCC), has been defined as a measure of how hard the
control flow of a method is to understand and maintain [8].
It breaks from the practice of using mathematical models to
assess software maintainability. It starts from the precedents
set by Cyclomatic Complexity, but uses human judgment to
assess how structures should be counted and to decide what
should be added to the model as a whole. The SSCC is given
by a positive number which is increased every time a control
flow sentence appear. Their nested levels also contribute to
the SSCC of a method. Note that SonarQube suggests to keep
methods’ cognitive complexity no greater than 15, although
this threshold can be set by the user to a different value.

As an introductory example, let us compare the
sumOfPrimes and getWords methods, both shown in
Fig. 1. Although they have equal Cyclomatic Complex-
ity (4), it is intuitively obvious that the control flow of
sumOfPrimes is more difficult to understand than that of
getWords. The sumOfP rime method has a more complex
control flow than that of getWords, mainly due to the nested
loop and the cont inue statement. Thus, the cognitive effort
required by developers to understand and maintain both codes
is not the same, being sumOfPrimes much harder (SSCC
= 7) than getWords (SSCC = 1).

Therefore, the cognitive complexity metric integrated in
SonarQube yields method complexity scores which strike
programmers as fairer relative assessments of understandabil-
ity than have been available with previous models [8]. This
assessment of understandability is also valid at the class level,
just aggregating methods’ cognitive complexity. Despite the
fact that SSCC correlates with source code understandability

1 https://www.sonarcloud.org/
2https://WWW.sonarqube.org/
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in a meaningful way [9], software developers lack support
to reduce the cognitive complexity of their code to a given
threshold.

There are different refactoring operations to handle dif-
ferent tasks. However, Extract Method is the most versa-
tile refactoring operation serving 11 different purposes [10].
In addition, identification of Extract Method refactoring
opportunities for the decomposition of methods can be per-
formed in an automatic way [11]. Due to its many uses [12],
Extract Method has been recognized as the “Swiss army
knife of refactorings™ [10], [13]. It has also been recently
used to reduce the complexity of code [14], [15] as we do
in this paper. The main differences with already existing
approaches are the following: they performed a more limited
experimental validation, they do not impose any threshold for
the cognitive complexity of the methods, and, most important,
they are not able to generate sequences of feasible extrac-
tions. For example, in the project Knowage-Core, one of the
projects analyzed as part of the case of study in this paper,
there are more than 100 methods which require a sequence
of code extractions to reduce their SSCC. However, previous
approaches are not able to reduce the SSCC of those methods
in a single execution.

We model the reduction of the SSCC to a given threshold as
an optimization problem. The search space contains all fea-
sible sequences of Extract Method refactoring opportunities.
An optimal solution is one which reduces SSCC to the chosen
threshold while minimizing the number of method extrac-
tions.? Note that the new extracted methods must be below
the threshold too. We here propose an approach to reduce the
SSCC of software projects in an automated way. We finally
implement the proposed approach as a software tool for Java
code and we apply it over 10 open-source software projects to
reduce their SSCC. The developed tool will be available as an
open-source project in a public repository.* To the best of our
knowledge, the SSCC metric has not been properly validated
as a cognitive complexity measure. We additionally perform
a theoretical validation of this metric, which we include as an
appendix of this paper.

We thus make the following contributions:

« Modeling the SSCC reduction to a given threshold as an
optimization problem.

« Providing a software tool to reduce the SSCC of Java
projects in an automated way.

« Validating the proposed approach over 10 real world
open-source applications.

« Defining best practices to improve software readability
and maintainability while benefiting the SSCC reduction
task.

o Performing a theoretical validation of the SSCC metric.

The remainder of this paper is organized as follows.
Section II discusses related work. Section III formulates the

3We minimize the number of method extractions to reduce the number of
modifications in the original code.
4https:// ‘github.com/rsain/SoftwareCognitiveComplexityReducer
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SSCC reduction as an optimization problem. Section IV,
introduces our approach for reducing the SSCC to a given
threshold. In Section V we present the case of study and
summarize the experimental setting for evaluating our pro-
posal. Section VI provides the results of our experiments.
Section VII discusses the limitations of our approach, reports
interesting findings, and identifies open research gaps.
Section VIII discusses the threats to the validity of our
work. Finally, Section IX presents conclusions and future
work.

Il. RELATED WORK

Probably the oldest and most intuitively obvious notion of
software complexity is the number of statements in the pro-
gram, or the statement count. However, a large number of
software complexity measures have been proposed in the
past. In the 70s, the number of program statements, McCabe’s
cyclomatic number [7], Halstead’s programming effort [16],
and the Knot measure [17] were the most frequently cited
measures. In the 90s, Douce et al. introduced a set of metrics
that help in calculating the complexity of a given system or
program code based on the object-oriented concepts such as
the object and class [18]. All those metrics were based on the
spatial abilities which measure the complexity by calculating
the distances between the program elements in the code.

In 2003, Shao and Wang proposed cognitive complexity
as a new measure of the cognitive and psychological com-
plexity of software by examining the cognitive weights of
basic control structures (BCS) of software. Based on this
approach a new concept of Cognitive Functional Size (CFS)
of software was developed [19]. Cognitive weights are degree
of difficulty or relative time and effort required for compre-
hending a given piece of software. In 2006, Misra et al.
proposed the modification in CFS measure by taking into
account the total occurrence of operators and operands and
all internal BCS [20]. The same year, Misra proposed the
Cognitive Weight Complexity Measure (CWCM) complexity
measure which is also based on cognitive weights [21]. Then,
Kushwaha and Misra framed different cognitive complexity
metrics with the goal of aiding in increasing the reliability of
software product during the development lifecycle [4].

In 2007, Misra S. and Misra A. K. compared cognitive
complexity measures in terms of nine properties [22]. Then,
Misra proposed an improved cognitive complexity measure
named Cognitive Program Complexity Measure (CPCM)
which establishes a relation between total number of inputs
and outputs, cognitive weights, and cognitive complex-
ity [23]. The same year, Misra proposed an object-oriented
complexity metric which calculates the complexity of a class
at method level [24]. Later, in 2008, Misra et al. proposed a
metric that considers internal attributes which directly affect
the complexity of software: number of lines, total occurrence
of operators and operands, number of control structures, and
function calls (coupling) [25]. The same year, Misra and
Akman proposed a new complexity metric based on cogni-
tive informatics for object-oriented code covering cognitive
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complexity of the system, method complexity, and complex-
ity due to inheritance together [26].

Few years later, in 2011, Misra et al. proposed a cognitive
complexity metric for evaluating design of object-oriented
code. The proposed metric is based on the inheritance feature
of the object-oriented systems. It calculates the complexity at
method level considering internal structure of methods, and
also considers inheritance to calculate the complexity of class
hierarchies [27]. In 2012, Misra et al. proposed a suite of cog-
nitive metrics for evaluating complexity of object-oriented
codes [28]. All the metrics are critically examined through
theoretical and empirical validation processes. The same year,
Misra et al. also proposed a framework for the evaluation and
validation of software complexity measure. This framework
is designed to analyse whether or not software metric quali-
fies as a measure from different perspectives [29].

In 2016, Haas and Hummel addressed the problem of
finding the most appropriate refactoring candidate for long
methods written in Java. The approach determines valid
refactoring candidates and ranks them using a scoring func-
tion that aims to improve readability and reduce code com-
plexity [14]. Later that year, Wijendra and Hewagamage
proposed a cognitive complexity metric which determines
the amount of information inside the software through cog-
nitive weights and the way of information scattering in terms
of Lines of Code (LOC) [30]. In this paper, authors also
analyzed how the proposed cognitive complexity calculation
can be automated. The same year, Crasso et al. presented
a software metric to assess cognitive complexity in object-
oriented systems developed in the Java language [31]. The
proposed metric is based on a characterization of basic con-
trol structures present in Java systems. Authors also provided
several algorithms to compute the metric and introduced their
materialization in the Eclipse IDE. Finally, the applicability
of the tool was shown by illustrating the metric in the context
of 10 real world Java projects.

In 2017, Rabani and Maheswaran discussed and analyzed
classical and modern metrics of software cognitive complex-
ity [5]. The same year, Misra et al. identified the features
and advantages of the existing software cognitive complexity
metrics [32]. They also performed a comparative analysis
based on some selected criteria. The results showed that there
is a similar trend in the output obtained from the different
measures when they are applied to different examples.

In 2018, Misra et al. presented an updated suite of cognitive
complexity metrics that can be used to evaluate object-
oriented software projects [33]. The metrics suite was eval-
uated theoretically using measurement theory and Weyuker’s
properties and practically using Kaner’s framework [34]. The
same year, SonarSource introduced cognitive complexity as a
new metric for measuring the understandability of any given
piece of code [8]. This paper investigated developers’ reaction
to the introduction of cognitive complexity in the static code
analysis tool service SonarCloud. In an analysis of 22 open-
source projects, they assessed whether a development team
‘accepted’ the proposed metric based on whether they fixed
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code areas of high cognitive complexity as reported by the
tool. They found that the metric had a 77% acceptance rate
among developers.

In 2019, Kaur and Mishra conducted an experimental anal-
ysis in which the software developer’s level of difficulty in
comprehending the software (the cognitive complexity) was
theoretically computed and empirically evaluated for estimat-
ing its relevance to actual software change [35]. This study
validated a cognitive complexity metric as a noteworthy mea-
sure of version to version source code change. Also in 2019,
Alqadi proposed novel metrics to compute the cognitive com-
plexity of code slices [36]. Empirical investigation into how
cognitive complexity correlates with defects in the version
histories of three open-source systems was performed. The
results showed that the increase of cognitive complexity sig-
nificantly increases the number of defects in 93% of the cases.
The same year, Hubert proposed an approach to fully auto-
mate the extract method refactoring task ranking refactoring
opportunities according to a scoring function which takes into
account software cognitive complexity [15].

Recently, in 2020, Jayalath and Thelijjagoda proposed a
new metric to evaluate the complexity of object-oriented
programs based on the influence of previous object-oriented
metrics and some disregarded factors in calculating the com-
plexity [6]. The same year, Muifioz Barén et al. conducted a
systematic literature search to obtain data sets from studies
which measured code understandability and found that cog-
nitive complexity integrated in the well-known static code
analysis tool service SonarCloud positively correlates with
comprehension time and subjective ratings of understandabil-
ity [9].

Although existing approaches can indirectly reduce soft-
ware cognitive complexity, they are not able to automatically
reduce methods cognitive complexity to a given threshold.
Our proposal is novel because we (i) model the software
cognitive complexity reduction to a given threshold as an
optimization problem and (ii) provide a tool that generates
and applies a sequence of feasible extractions to reduce the
SonarSource Cognitive Complexity of Java projects.

IIl. PROBLEM DEFINITION AND MOTIVATION

SonarCloud and SonarQube compute cognitive complexity
of a method as the sum of two components that we call the
inherent component and the nesting component. The inherent
component depends on the presence of certain control flow
structures and complex expressions (like decisions combin-
ing several conditional expressions). When a control flow
structure or complex expression is found it contributes +1
to the inherent component. The nesting component depends
on the depth that a certain control flow structure is in the code
with respect to the root node (e.g. a method declaration). This
depth is the contribution to the nesting component. Let s; and
e; be the start and end offset (in characters) of the ith sequence
of sentences of a method in its source file. We consider that ith
sequence is nested in the jth sequence, denoted with i — j,
when [s;, e;] C [s5, ¢j]. We say that the ith sequence is in
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conflict with the jth sequence, denoted with i <~ j, when i and
J are not nested one in the other and [s;, e;] N [s;, e;] # @.

The SSCC at method level can be reduced to a threshold
applying Extract Method refactorings: extracting as a new
method in the same class sequences of sentences (i.e., lines of
code). However, this task is not straightforward for software
developers due to the following reasons:

1) The number of different Extract Method refactoring
opportunities  is bounded by (3) = %=1 where n
is the number of sentences of the method.’

2) Two code extractions cannot be applied simultaneously
if they are in conflict.

3) Extract method refactoring opportunities are not appli-
cable when they introduce compilation errors or the
SSCC of the extracted code cannot be reduced to the
threshold.

4) More than one Extract Method refactoring could be
required to reduce the SSCC of a method.

Based on the previous, we define the method cognitive
complexity reduction task as an optimization problem which
asks “What is the optimal sequence of extract-method refac-
toring to apply in order to reduce the SSCC of the origi-
nal method to/below a given threshold?”’. Thus, a solution
to this problem is a sequence of code extractions which is
bounded by 2! (all possible combinations of Extract Method
refactorings).

A. CHALLENGES OF REDUCING SOFTWARE COGNITIVE
COMPLEXITY

Fig. 2 shows a running example to illustrate the difficulties
developers face when reducing the SSCC of a method. Note
that some code has been replaced by “...”” due to space
limitations, but the whole code is accesible in the follow-
ing URL.® This method has SSCC 46 and SonarQube sug-
gests to reduce it to 15 in order to improve the understand-
ability and maintainability of the method. As shown, there
are 37 statements and the upper bound of Extract Method
refactoring opportunities is (%) = 666. However, we have
checked computationally that there are only 28 applicable
code extractions. After analyzing the method, a developer
who faces this cognitive complexity reduction task could
realize that the optimal solution is a sequence of three Extract
Method refactorings. Therefore, one would need to evaluate
all possible sequences of one, two, and three Extract Method
operations totaling (%) + (3) + (3) = 28 + 378 +
3,276 = 3, 682 solutions. Although this number of solutions
is much smaller than the theoretical upper bound of all possi-
ble sequences of extractions explained in Section III (which
is 228 a2 268 million solutions), it is still unmanageable for
developers without an automated approach.

5Combination of n sentences taken two at a time without repetition. Note
that those two sentences determine the beginning and ending of a code
extraction.

6https://github‘com/Knowa,geLabs/Knowage—Server/blob/master/
knowage-core/src/main/java/it/eng/knowage/api/dossier/DocumentExecutio
nWorkForDoc.java
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1 | //Cognitive complexity 46
public String addParametersToServiceUrl (...) throws
3
4 List<BIObjectParameter> drivers = ...;
5 /1 +1
6 | if (drivers != null) {
7 List<Parameter> parameter = ...}
8 /l +2 (1 by nesting)
9 if (drivers.size() != parameter.size()) {
10 throw new SpagoBIRuntimeException("There are...");
11 }
12 Collections.sort(drivers);
13 ParametersDecoder decoder = new ParametersDecoder();
14 // 42 (1 by nesting)
15 for (BIObjectParameter biObjectParameter : drivers)
16 {
17 boolean found = false;
18 String value = ""
19 String paramName = ""
20 /I +3 (2 by nesting)
21 for (Parameter templateParameter : parameter) {
22 // +4 (3 by nesting)
23 if (templateParameter.getType().equals("dynamic")
24 {
25 /I +5 (4 by nesting), +1 (logical expression)
26 if (templateParameter.getValue() != null && ...)
{
27 value = templateParameter.getValue () ;
28 // 46 (5 by nesting), +1 (logical expression)
29 if (... && value.contains ("STRING"))
30 value.replaceAll (""", "");
31
32 // +6 (5 by nesting)
33 if (..0) o
34 paramName = templateParameter.getUrlName () ;
35 serviceUrlBuilder.append (...);
36 serviceUrlBuilder.append (...);
37 found = true;
38 break ;
39 }
40 }
41 }
42 /1 +1
43 else {
44 /" +5 (4 by nesting)
45 if (biObjectParameter.getParameterUrlName...) {
46 serviceUrlBuilder.append (...);
47 value = templateParameter.getValue ()
48 paramName = templateParameter.getUrIName () ;
49 // +6 (5 by nesting)
50 if (templateParameter.getUrlNameDescription...)
51 {
52 throw new SpagoBIRuntimeException("...");
53 }
54 serviceUrlBuilder.append (...);
55 found = true;
56 break ;
57 }
58 }
59 }
60 paramMap . put (paramName, value);
61 /" +3 (2 by nesting)
62 if (!found) {
63 throw new SpagoBIRuntimeException("...");
64 }
65 }
66 }
67 return serviceUrlBuilder.toString ();
68 |}

FIGURE 2. Method with SSCC 46 used as running example along the
paper. Reducing SSCC to 15 requires to evaluate more than 3,000 Extract
Method refactoring opportunities. This method belongs to the
Knowage-core software project.

IV. COGNITIVE COMPLEXITY REDUCER APPROACH

We propose a SSCC reducer approach consisting in a solver
method implementing an automatic algorithm that takes as
input the path to the software project to process and the cog-
nitive complexity threshold (7). Then, for each method with
SSCC greater than 7, it searches for sequences of applicable
Extract Method refactoring operations. Finally, it shows the
changes to perform to each method and apply them all at once
in an automated way.

11646

In order to search for Extract Method refactoring opportu-
nities in a method, our approach generates its corresponding
Abstract Syntax Tree (AST). Second, it parses the AST and
annotates different properties’ in each node: its contribution
to the SSCC of the method, the accumulated value of the
inherent component (1), the accumulated value of the nesting
component (v), the number of elements contributing to the
nesting component of the SSCC of the node (u), and its
absolute nesting level (A). Note that A is 0 when no nesting
exists in the target piece of software. Third, the approach
processes the annotated AST to compute the list of consec-
utive sentences contributing to the SSCC of the method. This
is done to obtain Extract Method refactoring opportunities.
Although sentences contributing to the SSCC must be part
of code extractions, it is also necessary to consider single
statements even if they do not contribute to the value of
this metric. The inclusion of statements of this kind could
suppose that the extraction is feasible or not. For example
when several arithmetic operations are needed to compute a
result, if all operations are not included in the extraction, the
refactoring probably is not possible because only one vari-
able could be returned. Once the approach identifies Extract
Method refactoring opportunities, it checks if the extractions
are applicable. This is done with the help of refactoring tools
which are able to check pre-conditions, post-conditions, and
apply the corresponding operation over the source code.

A. COGNITIVE COMPLEXITY REDUCER TOOL
IMPLEMENTATION

We propose a Java cognitive complexity reducer tool as an
Eclipse application. The goal is to provide the necessary
means for generating an Eclipse product that can be run
from the operating system command-line as a standalone
executable, without the need for opening Eclipse for running.
This is particularly useful if, for instance, one needs to inte-
grate it in their current development workflow (e.g., using
continuous integration). We got this idea from the jDeodorant
project,® an Eclipse plug-in that detects design problems in
Java software and recommends appropriate refactorings to
resolve them.

The developed tool takes as input (i) a SonarQube server
URL, (ii) the path to the software project to process,
(iii) the cognitive complexity threshold (), and (iv) a stop-
ping criteria (a number of Extract Method refactoring eval-
uations). Then, it runs SonarQube to perform an analysis of
the project and get all existing cognitive complexity issues.
Finally, for each method with SSCC greater than 7, it searches
for Extract Method refactoring opportunities. In order to do
this, the tool first generates and processes the AST associated
to the method declaration as explained in the previous section.
Then, it enumerates sequences of applicable Extract Method
refactorings while the given stopping criteria is not met. The
tool uses the Extract Method refactoring operation provided

TThese are used to compute the SSCC of extracted methods.
8https:// github.com/tsantalis/JDeodorant
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by the Java Development Toolkit (JDT) of Eclipse to test
the feasibility of code extractions programmatically. Finally,
the tool chooses the best sequence of method extractions
found during the search: the one that reduces the SSCC to (or
below) the threshold and minimizes the number of method
extractions. If wished, the tool applies the required code
extractions in an automated way by using the Extract Method
refactoring provided by JDT.

The tool internally generates for each method under pro-
cessing what we name the conflicts graph. A conflicts graph
is a directed graph where vertices are applicable extractions
and edges represent nested sequences of statements (i.e., if an
edge targets j from i, then i — j). The tool labels vertices in
the conflicts graph as [s;, ¢;](CC;, i, vi, i, Ai), where s; and
e; refer to the start and end offset (in characters in the source
file) of the ith extraction. Red edges connect conflict vertices
in the conflicts graph (i.e., i <~ j). Note that two vertices in
conflict cannot be both selected for extraction in the same
sequence. The root in a conflicts graph is a special vertex
representing the whole body of the method. Conflicts graphs
are used when searching for applicable Extract Method refac-
torings and to compute the impact of code extractions when
reducing the SSCC of a method. Fig. 3 shows the conflicts
graph of the running example whose source code is shown in
Fig. 2. As shown, there are 28 extractable nodes plus the root
node which is located in the left lower corner. In addition,
there are 35 black edges that represent nested sequences of
statements and 44 red edges that represent 22 pairs of nodes
in conflict.

V. CASE STUDY

In this section we describe the study we conduct to eval-
uate the proposed approach when reducing the SSCC of
10 open-source projects. Next, we detail the objects of study.
Then, we report the experimental setup used to conduct the
experiments.

A. OBJECTS OF STUDY

We used the GitHub REST API to create calls to get repos-
itories from GitHub satisfying two conditions: Java applica-
tions using Apache Maven as software project management.
We choose Maven as software management because it eases
the execution of SonarQube analysis via a regular Maven
goal. We ended up selecting a diverse set of 10 open-source
projects: two popular frameworks for multi-objective opti-
mization, five platform components to accelerate the devel-
opment of smart solutions, and three popular open-source
projects with more than 10,000 stars and forked more than
900 times. Table 1 shows these projects and some software
metric values. In order to ease the replication of the study, for
each software project we also show its abbreviated commit
hash in GitHub.

The simplest open-source project is QueryExecution: it
contains 53 methods and six classes, summing up 1,013 lines
of code. Despite the low number of methods in comparison to
other open-source projects, 6 over 53 (11%) of the methods
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TABLE 1. Case study projects metrics: name of the open-source project
(its abbreviated commit hash), number of classes, number of methods,
lines of code, and number of cognitive complexity issues reported by
SonarQube, respectively.

Project (Commit) #Classes #Methods LOC #CC issues
ByteCode (55bfc32) 301 1,350 23,071 57 (4%)
CyberCaptor (b6b1f10) 85 784 17,023 37 (5%)
FastJson (93d8c01e9) 256 2,039 43,644 230 (11%)
Fiware-Commons (£83b342) 28 155 1,325 4 (3%)
ToTBroker (98ceceb) 79 646 7,940 10 2%)
Jedis (cfc22717) 295 1,917 16,566 3 (<1%)
jMetal (e6baf75aa) 610 3,327 43,298 63 (2%)
Knowage-core (dfed28a869) 1,093 6,967 149,137 558 (8%)
MOEA-framework (223393td) 506 2,939 33,888 82 (3%)
QueryExecution (c032e5a) 6 53 1,013 6 (11%)

of QueryExecution have SSCC greater than 15 (the default
threshold). Although this project looks simple, and, therefore,
easy to maintain, reducing the SSCC of these six methods is
not straight forward. For instance, for the method getDBIds
SonarQube suggests to reduce its SSCC from 41 to 15. How-
ever, there are several refactoring opportunities that can be
applied to get this done. Conversely, Knowage-core is the
most complex project in our case study: it contains 6,967
methods and 1,093 classes, summing up 149,137 lines of
code. Even for a senior developer, maintaining this ecosys-
tem is complicated and prone to errors. SonarQube reports
558 cognitive complexity issues for this project, i.e., 8%
of the methods in the project have SSCC greater than 15.
Reducing the SSCC of these 558 methods would be time
consuming and prone to errors when done manually.

We validate the proposed cognitive complexity reduction
tool over the 10 open-source projects shown in Table 1.
In total, these projects have 1,050 cognitive complexity
issues. The goal of the study is to validate if the proposed
approach is able to reduce the number of cognitive complex-
ity issues existing on these projects. In addition, we want to
uncover how many extractions are needed, how many lines of
codes are extracted, and how many parameters new extracted
methods have when reducing the SSCC of methods.

B. ALGORITHMS

We use an exhaustive search as resolution technique because
it is conceptually simple and effective. It generates possible
sequences of code extractions and assures the optimal one
when all combinations can be generated. We want to keep
the resolution technique simple to focus more on the problem
and not in the resolution process.

The algorithm generates an exhaustive list of refactoring
candidates first. To get this list, the source code is transformed
into a block structure which contains structural information.
After that, the algorithm starts to enumerate all possible
code extractions in a recursive way with the help of a stack
structure. The way the elements are introduced in the stack
determines two variants of the algorithm: Exhaustive Search-
Long Sequences First (ES-LSF) and Exhaustive Search-Short
Sequences First (ES-SSF). The former is aimed at exploring
as many consecutive statements as possible in a single extrac-
tion first. In contrast, the latter is aimed at exploring short
sequences of statements first. We propose these two different
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FIGURE 3. Conflicts graph of the running example addpParametersToServiceUrl which belongs to the Knowage-core software project.

ways of exploring the search space because we set a number
of evaluations as stopping criteria. If no stop condition is set,
both variants must return an optimal solution.

C. EXPERIMENTAL SETUP

We conducted the experiments in a laptop Dell XPS
15 9560 with 4 x Intel® Core i7-7700HQ CPU @
2.80GHz and 16 GiB of RAM, running the operating system
Windows 10 Pro. We used SonarQube version 7.2 and the
Eclipse IDE version 2020-06 (4.16.0). We set the cogni-
tive complexity threshold to the default value proposed by
SonarQube (tr = 15). AST processing and Extract Method
refactorings were performed through JDT version 3.16.0. All
graph generation in our tool has been developed using the
jGraphT library, a Java library of graph theory data struc-
tures and algorithms.” In order to check if the observed
differences in the results of ES-LSF and ES-SSF are sta-
tistically significant, we applied the non-parametric Mann—
Whitney—Wilcoxon test with a confidence level of 95%
(p-value < 0.05).

VI. RESULTS

Table 2 reports the number of cognitive complexity issues,
the number (and percentage) of cognitive complexity issues
fixed, and the number and percentage of cognitive complexity
issues that keep unfixed, respectively, for the projects under
study.

As shown, the proposed approach is able to fix, on average,
78% of the cognitive complexity issues on these projects.
Therefore, our approach is able to fix most cognitive com-
plexity issues in most of the projects under study. However,
288 methods out of 1,050 (27%) has no solution since there
are not applicable Extract Method refactorings. The reason is
that most of these methods use multiple return statements

9https:// /jgrapht.org/

11648

TABLE 2. Number of cognitive complexity issues for projects under study:
initial number of cognitive complexity issues (Total), number of issues
that the proposed approach was able to fix (Fixed) and those where it
was not (Unfixed).

Project Total Fixed (%) Unfixed (%)
ByteCode 57 43 (75%) 14 (25%)
CyberCaptor 37 28 (76%) 9 (24%)
FastJson 230 113 (49%) 117 (51%)
Fiware-Commons 4 3(75%) 1 (25%)
ToTBroker 10 9 (90%) 1 (10%)
Jedis 3 2 (67%) 1 (33%)
Jmetal 63 54 (86%) 9 (14%)
Knowage-core 558 432 (77%) 126 (23%)
MOEA 82 72 (88%) 10 (12%)
QueryExecution 6 6 (100%) 0 (0%)

and loops containing multiple break or continue state-
ments. These kind of statements prevent the extraction of any
piece of code contributing to the SSCC of the method.

Table 3 summarizes the combined results of our exper-
iments. The first column shows the name of the different
variants of the exhaustive algorithm implemented in our tool.
The second column indicates whether found solutions are
feasible or not. Note that a solution is a sequence of Extract
Method refactorings. We define a solution as feasible when
the original method and all the new extracted methods have a
SSCC no greater than 7. In other case, the solution is unfea-
sible. Note that the best solution is that one which minimizes
the number of method extractions. The remaining columns
show some aggregated function values (min, max, mean,
standard deviation, and sum) for different metrics. Next, there
are four blocks of metrics. The first one (columns 4-11) is
devoted to SSCC related metrics: iniCC is the initial cog-
nitive complexity of the original methods (always above the
threshold), ext rac is the number of Extract Method refac-
torings proposed by the best solution, reducCC is the reduc-
tion on the cognitive complexity of the original methods,
minReduc is the minimum reduction for a single extraction,
maxReduc is the maximum reduction for a single extraction,
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TABLE 3. Results using ES-LSF and ES-SSF algorithms to reduce the SSCC of methods in the 10 analysed projects. The results are divided into feasible
solutions and unfeasible solutions. The mean value is highlighted when there are statistical differences between ES-LSF and ES-SSF.

algorithm | feasible | stats iniCC  extrac reducCC minReduc maxReduc avgReduc totalReduc finalCC | minLOC maxLOC avgLOC totalLOC | minParams maxParams avgParams totalParams | Time (ms)
Min 20.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4.00 2.60 4.00 0.00 0.00 0.00 0.00 337
Max 582.00 10.00 103.00 93.00 103.00 93.00 169.00  528.00 208.00 208.00 208.00 208.00 9.00 17.00 10.00 41.00 725,457
False Mean 82.70 3.15 3115 7.74 22.05 13.64 35.24 51.55 12.44 36.84 22.15 56.35 2.10 4.15 3.07 9.01 88,473.14
SD 67.44 1.63 17.46 11.22 17.11 12.01 24.56 63.04 20.61 28.88 20.48 34.34 1.68 2.39 1.76 5.94 | 114,130.69
ES-LSF Sum 23,320 887 8,784 2,184 6.219 3,847 9,937 14,536 3,509 10,390 6,245 15,892 591 1,169 865 2,542 | 24.949.426
: Min 16.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 221
Max 86.00 5.00 72.00 44.00 63.00 44.50 120.00 15.00 148.00 148.00 148.00 154.00 15.00 17.00 15.00 27.00 471,871
True Mean 25.63 1.36 13.73 9.32 12.19 10.64 14.63 11.90 16.84 22.59 19.46 26.31 297 3.44 3.19 4.38 61,005.30
SD 10.19 0.73 10.66 6.76 9.42 7.27 13.58 3.68 15.72 19.65 15.87 23.94 1.88 2.20 1.93 3.67 | 76,496.26
Sum 19,452 1,036 10,418 7,073 9,254 8,076 11,106 9,034 12,781 17,144 14,772 19,968 2,255 2,614 2,425 3,327 | 46,303,022
Min 20.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.00 1.60 3.00 0.00 0.00 0.00 0.00 500
Max 582.00 10.00 103.00 93.00 103.00 93.00 169.00  534.00 185.00 185.00 185.00 193.00 9.00 17.00 9.00 41.00 786,305
False Mean 82.89 3.31 30.79 6.69 21.02 12.57 34.39 52.10 9.91 33.56 19.26 52.26 1.84 4.01 2.84 8.89 80,955.65
SD 67.59 1.69 17.10 10.58 16.59 11.38 23.85 63.26 16.09 25.70 16.54 31.68 1.54 227 1.60 591 | 103,199.81
ES-SSF Sum 23,210 928 8,621 1,872 5,885 3,521 9,630 14,589 2,775 9,397 5,393 14,633 516 1,123 795 2,489 | 22,667,581
Min 16.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 129
Max 86.00  30.00 72.00 44.00 63.00 44.00 120.00 15.00 98.00 134.00 98.00 145.00 15.00 17.00 15.00 84.00 750,624
True Mean 25.71 1.50 13.10 8.30 11.26 9.62 13.81 12.60 14.24 19.91 16.74 23.81 2.74 327 3.00 4.40 62,112.72
SD 10.41 1.44 10.66 6.31 8.94 6.74 13.12 3.23 13.44 17.36 13.62 21.97 1.82 2.09 1.84 4.73 83,622.72
Sum 19,562 1,141 9,971 6,315 8.566 7,319 10,507 9.591 10,833 15,151 12,740 18,117 2,087 2,488 2,281 3,349 | 47,267,778
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FIGURE 4. Boxplots of most interesting metrics for the two algorithms considering only feasible solutions.

avgReduc is the mean (average) reduction considering all
extractions of the best solution, totalReduc is the sum
of the reductions of all extractions of the best solution, and
finalcCcCisthe SSCC of the original methods after applying
the sequence of Extract Method refactorings determined by
the best solution. The second block (columns 12-15) shows
LOC metrics, the third block (columns 16-19) provides infor-
mation about the parameters involved in the extracted meth-
ods, and, finally, the last block shows the execution time in
milliseconds.

ES-LSF and ES-SSF found 291 and 289 unfeasible solu-
tions, respectively (i.e., they were able to reduce the SSCC of
those methods but above 7). Interestingly, those algorithms
found 759 and 761 feasible solutions for existing cogni-
tive complexity issues, respectively. The slight difference
between the two algorithms is due to the way they explore
the search space.

VOLUME 10, 2022

Next, we focus on feasible solutions. Existing methods
in the source code require, on average, more than one code
extraction to reduce its SSCC. These code extractions reduce
the SSCC of original methods below 7 and extract around
15-20 lines of code from their original location into new
methods. ES-LSF prioritizes during the search long code
extractions while ES-SSF prefers short ones. Based on this,
we expect that, on average, solutions found by ES-LSF
extract portions of code with higher SSCC, more lines of
code, and need more parameters for the new extracted meth-
ods, than solutions found by the ES-SSF algorithm. This is
supported by statistical differences as shown in Table 4.

Fig. 4 shows boxplots of different metrics for feasible solu-
tions. In Fig. 4(a) we can appreciate that there exist solutions
with a high number of extractions for the ES-SSF algorithm.
In contrast, the ES-LSF algorithm obtains solutions with
lower number of code extractions. As commented previously,
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TABLE 4. Mann-Whitney-Wilcoxon statistical test results (p-value) for
feasible solutions. When no significant differences exist in a metric,

we use the symbol ©. When a metric for ES-LSF is greater than for ES-SSF,
we use the symbol a.

Metric Test result
iniCC © 0.985
extrac ©0.391
reducCC ©0.293
minReduc A0.026
maxReduc ® 0.104
avgReduc A0.039
totalReduc ©0.285
final CC v 0.012
minLOC A 0.004
maxLOC A 0.043
avgLOC A 0.007
totalLOC © 0.137
minParams A 0.036
maxParams ©0.178
avgParams ® 0.074
totalParams ® 0437
Time (ms) ® 0,966

this is due to the way these algorithms explore the search
space. Fig. 4(b) compares the final SSCC of the original
method after the cognitive complexity reduction. This box-
plot confirms that ES-LSF tends to reduce SSCC more than
ES-SSF. In fact, differences are significant between these
two algorithms for this metric. Figs. 4(c), 4(d), and 4(e)
can be interpreted all together as the behaviour of the pre-
sented approaches slightly affect them in the same way. The
results confirm our expectations again. In fact, differences
are significant between the two algorithms for avgReduc
and avgLOC metrics. Finally, Fig. 4(f) shows the execution
time in seconds. Both algorithms took almost 20 hours to
process all methods with cognitive complexity issues on the
10 software projects under study. Despite the execution time
looks similar, there are some outlier solutions in the case of
ES-SSF that take longer time to meet the stopping criteria.
The outlier near 800 seconds of execution time represent
unique method which ES-SSF is able to obtain a solution but
ES-LSF is not. Both algorithms took, on average, less than
70 seconds to reduce methods cognitive complexity.

In order to analyze the overall performance of the proposed
approach to automatize the cognitive complexity reduction
task, Table 5 shows aggregated metrics (min, max, mean, and
standard deviation) for each project.

As shown, all projects, excepting Fiware-Commons,
require, on average, more than one code extraction to reduce
the SSCC of their methods to 15. However, five projects
(CyberCaptor, FastJson, Jmetal, Knowage-core, and MOEA)
required five or more code extractions to reduce the SSCC of
some methods. In general, code extractions reduced, on aver-
age, SSCC by 12 units. Nevertheless, some code extractions
reduced methods SSCC up to 72 units.

1) ANALYZING NOT SO TYPICAL SOLUTIONS

Next, we explain not so typical solutions obtained in this
experiment which can be detected analyzing the results
shown in Tables 3 and 5.

« Short code extractions. There are 10 solutions where an
extraction of only one line of code is enough to reduce
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TABLE 5. Statistics for the cognitive complexity reduction task performed
over the 10 projects under study.

Project Metric iniCC  extrac  reducCC  finalCC
ByteCode Mean 26.35 1.33 13.98 12.37
Std. Deviation 11.536 0.659 12.195 2919
Minimum 16 1 1 3
Maximum 63 4 54 15
CyberCaptor Mean 24.36 1.39 13.62 10.73
Std. Deviation 10.023 1.021 11.602 3.975
Minimum 16 1 1 1
Maximum 52 5 48 15
FastJson Mean 2543 1.47 13.37 12.06
Std. Deviation 9.895 0.828 9.497 3.794
Minimum 16 1 2 1
Maximum 76 5 62 15
Fiware-Commons Mean 17 1 5 12
Std. Deviation 1.549 0 0 1.549
Minimum 16 1 5 11
Maximum 19 1 5 14
IoTBroker Mean 19.56 1.11 7.83 11.72
Std. Deviation 6.845 0.323 6.653 2.296
Minimum 16 1 3 6
Maximum 38 2 24 15
Jedis Mean 255 1.5 11.5 14
Std. Deviation 2.887 0.577 1.732 1.155
Minimum 23 1 10 13
Maximum 28 2 13 15
Jmetal Mean 26.2 1.39 13.35 12.85
Std. Deviation 10.285 0.874 10.388 3.493
Minimum 16 1 1 1
Maximum 56 6 44 15
Knowage-core Mean 26.22 1.47 13.88 12.33
Std. Deviation 10.582 1.324 10.942 3.364
Minimum 16 1 1 1
Maximum 86 30 72 15
MOEA Mean 23.55 1.3 11.36 12.19
Std. Deviation 8.542 0.964 9.753 3.822
Minimum 16 1 1 1
Maximum 53 11 52 15
QueryExecution Mean 25.67 1.33 13.67 12
Std. Deviation 10.316 0.492 11.934 3.516
Minimum 17 1 5 5
Maximum 41 2 33 15

the SSCC of the method. A extraction of this kind is the
following:

Boolean b = Boolean.valueOf(str ? true false)

The ternary operator is a part of Java’s conditional state-
ments. As the name ternary suggests, it is the only oper-
ator in Java consisting of three operands. The ternary
operator can be thought of as a simplified version of
the if-else statement with a value to be returned.
This kind of statement contributes to the SSCC of a
method with its inherent component (1 = 1) plus the
nesting component, which depends on the nesting level
of the statement in the source code. Therefore, when
extracting this kind of one-line statement the cogni-
tive complexity of a method might be reduced by at
least one.

« Too many code extractions. There is a solution provided
by the ES-SSF that suggests 30 extractions. This hap-
pens in the decodeDispatchContext method in
the SchedulerUtilities class of the Knowage-
core project. This method has 154 lines of code and its
SSCC is 86. It has 37 if statements at the same level
of nesting. This results in too many extractions when
applying the ES-SSF algorithm. Note that increasing
the number of evaluations, the number of extraction
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1 // Cognitive complexity 8

2 | public String addParametersToServiceUrl (...) throws

3¢

4 List<BIObjectParameter> drivers = ...;

5 /1 +1

6 if (drivers != null) {

7 List<Parameter> parameter = ...;

8 // +2 (1 by nesting)

9 if (drivers.size() != parameter.size()) {

10 throw new SpagoBIRuntimeException("There are...");

11 }

12 Collections.sort(drivers);

13 ParametersDecoder decoder = new ParametersDecoder();

14 // +2 (1 by nesting)

15 for (BIObjectParameter biObjectParameter : drivers)
{

16 boolean found = extractionl (...); // 5 parameters

17 /1 +3 (2 by nesting)

18 if (!found) {

19 throw new SpagoBIRuntimeException("...");

20 }

21 }

22 }

23 return serviceUrlBuilder.toString ();

24 |}

FIGURE 5. Method addParametersToServiceUrl of the open-source
project knowage-core after reducing its SSCC from 46 to 8. Three Extract
Method refactoring operations were needed.

decreases. For example, using 100,000 and one million
evaluations, ES-SSF performs 28 and 25 extractions,
respectively.

o Many parameters in extracted methods. There is a solu-
tion that extracts a new method with 15 parameters.
This happens in the manageRecursiveSection
method in the HierarchyMasterService class of
the Knowage-core project. The reason is that the original
method has 16 parameters. The best solution for this case
is a single extraction of 32 lines of code which reduces
the SSCC of the original method in 19. However, most
original parameters are needed in the extracted method.

2) COMING BACK TO THE RUNNING EXAMPLE

Following with the running example introduced in Section III,
Fig. 5 shows the addParametersToServiceUrl
method after cognitive complexity reduction. The SSCC of
this method has been reduced from 46 to 8§ after applying
three Extract Method refactoring operations. The number of
lines of code has also reduced from 65 to 24. Note that,
although three Extract Method operations are applied, just
one appears in the code (line 16). The reason is that the other
two method extractions are called from the extracted method
extractionl. These two additional method extractions
are required to reduce the SSCC of the first extracted method
tor.

VII. DISCUSSION

A number of cognitive complexity metrics have been pro-
posed in the literature measuring software cognitive com-
plexity in different ways. However, software complexity has
gained popularity last years due to the usage of SonarCloud
and SonarQube as service and platform, respectively, for con-
tinuous inspection of code quality. For this reason we used the
cognitive complexity measure provided by these well-known
static code tools in this work, which we referred to SSCC.
In order to search for feasible refactoring opportunities to
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reduce cognitive complexity of a method, the proposed
approach generates its Abstract Syntax Tree (AST) and anno-
tates in their nodes information about the contribution to the
cognitive complexity of the method. Thus, other cognitive
complexity measures which take into account the presence
of control flow structures in source code for their computa-
tion could be integrated in our tool: it would just require to
adapt the way the approach gets the list of existing cognitive
complexity issues in a project and the computation of the
properties annotated in the nodes of the AST of the methods.
However, this is out of the scope of the paper: our main contri-
bution is that software cognitive complexity reduction can be
modeled as an optimization problem and automatizing SSCC
reduction is feasible, which is empirically proven through our
experiments.

Concerning the resolution process, a block of consecu-
tive statements can be extracted if pre-conditions and post-
conditions are met and the extraction generates compilable
code. The more blocks of consecutive statements that are
extractable, the more possibilities the cognitive complexity
can be reduced. However, developers do not know which
sequences of statements are extractable but also the impact of
any code extraction on code cognitive complexity. Therefore,
developers cannot make informed decisions concerning the
cognitive complexity of a method when maintaining its code.
The resolution techniques proposed here have a number of
advantages. Among them, it stands out that they achieve
optimal solutions quickly for most of the methods analyzed
(78%) without using any heuristic or randomized operator.
In contrast, they require a high number of evaluations to find
feasible solutions in methods with high number of extractable
blocks of code. As the number of evaluations increases, the
better the solution obtained. However, the minimum number
of evaluations required to find optimal solutions is unknown
beforehand. If execution time is a constraint when reducing
the cognitive complexity of a method, search-based soft-
ware engineering techniques could be applied instead of
the exhaustive algorithms used in this paper (note that our
tool is algorithm independent when solving the cognitive
complexity reduction problem). Nevertheless, the proposed
approach and the implemented resolution techniques took,
on average, less than 70 seconds to process each method of
the 10 software projects in our case study. It seems reasonable
to integrate software cognitive complexity reduction in the
development workflow (e.g., using continuous integration).
Thus, the proposed approach could be automatically run at
night or after developers commit new changes to software
repositories.

In this work we decided to minimize the number of
Extract Method refactoring operations when reducing the
SSCC of a method. Therefore, all applicable sequences of
extractions with minimum size are optimal. However, not
all these sequences have the same characteristics and they
vary in most metrics studied in this paper: extracted lines
of code, extracted SSCC, number of parameters, final SSCC
in the original method, and many others. It is possible to
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model the cognitive complexity reduction problem as a multi-
objective or many-objective optimization problem. In that
case different techniques can be applied to optimize several
of these metrics at the same time. In addition, multiple criteria
decision making could be applied allowing developers to
decide which solutions seem most appropriate for them based
on their preferences.

Interestingly, we found that some coding practices could
hinder the cognitive complexity reduction task. This usually
happens when methods contain multiple ret urn statements.
Having too many return statements in a method decreases
the method’s essential understandability because the flow
of execution is broken each time a return statement is
encountered. This makes it harder to read and understand the
logic of the method but could also prevent the extraction of
the code.'? Consequently, the use of multiple return state-
ments in a method might make an instance of the cognitive
complexity reduction problem unsolvable. This also holds for
loops containing multiple break or cont inue statements,
which also breaks the execution flow. Therefore, restricting
the number of break and continue statements in a loop
is done in the interest of good structured programming.'!

The use of multiple return, break, and continue
statements in a method could hinder the cognitive com-
lexity reduction task or even make it unsolvable.

An aspect that is out of the scope of this article is the choice
of the name for the new extracted methods. The name of
new methods can influence the understanding of the resulting
source code. Therefore, this is an important aspect we plan
to address in the near future. Creating a dictionary with
keywords in the original method and using natural language
processing techniques with Transformers [37] could be a
good starting point to handle this fact.

VIil. THREATS TO VALIDITY

This section discusses all threats that might have an impact
on the validity of our study following common guidelines for
empirical studies [38].

Threats to internal validity concern factors that could have
influenced our results. A possible threat to internal validity
is that we set a stopping criteria of 10,000 evaluations. This
stop condition might have influenced our results because the
algorithms, in some cases, stop before all possible sequences
of extractions are explored. However, in order to alleviate this
issue, we have presented two completely different ways of
exploring the search space. Another aspect that can influence
the results is the choice of the cognitive complexity metric
and the used threshold. A number of cognitive complexity
measures have been proposed in the literature. However, there
is no single metric which has the capability of measuring the
complexity of a program based on multiple object-oriented
concepts [6]. We used the cognitive complexity metric inte-
grated in the well-known static code tools SonarCloud and

10https ://rules.sonarsource.com/java/RSPEC-1142?search=return
1 https://rules.sonarsource.com/java/RSPEC-135?search=break
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SonarQube because (i) this metric positively correlates with
source code understandability [9] and has a 77% acceptance
rate among developers [8], (ii) it is accessible via SonarQube
API REST, and (iii) a well-defined cognitive complexity
threshold is suggested for it.

Threats to construct validity concern relationship between
theory and observation and the extent to which the measures
represent real values. In our study all the experiments were
run in the same computer and the metrics we collected are
all consistent when analyzing the original and the resulting
source codes.

Threats to external validity concern the generalization of
our findings. To reduce external validity threats we selected
a diverse set of 10 open-source projects for our case of study.
Aggregating all projects, we processed 1,050 methods with
SSCC greater than 15. This high number of existing issues
guarantees that we have analyzed very diverse methods in
terms of complexity and size. Thus, we guess our findings
can be generalized to other software projects.

Threats to conclusion validity concern the relationship
between experimentation and outcome. We compared the
results of two different variants of an exhaustive algorithm
and performed a Mann-Whitney-Wilcoxon test to determine
the statistical significance of the results. In addition, a large
number of methods were analyzed and the algorithms had
enough evaluations to find feasible solutions for most of the
methods of the software projects under study.

IX. CONCLUSION

We formulated the reduction of software cognitive com-
plexity provided by SonarCloud and SonarQube, to a given
threshold, as an optimization problem. We then proposed
an approach to automatically reduce the cognitive complex-
ity of methods in software projects to the chosen threshold
using sequences of Extract Method refactorings. We con-
ducted some experiments in 10 open-source software projects
analyzing more than 1,000 methods with a cognitive com-
plexity greater than the default threshold suggested by
SonarQube (15). Our automated approach was able to reduce
the cognitive complexity to or below the threshold in 78% of
those methods.

We found that statements that brake the execution flow
of programs could prevent the extraction of code and, there-
fore, make a particular instance of the cognitive complexity
reduction problem unsolvable. With the aim of helping to
alleviate this issue, we propose as future work a semantically
equivalent code transformation that increases the number
of extractable blocks of code in a method by reducing the
number of return, break, and continue statements.
This transformation will indirectly improve the readability
and maintainability of the code, but it will also benefit the
cognitive complexity reduction task.

Although our approach was able to reduce the cognitive
complexity for most methods, we cannot assure that no solu-
tion exist for the rest of the methods. The reason is that the
cost of exploring all possible sequences of extractions might
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be unaffordable. However, we think that it is preferable to
maintain the simplicity of the approach to emphasize the
benefits of providing an automated tool. As future work we
want to study the NP-hardness of the modeled cognitive
complexity reduction problem. If we prove this, a different
procedure (like an ad-hoc metaheuristic) could be included in
our approach to solve the problem. Last but not least, we plan
to validate our approach on software developers in order to get
their feedback and analyze the way of including our approach
as part of the continuous integration practice.

APPENDIX

In the field of theoretical validation, a number of researchers
have proposed different criteria to which software measures
should adhere. Weyuker established a formal list of nine
properties in order to estimate the accuracy of software met-
rics [39]. It has been used to evaluate numerous existing
software metrics. Next we evaluate the cognitive complexity
metric provided by SonarCloud and SonarQube (which we
refer to as SSCC) against Weyuker’s properties and validate
it against measurement theory, as suggested in the framework
proposed by Misra et al. [28]. Then, we perform a practical
validation with Kaner’s framework [40]. We finally end up
with a comparative analysis and conclusion of the validation.

A. WEYUKER’S PROPERTIES

In the following, P, Q, and R are methods of a class. With
|P| and (P; Q) we refer to the SSCC of method P and the
composition of P and Q methods, respectively.

1) PROPERTY 1. (3P)(3Q)(IP| # |Ql), WHERE P AND Q ARE
TWO DISPARATE METHODS

By definition of the measure, usually different methods have
different SSCC values. Hence, this property holds for this
measure.

2) PROPERTY 2: LET ¢ BE A NON-NEGATIVE NUMBER THEN
THERE ARE ONLY FINITELY MANY METHODS OF
COMPLEXITY ¢

All projects have finite number of classes and methods, and
all methods have a finite number of statements. Because
SSCC of a method depends on its statements then there are
only finitely many methods that will be equal to the measure
c. The SSCC metric thus holds for this property.

3) PROPERTY 3: THERE ARE DISTINCT METHODS P AND Q
SUCH THAT |P| = |Q|

This property says that there can be multiple methods con-
taining the same SSCC value. Two methods without control
flow structures will have equal complexity (0). Hence this
property is satisfied by this measure.

4) PROPERTY 4: (3P)(3Q)(P = Q AND |P| # |Q|)

This property states that even though two methods compute
the same function, it is the details of the implementation
that determine the methods complexity. Even though the
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functionalities of two methods are equal, their complexity
depends on the number of control flow structures and their
nesting level on the code. Because of that the SSCC measure
holds this property.

5) PROPERTY 5: (vP)(YQ)(IP| < |P: Q| AND |Q| < |P: Ql)
This property states that the complexity values of two meth-
ods should be less than or equal to the complexity of the
composition of the two methods. The SSCC measure mainly
depends on the presence of control flow structures and com-
plex expressions which determine the inherent component
complexity of a method. Thus, the complexity value of the
combination of two methods should be greater than or equal
to the complexity value of these two methods. Hence this
property is satisfied by this measure.

6) PROPERTY 6: (3P)(3Q)(3R)(IP| = |Q|) AND

(IP;R| # 1Q: R])

This property states that if there are two methods P and Q
with same SSCC and when they are separately combined with
the same third method R, yields a method of different SSCC.
For any two methods P and Q, any combination of them with
another method R will produce new methods with similar
SSCC. Therefore, this measure does not satisfy this property.

7) PROPERTY 7: THERE ARE METHODS P AND Q SUCH
THAT Q IS FORMED BY PERMUTING THE ORDER OF THE
STATEMENTS OF P AND (|P| # |Q|)

Changing the order of the statements in a method, without
changing the functionality of the method, will not change its
complexity value. Therefore, this measure does not satisfy
this property.

8) PROPERTY 8: IF P IS RENAMING OF Q, THEN |P| = |Q|
Renaming of a method does not impact its SSCC. As a
consequence, this property is satisfied by this measure.

9) PROPERTY 9: (3P)(3Q)(IP| + IQl < IP: Q)

This property states that the addition of complexities of two
separate methods is lower than the complexity of a method
which is created by joining those two separate methods. The
SSCC of the combined method never reduces. Because of this
situation this condition is not fulfilled by this metric. How-
ever, the modified version of this property, (3P)(3Q)(|P| +
|Q| < |P; Q)) [33], is satisfied.

Table 6 gives a summary of the evaluation process through
Weyuker’s properties. The satisfied properties are marked.
As shown, and according to the above explanation, the SSCC
measure satisfies all the properties of Weyuker’s framework
excluding 7th and 9th. Thus, we suggest that the SSCC mea-
sure establishes as a well-structured one.

B. MEASUREMENT THEORY

Here we validate the SSCC measure against measurement
theory using the Briand et al. framework [41]. We do our
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TABLE 6. Summary of evaluation of the SSCC metric through Weyuker's
properties.

Property 1 2 3 4 5 6 7 8 9
Satisfied v v v v v X X v Vv

assessment providing the basic definitions and desirable
properties that make up the framework.

Definition (Representation of Systems and Modules): “A
system S is represented as a pair < E,R >, where E
represents the set of elements of S, and R is a binary relation
on E (R C E x E) representing the relationships between S’s
elements.”.

For the SSCC metric, E can be defined as a method con-
taining a set of code statements and R as the set of inherent
components: complex expressions and control flows from one
statement to another.

Definition (Complexity): “The complexity of a system S is a
function Complexity (S) that is characterized by the following
five properties: non-negativity, null value, symmetry, module
monotonicity, and disjoint module additive.”.

o Non-negative: “The complexity of a system S =<
E, R > is non-negative if Complexity(S) > 0.”.

SSCC values are always positive, this property is thus
satisfied by this measure.

o Null value: “The complexity of a system S =< E,R >

is null if R is empty.”.
If a method does not contain inherent components (cer-
tain control flow structures or complex expressions),
then it will have null (0) complexity. Thus, this property
is satisfied by the SSCC metric.

o Symmetry: “The complexity of a system S =< E,R >

does not depend on the convention chosen to represent
the relationships between its elements.”.
There is no effect on the complexity values of the SSCC
metric by changing the order or representation because
the contribution of control flow structures and its nest-
ing level to the overall complexity of a method cannot
depend on the order or way of representation. Therefore,
this property is satisfied by the SSCC measure.

e Module monotonicity: “The complexity of a system

S =< E,R > is no less than the sum of the complex-
ities of any two of its modules with no relationships in
common.” .
For the SSCC metric, a module can be defined as a
code segment in a method. For this property, if any
method is partitioned into two methods, the sum of the
complexity values of its partitioned methods will never
be greater than the one of the joined method. Therefore,
this property holds for the metric.

« Disjoint Module Additivity: “The complexity of a system
S =< E, R > composed of two disjoint modules mi and
my is equal to the sum of the complexities of the two
modules.” .

The SSCC value of the method obtained by concatenat-
ing m; and my is equal to the sum of their calculated
complexity values. Thus, if two independent methods
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are combined into a single method then the complexity
of the individual methods will be combined. Therefore,
this property is satisfied by the SSCC measure.

By fulfilling these properties, one may say that the SSCC
metric is on the ratio scale, which is the most desirable
property of complexity measures from the point of view of
measurement theory [33].

C. PRACTICAL VALIDATION WITH KANER'S FRAMEWORK

In addition to the theoretical validation using Weyukers’
properties and measurement theory, the framework given
by Kaner [40] can also be adopted for evaluation of the
SSCC metric. This approach is more practical than the formal
approach of Weyukers’ properties and measurement theory.
The framework is based on providing answers to the follow-
ing points:

1) PURPOSE OF THE MEASURE
The purpose of the measure is to evaluate the complexity of
methods in object-oriented programming languages.

2) SCOPE OF THE MEASURE

Object-orientation is widely adopted nowadays in the devel-
opment of software, from open-source to proprietary soft-
ware. The SSCC measure can be used within and across these
projects.

3) IDENTIFIED ATTRIBUTE TO MEASURE

The SSCC metric is defined as a measure of how hard the
control flow of a method is to understand and maintain. Thus,
The identified attributes that the SSCC measure addresses are
understandability and maintainability.

4) NATURAL SCALE OF THE ATTRIBUTE
The natural scales of the attributes cannot be defined, since it

is subjective and requires the development of a common view
about them [33].

5) NATURAL VARIABILITY OF THE ATTRIBUTE

Natural variability of the attributes can also not be defined
because of their subjective nature. It is possible that one can
develop a sound approach to handle such attribute, but it may
not be complete because other factors also exist that can affect
the attribute’s variability [33].

6) DEFINITION OF METRIC

The SSCC metric has been formally defined by Camp-
bell [42] and briefly introduced in Section L.

7) MEASURING INSTRUMENT TO PERFORM THE
MEASUREMENT
The SSCC measure was computed by SonarQube.

8) NATURAL SCALE FOR THE METRIC

The SSCC measure is on the ratio scale, as mentioned earlier
in this section.
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9) RELATIONSHIP BETWEEN THE ATTRIBUTE AND THE
METRIC VALUE

The SSCC metric contributes to determining the overall com-
plexity of methods and classes in object-oriented program-
ming languages. Higher SSCC values translate into code
harder to understand and maintain.

10) NATURAL FORESEEABLE SIDE EFFECTS OF USING THE
INSTRUMENT

There are no side effects of using SonarQube to measure
the SSCC of software projects because the computation of
the metric is automatically performed by it. In addition to the
previous, SonarQube is an open-source tool and its source
code is available in public repositories.

D. COMPARATIVE ANALYSIS AND CONCLUSION OF
THEORETICAL VALIDATION

The SSCC measure satisfied seven out of the nine Weyuker’s
properties. Although these results were convincing enough,
we turned to the measurement theory. Measurement theory
has five properties all of which were satisfied by the SSCC
metric. This shown that this measure is additive and on the
ratio scale. Finally, the Kaner’s framework was used to prove
the usefulness of the SSCC measure after asking practical
questions.
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