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ABSTRACT Noise radars, as well as certain types of quantum radar, can be understood in terms of
a correlation coefficient which characterizes their detection performance. Although most results in the
noise radar literature are stated in terms of the signal-to-noise ratio (SNR), we show that it is possible to
carry out performance prediction in terms of the correlation coefficient. To this end, we derive the range
dependence of the correlation coefficient under the assumption that all external noise is additive white
Gaussian noise. We then combine our result with a previously-derived expression for the receiver operating
characteristic (ROC) curve of a coherent noise radar, showing that we can obtain ROC curves for varying
ranges. A comparison with corresponding results for a conventional radar employing coherent integration
shows that our results are sensible. The aim of our work is to show that the correlation coefficient is a viable
adjunct to SNR in understanding noise radar performance.

INDEX TERMS Noise radar, covariance matrix, correlation coefficient, quantum radar, radar performance
prediction, range.

I. INTRODUCTION
Noise radar, as the name suggests, uses a noise waveform as
its transmit signal [1]–[5]. As in other radars, noise radars
retain a copy of the transmitted signal as a reference for
matched filtering. Due to the presence of extraneous noise
such as thermal noise and system noise, the reference signal is
not necessarily a perfect copy of the signal that was transmit-
ted through free space. Relatively little attention has been paid
to the degradation of the reference signal used for matched
filtering. Often, the degradation is assumed to be arbitrarily
small, as was done in [6] for example.

This motivates the use of the Pearson correlation coeffi-
cient between the free-space signal and the reference sig-
nal, or the correlation coefficient for short. Although this
correlation has appeared in previous publications on noise
radar [5]–[7], most results in noise radar have been stated
in terms of the signal-to-noise ratio (SNR) of the free-space
signal. This is because SNR is far more familiar to engineers.
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However, the correlation coefficient takes into account both
the degradation of the free-space signal and the degradation
of the reference signal, the latter of which is not captured
by the SNR [6], [8]. We feel, therefore, that the correlation
coefficient is a sensible metric for evaluating the performance
of noise radars—and perhaps of other radars, too. Although
the correlation coefficient will never replace SNR as a perfor-
mance metric, we will show that it has merits of its own and
can stand alongside SNR as an additional lens through which
to view noise radars.

A. WHY THE CORRELATION COEFFICIENT?
One of the most surprising attractions of the correlation coef-
ficient is that it forms a bridge between noise radar and the
newfield of quantum radar [9]–[11]. In fact, the class of quan-
tum radars known as quantum two-mode squeezing radar is
essentially a noise radar that can achieve high correlation
coefficients, at least as far as target detection performance
is concerned. Moreover, quantum radars particularly excel
when low signal powers are required [12]. In this regime,
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the correlation coefficient is of particular value because the
degradation of the reference signal cannot be neglected.

In this paper, we show how performance prediction for a
coherent noise radar can be carried out in terms of the corre-
lation coefficient. We use the radar range equation to derive
the dependence of the correlation coefficient on the range of
a given target; this equation holds irrespective of whether the
radar is coherent or not. We then exploit a previous result,
which relates the receiver operating characteristic (ROC)
curve of a coherent noise radar to the correlation coefficient,
to show how the ROC curve for a noise radar varies with
range.

We emphasize that our work is not intended to supplant
the standard SNR-based approach to the analysis of noise
radars. Our contribution is merely to show that a full analysis
of detection performance based on the correlation coefficient
is sensible, easy to carry out, and has the potential to be
a valuable adjunct to an SNR-based analysis. In particular,
we show how the correlation coefficient depends on range,
an important piece of the puzzle when analyzing the per-
formance of noise radars and quantum two-mode squeezing
radars.

II. THE NOISE RADAR PROTOCOL
In our analysis, we will consider radars which work as
follows:

1) Produce two correlated zero-mean Gaussian random
noise signals.

2) Retain one of the signals and send it directly to the
receiver for use as a reference for matched filtering.
Transmit the other signal toward a target.

3) Measure the in-phase and quadrature voltages at the
receiver.

4) Correlate the received and recorded signals. Declare a
detection if the correlation exceeds a given threshold.

Normally, the reference signal in step 2 would be digitized
immediately upon generation if it were not generated dig-
itally in the first place. In this case, the received signal in
step 3 would also be digitized and the correlation would
be performed via digital signal processing. An example of
the practical implementation of such a scheme can be seen
in [13]. It is interesting to note, however, that the reference
signal could be sent to the receiver in analog form and the
correlation in step 4 performed via analog signal processing,
as done in [6]. Our theoretical results would not change in
either case, but for simplicity we will assume that we are
working with digital signal processing.

III. THE NOISE RADAR CORRELATION COEFFICIENT
Let us denote the time series of in-phase and quadrature
voltages of the received signal by I1(t) and Q1(t), respec-
tively. Similarly, let us denote the voltages of the reference
signal by I2(t) and Q2(t). We model these voltage time series
as stationary, zero-mean, real-valued Gaussian white noise
processes that are mutually uncorrelated when the time differ-
ence between the signals is nonzero. Therefore, we will drop

the time variable for simplicity and assume that the time dif-
ference is always zero. We will assume further that the target
is stationary, the phase shift between transmit and receive is
a constant (which implies that the radar is coherent), and that
any system or external noise is additive white Gaussian noise.

Under these assumptions, the four voltages are completely
characterized by the covariance matrix E[xxT ] where x =
[I1,Q1, I2,Q2]T . It was shown in [6] (though in different
notation) that, if the reference signal is a direct copy of the
transmitted signal, the covariance matrix can be written in
block matrix form as

6(P1,P2, ρ, φ) =
[

P112 ρ
√
P1P2R(φ)

ρ
√
P1P2R(φ)T P212

]
(1)

where P1 and P2 are the powers (or, equivalently, the vari-
ances) of the received and reference signals respectively, 12 is
the 2×2 identitymatrix, ρ is a parameter such that 0 ≤ ρ ≤ 1,
φ is the phase, and R(φ) is the rotation matrix

R(φ) =
[
cosφ sinφ
− sinφ cosφ

]
. (2)

Alternatively, the transmitted and reference signals can be
generated by mixing a single source of bandlimited Gaussian
noise with a carrier signal. This results in two sidebands of
correlated noise, one of which can be transmitted and the
other retained. This case was considered in [11], where it
was shown that the form of the resulting correlation matrix
is the same as (1) except that instead of a rotation matrix,
a reflection matrix appears instead:

R′(φ) =
[
cosφ sinφ
sinφ − cosφ

]
. (3)

The results in this paper do not depend on whether R(φ) or
R′(φ) is used.
Although it is usual to form the complex voltages z1 =

I1 + jQ1 and z2 = I2 + jQ2, we prefer to use real-valued
voltages here because the real-valued covariance matrix (1)
connects more easily with the covariance matrices used in
quantum optics. See, for example, [11], [14], [15].

A. TARGET DETECTION AND THE CORRELATION
COEFFICIENT
The parameter ρ in (1) is the focus of this paper. We call it the
correlation coefficient because it characterizes the strength of
the correlation between the received and transmitted signals.
This can be seen by noting that, when the phase shift φ is
zero, E[I1I2] = ρ

√
P1P2. In this case, ρ is simply the Pearson

correlation coefficient between I1 and I2. The effect of φ is
to ‘‘distribute’’ the correlation among the cross-covariances
E[I1I2], E[I1Q2], E[Q1I2], and E[Q1Q2]. Note that we can
always choose ρ ≥ 0 because its sign can be absorbed into
R(φ) or R′(φ).
The correlation coefficient is strongly related to the prob-

lem of target detection. At one extreme, if ρ = 1, then the
received and reference signals are perfectly correlated. This
would occur in the ideal case where there is absolutely no
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noise introduced into the signals. On the other hand, if ρ = 0,
then the two signals are completely uncorrelated. This would
be the case if there were no target at all, so the received signal
is not an echo of the transmitted signal.

The above discussion suggests that detecting a target with
a noise radar reduces to distinguishing between the following
two hypotheses:

H0 : ρ = 0 Target absent

H1 : ρ > 0 Target present (4)

There are various test statistics, or detectors, that can be used
to test these hypotheses. For example, the detector described
in [6] effectively calculates the function√

(I1I2 + Q1Q2)2 + (I1Q2 − Q1I2)2

4
. (5)

If we replace I1I2 with E[I1I2] and do the same with the other
terms, this quantity evaluates to ρ

√
P1P2/2. This intuitively

shows that the detector function (5) is a reasonable test statis-
tic for the hypothesis test on ρ.

In this paper, however, we will focus on another detector,
namely ρ itself, though our methods will apply to any test
statistic for the above hypothesis test. When ρ is used as a
detector, step 4 of the protocol described in Sec. II can be
more concretely stated as follows: calculate an estimate ρ̂ of
the correlation coefficient of the radar’s received and recorded
signals, set a threshold, and declare a detection if ρ̂ lies above
the threshold.

One way to estimate ρ is described in [16]; the paper also
gives approximations for ROC curves as a function of the four
parameters in (1) when ρ is used for target detection. The
estimate is obtained by performing the minimization

min
P1,P2,ρ,φ

∥∥∥6(P1,P2, ρ, φ)− Ŝ
∥∥∥
F

(6)

subject to the constraints 0 ≤ P1, 0 ≤ P2, 0 ≤ ρ ≤ 1,
and 0 ≤ φ ≤ 2π . Here Ŝ is the sample covariance matrix
calculated directly from the radar’s voltage measurements,
and F denotes the Frobenius norm. The value of ρ that
minimizes this expression is taken as the estimate ρ̂. Note that
this minimization is where the coherence of the radar comes
into play: if the radar were incoherent, minimizing (6) over
φ would not be meaningful and the resulting ρ̂ may not be
accurate. In future work we will show that this minimization
can be performed with much less computational power than
the form (6) would suggest, but for the purposes of this paper
it is enough to know that this is the method being used to
obtain an estimate of ρ from radar data.

IV. CORRELATION COEFFICIENT AS A FUNCTION OF
RANGE
Given the importance of the correlation coefficient, its range
dependence is of considerable interest. We therefore present
a theoretical derivation here. In order to simplify the analysis,
it is convenient to assume that the received and reference

signals can be decomposed into perfectly correlated and per-
fectly uncorrelated parts. That is, we assume that each signal
is the sum of a component which is common to both signals
and a component which is independent of the other signal.
More explicitly, if we assume φ = 0 for clarity’s sake,
we may write

I1 =
√
ηIcorr + In1 (7a)

I2 = Icorr + In2 (7b)

where Icorr is the component of the in-phase voltages I1 and
I2 that the two signals have in common, η is a factor that
accounts for gains and losses in the received signal relative
to the reference signal, while In1 and In2 are components
which are totally uncorrelated with Icorr and with each other.
We can think of In1 and In2 as added white Gaussian noise.
The corresponding expressions for Q1 and Q2 have the same
forms as (7a) and (7b), respectively. (The expressions for
arbitrary φ are more complicated, but would lead to the same
final result for the range dependence.) By squaring the above
expressions and taking expectation values, we obtain

P1 = ηP+ Pn1 (8a)

P2 = P+ Pn2 (8b)

where P ≡ E[I2corr] is the power of the perfectly correlated
part, while Pn1 and Pn2 are the powers of the uncorrelated
parts In1 and In2, respectively.

Note that the decomposition above is a mathematical
abstraction, as the signals may be tainted with noise at the
very source and there may exist no perfectly correlated phys-
ical signal. In other words, Icorr may not correspond to any
signal physically generated by the radar.

From (7a) and (7b), it is easy to calculate that E[I1I2] =
√
ηP. Equating this with the corresponding entry in the

covariance matrix (1) results in ρ
√
P1P2 =

√
ηP, which

immediately implies

ρ =

√(
ηP
P1

)(
P
P2

)
. (9)

The next step is to use (8a) to eliminate the first factor of P
and (8b) to eliminate the second, giving

ρ =

√(
P1 − Pn1

P1

)(
P2 − Pn2

P2

)

=

√(
1−

Pn1
P1

)(
1−

Pn2
P2

)
. (10)

It is interesting that the SNR-like quantities Pn1/P1 and
Pn2/P2 appear here. This ties in with the idea that noise radars
have two SNRs associated with them, as described in [8].

Next, we assert on physical grounds that Pn1 ≥ Pn2. The
meaning of this assertion is that the signal received by the
radar contains at least as much noise as the internal reference
signal. This is reasonable because the received signal has
passed through free space and is contaminated with both
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system noise and external noise (e.g. atmospheric noise),
whereas the reference signal is contaminated only with sys-
tem noise. We also assume that, if there were no external
noise, the two signals would be contaminated with the same
amount of noise, except that the noise in the received signal
would be attenuated by a factor of η. Therefore,

Pn1 = ηPn2 + Pn, (11)

where Pn is the power of the external noise added to the
received signal. From (11), we can rewrite (8a) as P1 =
η(P+ Pn2)+ Pn, which implies

P1 = ηP2 + Pn (12)

by (8b).
It follows from (8a), (8b), and (10) that, if there were no

external noise (Pn = 0), the correlation coefficient would be

ρ0 =

√(
1−

ηPn2
ηP2

)(
1−

Pn2
P2

)
= 1−

Pn2
P2
. (13)

This represents themaximum correlation that can be observed
by the radar. The fact that it is less than unity is a reflection
of the fact that the radar contains system noise.

Substituting (11), (12), and (13) into (10), we can rewrite
in terms of ρ0, η, Pn, and P2 as

ρ =
ρ0

√
1+ Pn/(ηP2)

. (14)

From this form of ρ, it is very easy to derive the range
dependence. We need only recognize that η, which we intro-
duced to account for gains or losses between the transmit
and reference signals, is really nothing more than the radar
range equation (up to a gain factor if the transmit signal was
amplified relative to the reference signal). According to one
form of the radar range equation [17, eq. (1.6)], the received
power P1 can be written as

P1 =
GAeσ
(4π )2R4

P2 + Pn, (15)

whereG is the gain of the transmit antenna, Ae is the effective
area of the receive antenna, σ is the target’s radar cross section
(RCS), and R is the range. Comparing this with (12), we see
that

η(R) =
GAeσ
(4π )2R4

, (16)

which can be substituted into (14) to obtain the range depen-
dence of ρ. (We are obviously not bound to this exact form
of the radar range equation; if another form of the radar
range equation is desired, it may be introduced in exactly
the same way.) It is possible to simplify matters, however,
by introducing a characteristic range Rc defined as

Rc =
(
GAeσP2
(4π )2Pn

)1/4
. (17)

In terms of Rc, we finally obtain

ρ(R) =
ρ0√

1+ (R/Rc)4
. (18)

This is the desired expression for the correlation coefficient
as a function of range.

The characteristic range Rc has the following interpreta-
tion: it is the range at which the received signal power P2 is
equal to the external noise Pn—in other words, the range at
which SNR is unity (0 dB). For pulsed radars that do not rely
on matched filtering, Rc would be the theoretical maximum
range (though of course a coherent noise radar would still
be able to detect at longer ranges). It is also the range at
which the correlation coefficient is reduced to 1/

√
2 of its

maximumvalue. For the example parameters given in Table 1,
which were inspired by the values given in [13], we find that
Rc = 1.0 km.

TABLE 1. Example noise radar parameters.

The equation (18) shows that the correlation coefficient
factorizes in an aesthetically pleasing manner, with one factor
being the initial correlation ρ0 and the other factor a simple
function of the normalized range R/Rc. The initial correlation
is a measure of the best possible performance that the radar
can deliver, and does not depend on anything outside the
radar. It can be thought of as the quality of the matched
filtering performed by the radar. The characteristic range is
essentially the radar range equation, and can be thought of as
ameasure of how quickly the performance of the radar decays
with range. Equation (18) nicely separates these two aspects
of radar operation.

Fig. 1 plots the correlation coefficient as a function of
range for varying values of Rc. Since ρ0 appears in (18) as
a multiplicative constant, our plots show only the case where
ρ0 = 1.

FIGURE 1. Correlation coefficient as a function of range for varying values
of the characteristic length Rc , assuming ρ0 = 1. Dashed line indicates
ρ = 1/

√
2.
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It is worth noting that, because the derivations in this
section do not depend on the phase between the transmitter
and receiver, (18) holds for all noise radars, whether coherent
or not.

V. PERFORMANCE PREDICTION USING THE
CORRELATION COEFFICIENT
As mentioned in Sec. III-A, ρ can be considered a detector
function for use in the problem of distinguishing between the
presence or absence of a target. In this section, we study the
ROC curves that are obtained when ρ is used as the detector
function.

The procedure we use to estimate ρ from the voltage time
series I1, Q1, I2, and Q2 was briefly described in Sec. III-A.
For that procedure, there exists an explicit expression for the
ROC curve [16]:

pD(pFA|ρ,N ) = Q1

(
ρ
√
2N

1− ρ2
,

√
−2 ln pFA
1− ρ2

)
. (19)

Here pD is the probability of detection, pFA is the probability
of false alarm,N is the number of voltage samples over which
to integrate, and Q1 denotes the Marcum Q-function (not to
be confused with the quadrature voltage Q1 of the signal
received by the radar). This is an approximate expression that
holds when N is greater than approximately 100.

Fig. 2 shows a plot of pD as a function of ρ for various
values of pFA when N = 150. This plot is analogous to the
more common plots of pD as a function of single-pulse SNR,
an example of which is given in Fig. 4.4 of [18]. The only
difference is that Fig. 2 is not for the single-pulse case, since
it assumes 150 samples were integrated. Nevertheless, Fig. 2
gives some idea of the values of ρ needed to achieve a preset
detection performance. For example, we can read from Fig. 2
that, if a noise radar is to achieve pD = 0.9 and pFA = 10−6,
it is necessary to have ρ = 0.364 when N = 150. Of course,
the required ρ decreases as N increases, and vice versa.
The range dependence of the ROC curve is obtained sim-

ply by substituting (18) into (19). Representative plots are
shown in Fig. 3. We take Rc = 1 km because that is the
result obtained from the parameters in Table 1. As might be

FIGURE 2. Probability of detection as a function of the correlation
coefficient ρ for various values of pFA, assuming N = 150.

FIGURE 3. ROC curves for a noise radar detecting a target at various
ranges, assuming ρ0 = 0.8, Rc = 1.0 km, and N = 150.

expected, the probability of detection falls precipitously as R
becomes significantly larger than Rc.
We note that there are various other detector functions

which could be used, such as the envelope detector studied
in [6] as well as the one described in [19]. The ROC curves for
both of these also depend on the correlation coefficient, so it
is possible to determine detector performance as a function of
range for both detectors by substituting (18). In fact, the ROC
curve expressions in [6] have the merit of being valid for all
N , not just for large N as described above. We do not analyze
it here because the expressions in that paper are difficult to
work with, even numerically.

As a check on the plausibility of our expressions, we com-
pare the ROC curves obtained here with those for a
conventional coherent radar using a sinusoidal waveform,
as described in, e.g., [18]. We would expect to see a rough
correspondence because the performance of a noise radar
should not differ too widely from that of a conventional
radar. Of course, we cannot expect more than a rough cor-
respondence because, after all, the waveforms are different.
Recalling that Rc is the range at which SNR = 1 and that
received signal power varies inversely with the fourth power
of the range, it follows that the single-pulse SNR is

SNR =
(
Rc
R

)4
. (20)

It is known that the ROC curve for such a conventional radar,
assuming perfect coherent integration, is given by

pD(pFA|SNR,N ) = Q1

(√
2N · SNR,

√
−2 ln pFA

)
. (21)

A derivation of (21) can be found in [18]. Curiously, the
Marcum Q-function appears both in (21) and in (19), though
we repeat that the latter is an approximate result which holds
only for large N , whereas (21) is exact. Plots of ROC curves
for various SNRs, for both noise radar and conventional radar,
are given in Fig. 4. Note that, in the derivation of (21), noise
is assumed to be added only to the received signal [18].
We therefore take ρ0 = 1 in our comparison of conventional
radar with noise radar, so the noise radar performs perfect
matched filtering and there is no noise in the reference signal.
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FIGURE 4. Comparison of ROC curves between a noise radar and a
conventional radar at various SNRs, assuming ρ0 = 1 and N = 150.

It can be seen that, for the most part, the ROC curves are
comparable between the two radars. The differences between
the two arise from the different waveforms employed by the
two radars and the use of ρ as a detector function for the noise
radar, which is not analogous to the envelope detector of a
conventional radar. As noted above, we expect only a rough
correspondence between the ROC curves of the two types of
radars. Therefore, the deviation between the ROC curves for
the two radars at −10 dB and 0 dB (though the deviation in
the latter is not visible in Fig. 4) is expected. Nevertheless,
the two cases are similar enough to show that the results we
have obtained are reasonable.

VI. CONCLUSION
In this paper, we saw that noise radars can be described in
terms of a certain correlation coefficient ρ which is intimately
related to detection performance. We then derived the range
dependence of this coefficient. This result holds whether or
not the radar is coherent. Finally, we showed that when the
radar is coherent, we can obtain ROC curves for varying target
ranges by combining the range dependence with a previously
derived expression for the ROC curve.

We again emphasize that our work is not meant to supplant
the standard SNR-based analysis methods, but only to present
an alternative figure of merit which allows noise radars to be
viewed in a slightly different light than hitherto. Through the
results in this paper, we believe we have made a strong case
that the correlation coefficient is a viable lens through which
the performance of noise radars can be understood.

Much exploratory work remains to be done to show how
changes in ρ would affect radar performance. For example,
it would be of interest to determine the Cramér–Rao bound for
bearing estimation in terms of ρ. Another important question
is the exact relationship between ρ and SNR. We also aim to
calculate the values of ρ and N required to achieve desired
values of pD and pFA, in a similar fashion to what was done
in [6]. Other directions for future work include generalizing
our results to cases where the assumptions listed in Sec. III
do not hold, such as fluctuating targets, moving targets,

time-varying phase shifts between transmit and receive, non-
Gaussian additive noise, and multiplicative noise scenarios.

We also plan to explore the applicability of noise radar to
various sensing applications. For example, biomedical sen-
sors may benefit from the fact that noise waveforms are less
likely to interfere with other medical equipment compared
to the sinusoidal waveforms used in many radars. In par-
ticular, we could explore the applicability of noise radar to
fall detection [20]. The performance prediction framework
presented above could help us to understand the detection
performance we could expect from a fall detector based on
noise waveforms. Our work could also help us decidewhether
the enhanced detection performance of quantum radars would
be helpful for fall detection or other sensing applications.

Finally, it would be interesting to determine whether
the correlation coefficient could profitably be applied to
the analysis of other types of radars, e.g. pulse radars or
frequency-modulated continuous wave radars.
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