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ABSTRACT This paper investigates the problem of collaborative robotic car-painting using a team of
industrial manipulators that can be heterogeneous. Given the CADmodel of the car, a collection of heteroge-
neous articulated robotic arms, and their corresponding fixed base positions on the factory floor/ceiling, the
objective is to generate a collection of joint trajectories for each robot in a computationally efficient manner
such that the car body can be painted by the nozzles attached to the arms while collisions during the painting
process are avoided. Our solution to this computationally intensive collaborative coverage path planning
relies on decoupling the collision avoidance from the coverage path planning by exploiting the inherent
two-dimensional structure of the problem. In particular, our algorithm relies on partitioning the reachable
space of the forearms of these robots, projecting the resulting volumes of intersection on the sides and the top
of the car body, and performing the coverage planning on the resulting projected volumes. Simulation results
on several industrial arms that are collaboratively painting a Ford Motor Company F-150 truck demonstrate
the effectiveness of our proposed solution.

INDEX TERMS Computer integrated manufacturing, computational geometry, multi-robot systems, path
planning.

I. INTRODUCTION
Collaborative robotics for flexible manufacturing entails the
concerted collaboration of a group of robots to achieve a com-
plex objective such as automatically planned assemblies and
uncertainty-aware welding/painting/coating which is beyond
the capabilities of a single robot [1]–[7]. As opposed to the
traditional highly repetitive industrial processes, a major goal
in collaborative robotics is to address the need of flexible
manufacturing systems for agile customization of production
lines. In the context of flexible manufacturing-based car-
painting, for instance, if one or more robotic arms become
dysfunctional and there is a need for continuing the painting
process without any disruptions, the manufacturer might need
to replace the non-operational armswith roboticmanipulators
of a different kind from their inventory. In another scenario,
the manufacturer might need to change the make of vehicles
in their production line on short notice. In both scenarios,
a new collection of trajectories is needed to be planned in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Alshabi .

least possible amount of time to address the agile manufac-
turing requirements.

Robotic spray painting, which is concerned with cover-
ing the object surface by means of varnish/paint/ink, uti-
lizes spray guns that are driven by compressed-air. These
spray guns atomize the fluid particles and direct them onto
the industrial target surfaces [8]–[10]. A drawback of the
conventional industrial painting automation systems using
robots is the time-consuming nature of trajectory generation
for the robotic arms [11], [12]. In order to depart from the
time-consuming procedure of direct manual tool path opera-
tion, which is based on driving the robot arm by a human oper-
ator through a complete spraying cycle, CAD-based methods
have been considered as a viable and less time-consuming
alternative for generating proper trajectories for the painting
robots [9], [13]. In these CAD-based methods, path planning
for single industrial robots can be performed using alterna-
tives such as RRT-based algorithms [14], iterative schemes
with adaptively changing spray-gun stroke diameters [15],
and path-constrained trajectory planning [11], to name
a few.
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In the context of collaborative robotic manipulation,
a plethora of modeling, control, and optimization algorithms
have been proposed in the literature (see, e.g., the recent
survey by [3]). Fuzzy genetic algorithms have been employed
in [16] for trajectory planning for two collaborative manip-
ulators, where the robots considered each other as moving
obstacles with unknown behaviors. After the offline gen-
eration of the robot initial paths using genetic algorithms,
an online fuzzy algorithm-based decision maker corrects the
robot paths to prevent them from colliding with each other.
In a similar approach to [16], Safeea et al. [17] achieve collab-
orative task execution by means of generating a collection of
offline computed nominal paths tailored to the industrial task
at hand and generating on-the-fly modifications by means of
artificial potential fields for collision avoidance. Similarly,
Yoon et al. [18] use the concept of manipulator shadow space
calculations along with modified genetic algorithms for gen-
eration of an optimal collision-free sequence for executing
planar tasks, where the manipulators are assumed to only
travel linearly from one point to another and both manipu-
lators start moving at the same time.

In unstructured environments, where the robots might
share the sameworkspace, the issues of timing for task alloca-
tion as well as planning the robotic motion sequences become
of immense importance [19]–[21]. Furthermore, having to
consider other robots as moving obstacles and preventing
their collision in an online manner as manifested in [16]–
[18] (see, e.g., [22]–[24] for other similar works) requires
establishing secure and trustworthy machine-to-machine and
possibly machine-to-cloud communication protocols [25],
[26] where the robots share their status with each other. On the
other hand, in the case of path planning for collaborative
robotic car-painting in flexible manufacturing [9]–[11], the
painting takes place in the highly structured environment
of the manufacturing plant. Therefore, the issues of offline
computational complexity and algorithm versatility across the
utilized industrial robotic arms and vehicle makes become
more pronounced as opposed to motion planners tailored
to unstructured environments, which prevent collision via
computationally intensive real-time calculations.

Considering the crucial need of having a versatile and
computationally efficient path planning algorithm for collab-
orative robotic car-painting, this paper investigates the prob-
lem of path planning for car-painting using a team of robots
that can be heterogeneous. It is well-known that the general
centralized approaches tomulti-robot path planning problems
are NP hard [27], [28] and suffer the curse of dimensionality.

Contributions of the paper. To overcome the curse of
dimensionality in collaborative robotic path planning, the
contribution of this paper is founded in proposing a compu-
tationally efficient, hierarchical, and versatile path planning
solution that relies on exploiting the geometrical features of
the car-painting problem under study. Our solution to this
computationally intensive problem relies on decoupling the
collision avoidance objective in the 3D environment from
the coverage path planning objective on the 2D surface of

FIGURE 1. Example of the CAD model of a given car. The depicted vehicle
is a Ford Motor Company F-150 truck.

the car. We will prove that our proposed algorithm enjoys
a polynomial-time computational complexity and is applica-
ble to any types of articulated arms and vehicle make. Fur-
thermore, our solution does not require any communication
in-between the robotic arms to prevent collision avoidance.

Our proposed algorithm relies on partitioning the reach-
able space of the forearms of these robots by generation
of proper 3D point clouds, using the Quickhull [29] and
Khachiyan’s [30] algorithms from computational geometry
and convex optimization literature for computing the volumes
of intersection in-between the reachable spaces of the robot
forearms, projecting the resulting volumes on the sides and
the top of the car body, and performing coverage planning
on the resulting projected volumes using the classical bous-
trophedon decomposition algorithm [31], [32]. We remark
that our idea of partitioning the 3D workspace of the paint-
ing robots shares some similarities to the recent work by
Kim and Son [2], where a Voronoi diagram-based workspace
partition algorithm has been proposed for weak collabora-
tion of unmanned ground vehicles (UGVs) in agricultural
robotics. Though the Voronoi diagram-based algorithm in [2]
relies on 2D node clustering calculations and covering a 2D
agricultural land, our workspace partitioning takes place in
a 3D setting because of the need for working with 6-DOF
manipulators that operate on 3D objects.

The rest of the paper is organized as follows. We present
the problem statement and our solution strategy in Section II.
Next, in Section III, we present the details of our 3D
workspace calculation algorithms. Thereafter, in Section IV,
we present the steps for performing coverage path planning
on the surface of the car and assigning cells to the indus-
trial arms. Subsequently, we present our overall algorithm
in Section VI by combining the 3D and 2D computational
steps and demonstrate our simulation results for collaborative
painting of a Ford Motor Company F-150 truck. Finally,
we conclude this article with some final remarks and future
research directions in Section VII.

II. PROBLEM STATEMENT
In this section, we state the problem, present our assumptions,
and provide our solution strategy for the overall problem.
The details of the solution startegy will be presented in later
sections.

Collaborative Robotic Car-Painting Problem (CRCP).
Given the CAD model of the car (see Figure 1), a collection
of heterogeneous articulated robotic arms, and their corre-
sponding fixed base positions on the factory floor/ceiling,
generate a collection of joint trajectories for each robot in a
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FIGURE 2. Example of an RRR articulated arm. The robot arm in the figure
is an ABB IRB 4600 industrial manipulator (recreated from [37]). The unit
lengths are in millimeters.

computationally efficient manner such that the car body can
be painted by the nozzles attached to the armswhile collisions
in-between the robots are avoided.

Assumptions on CRCP. We make the following assump-
tions about the given problem in CRCP.
A1 The robotic arms are all of RRR articulated type (see,

e.g., [33, Chapter 1] for classification of robotic manipu-
lators based on their kinematic structures); namely, their
first three joints, which are called the body, shoulder, and
elbow, are of revolute kind (see Figure 2).

A2 The robotic arms are all either floor-mounted or ceiling-
mounted with fixed base positions.

A3 The robotic arms are arranged into two rows that are
located on the sides of the car (see Figure 3 for an
example).

A4 The robotic arms do not communicate with each other.
In other words, the manipulators are not aware of each
other’s trajectories.

A5 For the given industrial robotic arms, there exist inverse
kinematics solvers that can generate the required joint
positions from the provided end-effector poses (see,
e.g., [34], for the inverse kinematics of sixteen funda-
mental 6-DOF robot manipulators).

A6 There exist paint deposition modeling for spray painting
on automative surfaces (see, e.g., [35] or the model
developed by Ford Motor Company in [36]).

Solution strategy for CRCP. Our proposed solution strat-
egy has the following stages, which will be described in detail
in later sections.
Stage 1 Achieving the collision avoidance objective (pre-

sented in Section III).
Stage 2 Achieving the paint coverage objective using the

results from Stage 1 (presented in Section IV).
Stage 3 Using the results from Stage 1 and Stage 2 to create

3D paths for the paint nozzles attached to the robot
end-effectors (presented in Section V).

FIGURE 3. Example of the arrangement of two rows of three robotic arms
around the vehicle.

III. STAGE 1: ACHIEVING THE COLLISION AVOIDANCE
OBJECTIVE
In this section, we will present the 3D workspace calcu-
lations for the given robotic arms in order to guarantee
non-collision. These calculations unfold in three main steps;
namely, approximating the reachable workspace of the robot
forearms using 3D point clouds (Section III-A), finding the
volumes of intersection in-between the generated 3D point
clouds (Section III-B), and fitting proper ellipsoids to the
resulting volumes of intersection (Section III-C). The results
of this section will later be utilized in the second stage of our
algorithm, i.e., Stage 2, to achieve paint coverage objective
on the car surface.

A. STEP 1: APPROXIMATING THE REACHABLE
WORKSPACE OF ROBOT FOREARMS USING 3D POINT
CLOUDS
In order to prevent the collision of the painting robots,
we compute the reachable space of the end point of the fore-
arms of these robots [33]. In the computation of the forearm
reachable space, we do not consider thewrist of these painting
robots since the volume occupied by the wrists is negligible
(see Figure 2). Furthermore, as it will be demonstrated later in
the paper, we exclude the volumes of intersection in-between
the forearm reachable spaces via proper geometric calcula-
tions based on convex hull computations and Khachiyan’s
algorithm. The exclusion of these volumes of intersection
ensures that the wrist collision, which might happen on the
boundaries of the reachable space of the robot forearms, will
not happen (see Figure 2).

In this paper, we are assuming that we are given M paint-
ing robots with articulated RRR arms (Assumption A1).
We denote the angular position of the jth joint angle of the
ith robot by θ ij , where 1 ≤ i ≤ M and 1 ≤ j ≤ 3. Therefore,
the vector of joint angles for the jth robot is given by

θθθ i := [θ i1, θ
i
2, θ

i
3]
>, θ ij,min ≤ θ

i
j ≤ θ

i
j,max, (1)

where the constant angles θ ij,min and θ ij,max determine the
limits of the robot joint motions (see, e.g., [37] for such limit
values for ABB IRB 4600).

We also assume that the base position of these robots are
fixed and expressed with respect to the origin of a com-
mon coordinate frame that is rigidly attached to the factory
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floor/ceiling. It is remarked that robotic arm manufactur-
ers devise flip over capability in some of their robots such
as FANUC R-2000iC/220U [38] so that when a work cell
is unsuitable for floor or wall mounting, the robot can be
installed on the ceiling, and thus giving it the flexibility to
fit narrow cell designs. We denote these base positions by

bi ∈ R3, 1 ≤ i ≤ M . (2)

To investigate the reachable volume by the forearm of each
articulated robot, we use the Denavit-Hartenberg parameters
associated with the first three joints of these robots along with
the forward kinematics maps that relate the joint configura-
tions to the position of the robot forearm tip. In particular,
the forearm tip position ti ∈ R3 of the ith robot with its base
located at bi ∈ R3 on the factory floor/ceiling, 1 ≤ i ≤ M ,
and forward kinematics mapping T i(θθθ i) ∈ R4×4, which maps
the angular position of the first three joints to the orientation
and position of the forearm tip, can be computed from

[
ti(θθθ i)
1

]
= T i(θθθ i)


0
0
0
1

+ [bi0
]
, 1 ≤ i ≤ M . (3)

In order to keep the algorithms for computing the reach-
able space of the forearms of the painting robots applica-
ble to any given type of RRR industrial manipulator (see
Assumption A1), we will use a sampling-based numeri-
cal method to approximate these reachable spaces. Using
the sampling-based numerical methods such as the ones
in [39]–[41], as opposed to their analytical or geometric
counterparts (see, e.g., [42]), will yield 3D point clouds for
which a plethora of numerically efficient algorithms such
as the Quickhull [29] and Khachiyan’s [30] can be invoked.
Although we could have employed β-distribution-based sam-
pling for generating the reachable volume of the robot fore-
arm tips as in [39], we found out that uniform sampling of
the joint positions for achieving the car-painting objective in
CRCP suffices.

The 3D point cloud Pi, 1 ≤ i ≤ M , associated with the
reachable volume of the ith robot forearm tip is given by

Pi =
{
ti(θθθk )

}Ni
k=1

, (4)

where ti(θθθk ) is the position of the forearm tip under configu-
ration vector θθθk and determined from the forward kinematics
mapping in (3), θθθk is the k th sample picked from the interval
[θ i1,min, θ

i
1,max] × [θ i2,min, θ

i
2,max] × [θ i3,min, θ

i
3,max], and the

number of samples in the point cloud, i.e., N , is given by

Ni =
3∏
j=1

( ⌊θ ij,max − θ
i
j,min

δij

⌋
+ 1

)
. (5)

In Equation (5), b·c denotes the floor function, and the con-
stant δij determines the distance between the samples in each
angular interval. For instance, if δi1 = π

10 , we mean that
the samples from the interval [θ i1,min, θ

i
1,max] are

π
10 apart

FIGURE 4. Example of the point clouds representing the reachable
workspace by the forearms of six ABB IRB 4600 manipulators. The point
clouds in black represent areas of possible collisions in-between the
robots. The axis units are in decimeters (Note: 1 meter ≡ 10 decimeters).

from each other. As it will be seen later, the number of
points Ni in (5) in each of the forearm point clouds deter-
mines the computational complexity of the overall CRCP
algorithm. Figure 4 depicts the point clouds that represent
the reachable workspace by the forearms of six ABB IRB
4600 manipulators.

B. STEP 2: FINDING THE POINT CLOUDS OF
INTERSECTION IN-BETWEEN THE GENERATED 3D POINT
CLOUDS
In Step 1 of Stage 1, we computed the reachable workspace
of the robot forearms using 3D point clouds. In this section,
we will compute the point clouds resulting from the intersec-
tion of the point clouds from the previous step. Our method
is based on using the Quickhull algorithm [29], [43], [44].
For the sake of brevity, we refer the reader to textbooks
such as [44, Chapters 3, 4] for the details of this algorithm.
Many computational geometry packages have implemented
the Quickhull algorithm. For instance, in MATLAB, the
function convhulln can be used to run the Quickhull algo-
rithm on a given point cloud.

TheQuickhull algorithm is an efficientmethod for comput-
ing the convex hull of a finite set of points in n-dimensional
spaces. The worst case complexity for computing the convex
hull of N points in a 3-dimensional space can be shown to
be O(N log(N )). In our case, we need to compute the convex
hull CP i ⊂ R3, 1 ≤ i ≤ M , associated with the point clouds
Pi given by (4). In other words, we have

CP i = conv(Pi), (6)

where conv(·) is the convex hull associated with a given set
of points. Therefore, the worst case complexity of computing
CP i is given by O(Ni log(Ni)), where the number of points Ni
in the point cloud Pi is given by (5).
Having computed the convex hulls CP i, we compute their

volumes of intersection using a proper 3D-clipping algo-
rithm [45]. Clipping refers to the process of determining
what region of 3D space is contained within another region
of 3D space. For instance, one can utilize the extended
Sutherland-Hodgman clipping algorithm for computing the
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intersection in-between the robotic forearm workspace con-
vex hulls to obtain the convex sets

CP ij := CP i ∩ CP j, (7)

which represent the intersection of 3D point clouds of the
robotic forearm workspaces. In general, efficient 3D poly-
hedral intersection algorithms enjoy linear-time complexities
(see, e.g., the work by Chan [46]).
Remark 1: The proposed computations in this section

results in finding collision-free volumes of intersection CP i−⋃
j
CP ij, where CP i in (6) is the convex hull of the reachable

workspace associated with the i-th robot and
⋃
j
CP ij in (7) is

the union of the volumes of intersection in-between the i-th
robotic forearm and its neighbors.

C. STEP 3: FITTING ELLIPSOIDS TO THE VOLUMES OF
INTERSECTION
Having computed the intersection of 3D point clouds of the
robotic forearm workspaces in Step 2 of Stage 1, we fit
ellipsoids to these volumes of intersection in Step 3. The
projection of these ellipsoids on the 2D surface of the car
body will later be utilized for achieving the painting coverage
objective in the next section.

Consider the point cloud CP ij := {pk}
Nij
k=1 of Nij points

in R3, where CP ij is computed from (7). In this section,
we will use Khachiyan’s algorithm, which is widely used in
convex optimization [47], for fitting 3D ellipsoids to the point
cloud CP ij. Khachiyan’s algorithm [30] is concerned with
computing theminimum volume enclosing ellipsoid (MVEE)
of the point cloud CP ij denoted by MVEE(CP ij), which is
obtained by solving the optimization problem

argmin
A,c

log(det(A)),

subject to (pk−c)>A(pk−c) ≤ 1, for all pk ∈CP ij (8)

where c is the center of MVEE(CP ij) and the matrix A
provides the shape of the ellipsoid MVEE(CP ij). In partic-
ular, by computing the singular value decomposition of A as
U4V>, the radii of the ellipsoid are given by rk = 1/

√
ξk ,

1 ≤ k ≤ 3, where ξk is the k-th component of the diagonal
of the matrix 4. Furthermore, the orientation of the ellipsoid
is given by the rotation matrix V .
Khachiyan’s algorithm is based on solving the Lagrangian

dual problem of (8) by using a conditional gradient ascent
scheme [30] (see also [48]). As it is demonstrated in [30],
the original Khachiyan algorithm for computing MVEEs can
be solved using O(N 3.5

ij ln(Nij
ε
)) arithmetic operations to a

relative accuracy of ε in the volume. In this paper, we are
using the implementation of Khachiyan’s algorithm in [49].

IV. STAGE 2: ACHIEVING THE PAINT COVERAGE
OBJECTIVE
In this section, we will utilize the results from the previous
section in order to generate the nozzle footprint profile for

FIGURE 5. Example of projection of the fitted ellipsoids from
Stage 1-Step 3 onto the grid map representation of the sides and top of
the vehicle CAD model.

achieving the paint coverage objective. Our calculations for
this stage unfold in three main steps; namely, projection of
the fitted ellipsoids from Stage 1-Step 3 onto the grid map
representation of the sides and top of the vehicle CAD model
(Section IV-A), automatic decomposition of the resulting grid
maps into cells by utilizing the Morse critical points of the
obtained map from the projection step and assigning back-
and-forth (boustrophedon-like motions) for covering the cells
by the motion of the applicator footprint (Section IV-B).

A. STEP 1: PROJECTION OF THE FITTED ELLIPSOIDS
ONTO THE CAR CAD MODEL
As the first step for achieving the paint coverage objective,
we project the fitted ellipsoids from Stage 1-Step 3 onto the
grid map representation of the sides and top of the vehicle
CAD model to obtain images like the one depicted in Fig-
ure 5. In order to obtain the grid map of the sides and the
top of the vehicle CAD model, one can employ standard
image processing algorithms such as the Moore-Neighbor
Tracing algorithm for tracing given contours and detecting
the boundaries of objects in a given image [50].

B. STEP 2: DECOMPOSITION OF THE VEHICLE GRID MAP
INTO CELLS USING THE MORSE CRITICAL POINTS
After projecting the fitted ellipsoids from Stage 1-Step 3 onto
the grid map of the sides and the top of the vehicle CAD
model, we use the algorithm due to Acar et al. [51] for auto-
matically decomposing the car grid maps, where the volumes
of intersection have been projected onto them, by utilizing the
Morse critical points of the obtained map from the previous
step. The Morse critical point-based decomposition [51] is
an extension of the exact cellular decomposition due to Bar-
raquand and Latombe [52].

The exact cellular decomposition represents a robot’s free
space (here, the nozzle footprint profile) by dividing it into
regions with simple structure such that the union of the
regions is equal to the free space. The extension due to
Acar et al. [51] relies on using the critical points of Morse
functions for indicating the location of cell boundaries. Since
we are using the projection of the fitted ellipsoids on the vehi-
cle grid map, these projections have non-degenerate critical
points. Having Mc critical points on a planar grid map, the
algorithm due to Acar et al. [51] can decompose the surface
into cells with complexity O(Mc log(Mc)). There are numer-
ous implementations of this algorithm online. We are using
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FIGURE 6. Example of assigning back-and-forth (boustrophedon-like)
motions on the side of the vehicle for the applicator/nozzle footprint on
the grid maps obtained from Stage 2-Step 1. Each colored boustrophedon
path belongs to one of the three robots working on one side of the car
(see Assumption A3).

FIGURE 7. Example of assigning back-and-forth (boustrophedon-like)
motions on the top of the vehicle for the applicator/nozzle footprint on
the grid maps obtained from Stage 2-Step 1. Each colored boustrophedon
path belongs to one of the six robots working on two sides of the car (see
Assumption A3).

the MATLAB implementation by Horvath [53] for achieving
the cellular decomposition.

After the computations associated with the cellular decom-
position, we assign back-and-forth (boustrophedon-like)
motions for covering the obtained cells by the motion of the
applicator/nozzle footprint using the prominent Boustrophe-
don Algorithm due to Choset [32]. The result of generating
such boustrophedon-like paths for 6 robots are depicted in
Figures 6 and 7. As it can be seen from these two figures,
the left plots in Figures 6 and 7 contain the trajectories of the
applicator/nozzle footprints that are obtained from assigning
boustrophedon-like paths to the areas on the sides and top of
the car that do not overlap with the projection of the ellipsoids
obtained from Stage 1-Step 3. Indeed, these ellipsoids are
approximating the volumes of intersection in-between the
workspaces of the robotic forearms. The projection of these
ellipsoids onto the grid map representation of the vehicle
CAD model partitions the sides and top of the car into
patches with void areas (see Figure 5 for further details). The
right plots in Figures 6 and 7 contain the completed noz-
zle/applicator footprint paths where the boustrophedon-like
paths are completed by creating proper boustrophedon-like
trajectories for the void areas and assigning them to the appro-
priate robot. For instance, consider the red-colored paths in
Figures 6 and 7. After partitioning the sides and the top of the
car using the projection of the fitted ellipsoids, the algorithm
generates the red boustrophedon-like paths in the left plots.
Next, boustrophedon-like paths are created for the projected
ellipsoid areas in-between the red and the magenta-colored
paths. These newly generated paths are then utilized to com-
plete the red-colored applicator/nozzle footprint.

V. STAGE 3: TASK ASSIGNMENTS AND GENERATION OF
ROBOTIC JOINT TRAJECTORIES
In this section, we will assign the painting tasks to the robots
by utilizing the obtained boustrophedon-like motions from
Stage 2-Step 2 (see Section V-A). Furthermore, we will cre-
ate 3D paths from the obtained boustrophedon-like appli-
cator footprints for the paint nozzles attached to the robot
end-effectors and utilize these 3D paths to generate the
desired joint trajectories for each of these robots (see
Section V-B).

A. STEP 1: ASSIGNING ROBOTIC TASKS
Having obtained the boustrophedon-like paths of the applica-
tor footprints on the sides and the top of the car, we compute
the centroid of the obtained paths, which depends on the
number of the painting robots. For instance, in the case of
six robots, we have six centroids associated with the sides of
the car and six centroids associated with the top of the car.
We then compute the Euclidean distance in-between the cen-
troids of the boustrophedon-like paths and the centroids of the
collision-free volumes of intersection CP i −

⋃
j
CP ij, where

CP i in (6) is the convex hull of the reachable workspace
associated with the i-th robot and

⋃
j
CP ij in (7) is the union

of the volumes of intersection in-between the i-th robotic
forearm and its neighbors.

By utilizing the Euclidean distances in-between the cen-
troid of the collision-free workspace volumes and the cen-
troid of the boustrophedon-like paths (see Figure 8), the
boustrophedon cells that are the nearest to a given reachable
workspace point cloud will be assigned to their respective
robotic manipulators. The result of such cell assignment is
depicted in Figure 8. In Figure 8, we are using six different
colors to represent the six different nozzle/applicator foot-
print paths assigned to each of the six robots. One collection
of these footprint paths correspond to the top of the car.
In particular, considering the right plot in Figure 8, these
nozzle/applicator footprints on the top of the car are depicted
(in a clockwise order) by the red, the magenta, the green,
the yellow, the dark blue, and the ceil blue (sky blue) paths,
respectively. The other collection of these footprint paths
correspond to the sides (the driver’s and the passenger’s sides)
of the car. In particular, in the left plot in Figure 8, the
three colored paths correspond to the three nozzle/applicator
footprint trajectories of the three robots that are located on
the driver’s side. In other words, the red, the magenta, and the
green-colored paths represent the nozzle/applicator footprint
of the three robots that are painting the vehicle on the driver’s
side. Due to symmetry, we have omitted the plot containing
the three nozzle/applicator footprint paths (yellow, dark blue,
and ceil blue) on the passenger’s side.

It is remarked that due to the design procedure in
Stages 1 and 2 of our algorithm when the robots are painting
the sides and top of the car, they do not collidewith each other.
Remark 2: Our idea of partitioning the 3D workspace of

the painting robots resembles the recent work by Kim and
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FIGURE 8. Example of assignment of painting tasks to the robots, which
is done based on computing the Euclidean distances in-between the
centroids of the reachable workspace point clouds of the robots and the
centroids of the boustrophedon-like motions obtained from
Stage 2-Step 2. Each colored collection of paths corresponds to one
robot. For instance, the red paths on the side and the top of the car are
assigned to a single robot.

FIGURE 9. Example of generating 3D boustrophedon-like paths of the
paint nozzle 3D footprints for four and six robots.

Son [2]. In that work, the authors propose using a Voronoi
diagram-based workspace partition algorithm for weak col-
laboration of UGVs in the context of agricultural robotics.
However, the algorithm in [2] relies on 2D node clustering
calculations and covering a 2D agricultural land. On the other
hand, our workspace partitioning takes place in a 3D setting
(achieved in Stage 1). Subsequently, path planning for the
applicator footprint is performed in Stage 2. Finally, based
on the computations form the previous stages, robotic task
assignment is done in Stage 3.

B. STEP 2: 3D PATH GENERATION FOR THE PAINT
NOZZLES AND GENERATION OF JOINT TRAJECTORIES FOR
THE ROBOTIC ARMS
In this section we utilize the 2D boustrophedon-like paths
from the previous stage to generate 3D boustrophedon-like
paths for the paint nozzle footprints. To illustrate this process,
let us consider Robot 1 and its associated cells on the side
and the top of the car. Each of these cells are covered by
2D boustrophedon-like paths obtained from Stage 2. In order
to generate 3D boustrophedon-like paths for the paint nozzle
footprint of Robot 1, we simply connect the last point of the
boustrophedon-like path on the side cell to the first point
of the boustrophedon-like path on the top cell associated
with Robot 1 by means of a straight line segment. The
result of such process for 6 and 4 robots are depicted in
Figure 9.

After obtaining the 3D paths of the footprint of the nozzles,
we can use proper on-the-shelf algorithms that can provide
us with the paint deposition model and robotic arm joint
trajectories obtained from efficient inverse kinematics solvers
(see Assumptions A5 and A6).

VI. OVERALL ALGORITHM AND SIMULATION RESULTS
The flowchart associated with the overall algorithm pro-
posed in this paper is depicted in Figure 10. The overall
computational complexity of our algorithm is determined
by Khachiyan’s algorithm in Stage 1-Step 3. In particular,
we have a polynomial-time complexity of O(N 3.5

0 ln(N0
ε
)),

where ε is the relative accuracy of the ellipsoids fitted to the
volumes of intersection in-between the reachable workspace
of the robotic forearms, and the integer N0 is proportional
to the number of points in point clouds representing the
reachable workspace of each robotic forearm, which is given
by (5).

For the particular case of collaborative robotic car-
painting, the obtained polynomial-time complexity is quite
manageable for a modest PC with only one of its cores per-
forming the required computations. For instance, the overall
run-time of the algorithm implemented on MATLAB for a
group of six ABB IRB 4600 robots on an Intel Core i7 CPU
with an N0 of the order of 103 and an ellipsoidal fitting
tolerance of ε = 0.01 is less than four minutes. The snapshots
of a homogeneous team of six robots painting a Ford Motor
Company F-150 truck are depicted in Figure 11.

Our algorithm can be applied to heterogeneous teams of
robots as well. This is particularly useful when one or more
robotic arms become dysfunctional and there is a need for
continuing the painting process without any disruptions, the
manufacturer might need to replace the non-operational arms
with robotic manipulators of a different kind from their inven-
tory. The snapshots of a heterogeneous team of four robots
that are painting a Ford Motor Company F-150 truck are
depicted in Figure 12. For the interested reader, a movie
clip associated with our numerical simulations accompanies
this manuscript. The movie clip contains three painting sce-
narios: a team of six homogeneous robots (six ABB IRB
4600 robots), a team of four heterogeneous robots (two ABB
IRB 4600 and two FANUC R-2000iC robots), and a team of
four homogeneous robots (four ABB IRB 4600 robots).
Remark 4: To cope with the existence of multiple inverse

kinematic solutions in path planning for serial robotic mech-
anisms and generating unique continuous paths in the robot
joint space from a collection of potential paths, the com-
munity has proposed several solutions throughout the years.
One of these popular solutions, which is also employed by
CoppeliaSim and utilized in our paper, is based on utilizing
damped least squares (DLS) numerical inverse kinematics
solvers (also known as the Levenberg-Marquardt solvers),
which were originally proposed by Wampler [54] (also,
see [55]). Given a sequence of desired end-effector posi-
tions and orientations, which form a continuous path in the
end-effector pose space, and an initial desired joint configu-
ration, the DLS-based inverse kinematics solvers are guar-
anteed to generate a unique and continuous sequence of
joint configurations that closely solve for the inverse kine-
matics problems associated with the provided path in the
end-effector pose space. Another possibility, which is not
utilized in this paper, is based on using the notion of aspects
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FIGURE 10. The flowchart associated with the proposed algorithm for CRCP.

FIGURE 11. Snapshots of six ABB IRB 4600 robots painting an F-150 truck.

FIGURE 12. Snapshots of two ABB IRB 4600 and two FANUC R-2000iC/220U robots painting an F-150 truck.

originally proposed by Borrel and Liégeois [56] (also, see the
recent work by Ferrentino and Chiacchio in [57]). In particu-
lar, Borrel and Liégeois [56] introduced the notion of aspects
to cope with the existence of multiple inverse kinematic
solutions in serial manipulators. The aspects are defined

as the maximal singularity-free domains in the robot joint
space. For conventional industrial serial robotic arms, the
aspects have been found to be the maximal sets in the robot
joint space where there exists only one inverse kinematics
solution.
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VII. CONCLUDING REMARKS
In this paper we proposed an algorithm with polynomial-time
complexity for collaborative robotic car-painting using a team
of industrial robotic arms. The proposed algorithm relies on
partitioning the reachable space of the forearms of these
robots using techniques from computational geometry and
convex optimization, path planning for the nozzle/applicator
footprint on the grid map representation of the car using the
classical Morse cellular decomposition and boustrophedon
algorithms, and using off-the-shelf inverse kinematics solvers
for obtaining the required robotic arm joint trajectories.

Our proposed algorithm is versatile in that it can be applied
to any heterogeneous team of industrial arms and any vehicle
make. Furthermore, there is no requirement for having the
industrial arms to communicate with each other during their
operation.

There are some limitations associated with our proposed
algorithm. First, in order to apply our proposed algorithm to
more delicate surface coating tasks such as stealth coating of
fighter jets, we need to adopt non-boustrophedon-like paths
for generating smooth nozzle/applicator footprints (see, e.g.,
the survey paper in [58] for a collection of possible solutions).
As another point, we remark that there exist numerically
faster implementations of Khachiyan’s algorithm in the lit-
erature as opposed to the standard implementation that we
have utilized in this paper (see, e.g., [48]). Finally, there is
a need for extending our approach to the rising problem of
interaction with moving targets in the context of collaborative
path planning problems for robotic arms.

In future works, the issue of optimal robot base place-
ment, parallelizing the proposed algorithm, and optimizing
the manupilability metric of the robotic arms during painting
will be investigated.
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