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ABSTRACT In the past decade, significant research effort has been directed toward developing single-image
dehazing algorithms. Despite this effort, dehazing continues to present a challenge, particularly in complex
real-world cases. Indeed, it is an ill-posed problem because scene transmission depends on unknown
and nonhomogeneous depth information. This paper proposes a novel end-to-end adaptive enhancement
dehazing network (AED-Net) to recover clean scenes from hazy images. We evaluate it quantitatively
and qualitatively against several state-of-the-art methods on three commonly used dehazing benchmark
datasets as well as hazy real-world images. Moreover, we evaluated it against the top-scoring methods of the
Codalab NTIRE 2021 competition based on the dehazing challenge dataset. Extensive computer simulations
demonstrated that AED-Net outperforms state-of-the-art single-image haze removal algorithms in terms of
PSNR, SSIM, and other key metrics. Furthermore, it improves image texture, detail edges, boosts image
contrast and color fidelity. Finally, AED-Net is more effective under complex real-world conditions.

INDEX TERMS Codalab, Gamma correction, nonhomogeneous haze, region-aware enhancement, single
image dehazing.

I. INTRODUCTION
Images captured in hazy or foggy weather conditions can be
significantly degraded, rendering the image objects and their
features challenging to be identified by imaging systems.
The resulting contrast reduction and color shift present a
further problem to imaging applications. Liu et al. [1] demon-
strated that the reduction in detection rate was proportional
to the haze density, positing that image dehazing could be
a practical solution for image classification, object detection,
remote sensing, image or video retrieval, and outdoor surveil-
lance [1]–[4], [50].

Recently, several dehazing algorithms have been devel-
oped that rely on additional information, such as depth,
polarization, and multiple images [4]–[6], as well as a single
image [7]–[12]. Because multiple images or additional physi-
cal information are often unavailable, single-image dehazing
has received the most attention. Liu et al. [26] surveyed algo-
rithms based on the physical model [1]–[3], image enhance-
ment [17], and deep learning (DL) [7]–[16].
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A. PHYSICAL MODEL
Considerable progress has been made in understanding the
atmospheric scattering model [1]–[3]. Using this model,
McCartney [2] provided a theoretical foundation for image
dehazing. In particular, the model computes scene radiance
based on the global atmospheric light and transmission map.
Several studies have focused on assessing atmospheric light.
Tan [18] proposed a contrast maximization method for image
dehazing based on the key assumption that non-hazy images
have higher contrast than hazy images. Most other algorithms
estimate the transmissionmap by empirically leveraging rules
for evaluating atmospheric light. He et al. [19] used a dark
channel prior (DCP) to assess the transmission map based on
the assumption that pixel values in haze-free patches are close
to zero in at least one color channel. They express the dark
channel for image J as

Jdark (x) = miny∈�(x)(minc∈{r,g,b} J c(y)) (1)

where c represents one of the three RGB channels and �(x)
is a small patch centered on x. Liu et al. proposed an excit-
ing intensity projection strategy to estimate the transmission
map [48]. It is important to note that prior assumptions in the
methods described above may not always work well because
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TABLE 1. Comparison of existing methods on different parameters.

FIGURE 1. Overall architecture of AED-Net.

of inherent limitations in some instances (e.g., dark channel
prior assumption does not work well for sky regions.)

B. ENHANCEMENT MODEL
Enhancement-based dehazing does not consider the phys-
ical model and improves the image quality by increasing
contrast [17]. Huang et al. [20] proposed the urban remote
sensing haze removal (URSHR) algorithm, which combines
phase consistency features, multiscale retina theory [21], and
histograms. Chaudhry et al. [22] used mixed median and
accelerated local Laplacian filtering to dehaze outdoor RGB
and remote-sensed images. However, this scheme presents
halos in a dehazed image.

C. DEEP LEARNING-BASED MODEL
Convolutional neural networks (CNN) have received consid-
erable attention in recent years due to their success. Sev-
eral comprehensive surveys of their application in dehazing
are available [23], [25], [26]. For example, Gui et al. [23]
(i) recapped commonly used datasets and loss functions in
daytime dehazing tasks, (ii) offered a taxonomy for state-of-
the-art DL dehazing algorithms, (iii) introduced core tech-
niques across different methods, and (iv) presented open
problems that would inspire further research in image dehaz-
ing tasks.

Notably, they conclude that ‘‘most papers have discussed
the model effect on light and medium haze. Intuitively, the
higher the density, the lower is the quality of the dehazed
image obtained by the dehazingmodel.’’ These learningmod-
els can be broadly categorized as (a) utilizing the atmospheric
scattering model and (b) using an end-to-end approach for

estimation. DehazeNet [24] and AOD-Net [7] are good exam-
ples of the first category. They used a CNN to estimate
the transmission map and atmospheric light. In contrast,
many other methods use an end-to-end approach to recover
haze-free images without using a physical scattering model.
GCA-Net [8] employs smoothed dilated convolution layers
to remove gridding artifacts. Qin et al. [9] proposed FFA-Net
with pixel and channel attention. Shao et al. [10] proposed a
novel domain-adaptation framework for dehazing tasks.

Another interesting strategy was proposed by
Ren et al. [49]. They derive three inputs from the orig-
inal hazy image by applying white balance, contrast
enhancement, and Gamma correction. The network computes
pixel-wise confidence maps to blend the information derived
from the inputs. Most of these techniques perform well in
some cases; however, computer simulations show that they
have difficulty in real-world situations, for example, working
with challenging NTIRE datasets [27], [30], [31], [40], using
small-scale training sets, and nonhomogeneous haze. Several
excellent methods have been developed for real-world cases
tailored to NTIRE datasets.

Sourya et al. [11] proposed a fast network for restor-
ing nonhomogeneous haze by aggregating multiple image
patches from different image scales. Yu et al. [12] intro-
duced a two-branch dehazing network in the Codalab NTIRE
2021 nonhomogeneous dehazing challenge [27]. They pro-
posed a simple approach for nonhomogeneous dehazing via
ensemble learning and utilized the Res2Net [28] encoder with
ImageNet pre-trained weights. These methods were effective
for small training datasets. Despite this remarkable progress,
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the performance of these state-of-the-art techniques is influ-
enced by haze-relevant priors or heuristic cues that are not
sufficiently efficient. Some properties of the state-of-the-art
image-dehazing methods are provided in Table 1.

This article proposes an adaptive enhancement dehazing
network (AED-Net) with gray-level projection. Unlike com-
peting methods, the proposed approach combines CNN with
concepts from the enhancement model as well as the weak
assumption of a dark channel prior [19]. Key differentiating
aspects of AED-Net are a unique network structure with
novel modules, including (i) a novel region-aware modified
Gamma correction (RAMGC) module which has the ability
to enhance the edges and distorted colors, (ii) thin and heavy
haze enabling model, and (iii) unique integrations of all
modules. Finally, the net allows superior haze removal while
providing convincing results in a wide range of real-world
conditions.

This paper makes several key contributions:
a) An end-to-end convolutional network architecture for

single-image dehazing, which does not depend on exter-
nal information, such as cues acquired from other sources,
existing georeferenced models, estimation of the transmis-
sion map, assessment of the atmospheric light, or multiple
images of the same scene taken under different weather
conditions.

b) Novel network modules, including gray-level dehaz-
ing (GLD) and RAMGC.

c) Results of extensive computer simulations.
The analysis of these results confirmed that the pro-

posed network outperformed the state-of-the-art single-
image haze removal algorithms (AOD-Net [7], DA-Net [10],
FDMPHN [11], GCA-Net [8], FD-GAN [13], RefineD-
Net [14], FFA-Net [9], andWavelet U-Net [15]) on real-world
images, including benchmark datasets such as I-Haze [31],
O-Haze [30], and NH-Haze2 from Codalab NTIRE
2021 competition [27].

The remainder of this paper is organized as follows.
Section II provides a detailed description and analysis of the
AED-Net architecture. Section III presents the experimental
results, including an ablation study and comparison with
other dehazing methods. Finally, Section IV concludes the
study.

II. PROPOSED METHOD
This section introduces the overall AED-Net architecture and
provides details of its three main components: gray-level
dehazing, residual channel attention, and region-aware mod-
ified Gamma correction modules. In addition, it describes the
loss functions for training the network.

A. OVERVIEW OF THE NETWORK ARCHITECTURE
The presented AED-Net architecture contains three essen-
tial parts: (i) estimation of a global high-level dehaze
map for a single channel without haze-relevant features,
(ii) enhancement of non-haze edges and reconstruction of
colors affected by haze and (iii) augmentation of the final

result with fine detail information. As illustrated in Fig. 1,
the input image is first passed to the GLD module to pro-
duce a single-channel dehazed output. Although this module
performs well at the gray level, the output lacks color and
fine features, as expected from its structure (Fig. 2(a)). Next,
we fuse the gray-level channel result with the input image
using the color space conversion technique, inspired by [51].
First, the initial image is converted into the HSV color
space, and then the V channel is replaced by the gray-level
dehazed output. The results are then converted back to the
RGB space. Next, we perform a novel region-aware Gamma
correction (Fig. 3(a)) to enhance the edges and distorted
colors, as detailed in Section C. Finally, we employ the resid-
ual channel attention network (RCAN) [29] to re-introduce
fine features from the original Image (Fig. 2(b)).

B. GRAY LEVEL DEHAZING
Haze is not uniformly distributed within the RGB chan-
nels [27]. For instance, the haze density in the blue chan-
nel is much higher than in the red channel. We posit that
single-channel prediction would present a less challeng-
ing task than utilizing three channels simultaneously. Our
experimental results validate this assumption. GLD has an
encoder-decoder structure with a Res2Net encoder inspired
by [28]. The encoder module loads the ImageNet pre-trained
parameters to achieve faster convergence, mitigate overfitting
on small datasets, and extract more robust features. We used
two branches for the thin and heavy haze to construct the
decoder. The main structures of the two units are similar.
They both utilize upsampling PixelShuffle [32] modules with
convolution layers followed by channel attention and pixel
attention layers [9]. Furthermore, we used dilated convolu-
tional layers with larger kernel sizes to enlarge the receptive
field for a heavy haze branch. We used a dark channel prior
(DCP) [19] as a weight map to fuse the branches, assuming
that if the pixel value on the dark channel is high, there is
a high probability that it would be a hazy pixel. In other
words, we interpret the dark channel as a haze probability
map. Fusion was performed as follows:

O = Oh · DC + Ol · (1− DC) (2)

where Oh is the output of heavy haze branch decoder, Ol is
the output of the thin haze branch decoder, O is the resulting
image after fusion, and DC is the dark channel.

C. REGION AWARE MODIFIED GAMMA CORRECTION
The color distribution of hazy images can vary based on the
haze source (poor weather, traffic, industry, etc.) and its type
(thin haze, heavy haze, dark haze, etc.). This section proposes
a novel image-enhancement approach for adapting the color
distribution of haze and highlighting the edges. A Gamma
correction strategy was proposed by Liu et al. [33] as a
pre- processing step. Although this approach can improve
the overall brightness and shift the color distribution glob-
ally, it has certain limitations: (i) a global optimal Gamma
parameter should be determined for an individual image as
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FIGURE 2. GLD module (a) and RCAN module (b).

FIGURE 3. RAMGC module (a) consisting of three enhancement blocks, where each block Gamma, Alpha, Beta has
architecture (b).

the haze type can vary across images, (ii) it does not effec-
tively address different regions of the image because the
haze can be spatially nonhomogeneous, and (iii) preferably,
it could be adjusted to highlight edges. We aimed to build
a network that would perform well for different haze types
and spatial distributions. We propose a Gamma map with
an individual Gamma parameter for each pixel per chan-
nel, based on the global and local properties of the input
image. Furthermore, we created a block that learns to output
a Gamma map depending on the haze type and location.
Finally, we introduced two additional feature maps to enlarge
the transformation space. The module outputs three feature
maps and transforms the input image X as follows:

XC
enhanced

= α(XC )γ + β (3)

where α, β, and γ are the three corresponding outputs,
C ∈ {R,G,B} is the color channel index, and XC is the
color channel of the input. This module uses pyramid pool-
ing blocks to ensure that features from different scales are
embedded in the final result. As shown in Fig. 3 (a), we
used the same image enhancement block described in [34]
with different (non- shared) weights for each output map.
This enabled us to enlarge the receptive field and obtain
region-aware maps (Fig. 3 (b)). A detailed description of the
enhancement block can be found in [34].

D. RESIDUAL CHANNEL ATTENTION
This module, shown in Fig. 2 (b), aims to fuse globally
dehazed high-level details with low-level features from the
hazy input image that are lost during the preceding trans-
formations. We used residual channel attention blocks intro-
duced in the super-resolution problem [29], each containing
respective convolutional layers and channel attention mod-
ules. This design is less sensitive to gradient vanishing due
to the residual connections. Channel attention is used to
highlight the required feature maps. Furthermore, this subnet
avoids employing downsampling and upsampling to preserve
fine features.

E. DISCRIMINATOR AND LOSS FUNCTIONS
1) DISCRIMINATOR
We utilized a discriminator network for adversarial loss to
obtain realistic images. It has a straightforward structure with
a few 3×3 kernel-size convolutions followed by leaky ReLU
activations with 0.2 parameters and batch normalization. The
output dimensions of the convolutional layers are 64, 128,
256, and 512. The final layers perform 2D adaptive pooling,
followed by convolution with a kernel size of 1. The last layer
generates an output vector with a length of 1024. A sigmoid
function was used, and the result was averaged to obtain the
output probability of the image being real.
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2) LOSS FUNCTIONS
We employ a linear combination of four loss functions,
smooth L1 [35], MS-SSIM [38], perceptual [36], [37], and
adversarial [39], to balance the different losses:

L = γ1Ll1 + γ2LMS−SSIM + γ3Lperc + γ4Ladv (4)

where γ1, γ2, γ3 and γ4 are the hyperparameter coefficients.

III. EXPERIMENTS
This section evaluates AED-Net and compares the results
qualitatively and quantitatively with those of existing state-
of-the-art dehazing methods on benchmark datasets and real-
world images (Figs. 4-6.)

A. DATASETS
We chose the following three small benchmarking datasets
for training and evaluating our method.

1) I-HAZE
The I-HAZE dataset [31] contains 35 PNG image scenes that
correspond to indoor environments, with objects of different
colors and varying spatial features. Haze was generated using
professional generators (LSM1500 PRO 1500 W) of dense
vapor in a controlled indoor environment. The set contains the
ground truths corresponding to haze-free images of the same
scene. Five images were used for validation, and another five
were used for testing.

2) O-HAZE
The O-HAZE dataset [30] was derived from 45 PNG images
with and without haze. The acquisition process was similar
to that for the I-HAZE dataset. A special hazy liquid with
a higher density was chosen to simulate the effect of water
haze over larger distances. Similarly, five validation images
and five for the test sets were selected.

3) NH-HAZE2
NH-Haze2 was introduced for the Codalab NTIRE 2021
image-dehazing challenge [27]. It consists of 35 hazy PNG
images and their corresponding ground truths. It contains real
outdoor scenes with nonhomogeneous haze generated using
two professional haze machines generating vapor particles
with a diameter of 1-10 microns, typical of atmospheric haze.
Similarly, we used five images for validation and five for
the test sets. The last five images were chosen for testing
in the absence of an official test set. We also augmented
our training dataset with the data introduced during the
NTIRE2020 dehazing challenge (NH-Haze) [40]. We com-
pared our results with Codalab NTIRE 2021 image dehazing
challenge top-scoring methods, namely, the first-, third-, and
fifth-place winners who provide public code, which allowed
us to reproduce their results (Table 4).

B. IMPLEMENTATION DETAILS
The training images were cropped to 256 × 256 random
patches, and our data augmentation method provided 90◦,

FIGURE 4. Qualitative comparisons of AED-Net on real-world images.

180◦, and 270◦ of random rotation, horizontal, and vertical
flipping. This type of augmentation and cropping allowed
us to train the model for several epochs in order to achieve
better convergence. Initially, the gray module was trained
with a higher learning rate (10−3) compared with other parts
of the network (10−6). The same loss functions described
previously (Section II) were used on both the output of the
GLD module (one channel) and the overall network’s output
(three channels). To calculate perceptual loss, we stack the
output three times to obtain the input image in appropriate
dimensions because the output of the gray subnet has one
channel, whereas VGG [37] takes three channels as an input.
After achieving a degree of convergence for the gray-level
module, the learning rate was set to 10−4 for all, and the learn-
ing rate scheduler was set to 200, 500, 1000, and 2000 epochs
with a multiplication coefficient of 0.5.We determine the loss
functions’ hyperparameters as γ1 = 1, γ2 = 0.5, γ3 = 0.01,
and γ4 = 0.0001 using extensive computer simulations. All
experiments are performed on NVIDIA RTX 3080 GPU.

C. QUALITATIVE EVALUATION
Figs. 4-6 show a qualitative comparison of AED-Net with
the other methods. As shown in Fig. 6 (a), for the indoor
images, DA-Net [10] and FD-GAN [13] managed to clean
haze and recover colors in some parts of the image. They
failed to remove the heavy haze in the first row or recover the
color of the wall in the second one. Although GCA-Net [8]
succeeded in removing heavy haze in the first row, it reduced
brightness and lost some of the colors. Similar brightness and
contrast problems were present in the output produced by
FFA-Net [9]. AOD-Net [7] and Wavelet U-Net [15] had sim-
ilar results. They preserved the color better but retained a thin
layer of haze. On the other hand, AED-Net removed both thin
and heavy haze layers and maintained the colors consistent
with the ground truth. A similar outcome can be observed in
the outdoor images shown in Fig. 6 (a). Because the haze has
a blue tint in this dataset, almost all methods failed to restore
the original colors. The output has either a blue layer or darker
regions. DA-Net succeeded in restoring colors consistent with
the ground truth; however, it did not remove the haze from
the first image or restore the natural sky colors in the third
row. We continue to observe similar problems when the haze
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FIGURE 5. This figure shows our ability to recover both high-level and low-level feature features as well as colors (a)
compared with DA-Net (b), GCA-Net (c) and DMPHN (d).

TABLE 2. Quantitative comparison of AED-Net with other state-of-the-art methods.

is nonhomogeneous, as shown in Fig. 6 (b). Virtually all
methods are unable to completely remove haze because of
its heterogeneity. Only FDMPHN [11] removed the haze
but retained artificial colors on hazy parts. In contrast,
AED-Net has discernible advantages, as shown in Fig. 5,
in preserving edges, texture, contrast, brightness, and other
image features. Fig. 4 demonstrates the generalizability of
AED-Net to real-world images using four canonical hazy
images. Some haze remains for AOD-Net, Wavelet U-Net,
and FFA-Net. Furthermore, the resulting images lack bright-
ness, and the sky regions have non-natural colors in the
case of the second image. Similarly, a loss of brightness
can be observed for the third and fourth images, which have
many non-natural properties. In the case of FDMPHN and
FD-GAN haze is removed. However, certain color distor-
tions are brighter than the original color. Finally, the sky

regions appear unnatural. AED-Net successfully removed
almost all haze while preserving the essential properties of
the images. Finally, the colors are not distorted, and the
images appear natural, including consistent colors in the sky
regions.

D. QUANTITATIVE EVALUATION
We adopted five image quality metrics for our quantitative
analysis [41]–[47]: (i) peak signal-to-noise ratio (PSNR),
(ii) structure similarity index measure (SSIM) [41], (iii)
feature similarity index measure (FSIM) [42] due to its
capacity to reflect the properties of the human visual sys-
tem (HVS) for perceiving an image based on its fine fea-
tures, (iv) visual information fidelity (VIF) [43], which uses
natural scene statistics and the notion of image informa-
tion extracted by HVS, and a perceptual metric LPIPS [44].
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FIGURE 6. Qualitative comparisons of AED-Net on I/O-Haze (a) and NH-Haze2 (b) datasets.

FIGURE 7. Comparison of AED-Net with other methods on individual
images from I-Haze (a), O-Haze (b) and NH-Haze2 (c) datasets.

High PSNR, SSIM, FSIM, VIF, and low LPIPS scores indi-
cate superior restoration compared to the ground truth. The
perceptual similarity is an emergent property shared across
deep visual representations [44]. Table 2 also shows the
average and standard deviation values for each test dataset.

TABLE 3. Effectiveness of RAMGC module.

AED-Net generated the highest average values for all mea-
sures. The standard deviations are comparable with others.
In addition, the PSNR and SSIM values for each image are
provided in Fig.7. AED-Net has higher values for these two
measures than other methods for almost all test images.

E. ABLATION STUDIES
To evaluate the contribution of the RAMGCmodule, we train
the network with and without it. Table 3 displays the quantita-
tive results on three datasets. It shows that utilizing RAMGC,
an adaptive enhancement module, in the middle of the net-
work achieves better PSNR and SSIM estimates. Fig. 8 (a)
presents visual comparison of images with and without the
RAMGC module. It also produces visually pleasing images.
In addition, the significance of each block (Alpha, Beta,
Gamma) is analyzed by iteratively removing each block
(Fig 8 (b)). The computer simulations demonstrate that each
block controls different image features, such as brightness,
contrast, edges, etc. The combination of these blocks pro-
duces results closer to the ground truth.
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FIGURE 8. Qualitative and quantitative effectiveness of RAMGC module (a) and its submodules (b).

F. CODALAB NTIRE 2021 NONHOMOGENEOUS IMAGE
DEHAZING CHALLENGE
We have observed that virtually all methods struggle with
nonhomogeneous haze. The Codalab NTIRE 2021 image
dehazing challenge provides an extended version of the
former NH-Haze dataset for the Codalab competition.

The results of the nonhomogeneous dehazing challenge
are reviewed, and proposed methods are evaluated in [27].
We compare AED-Net with the top-scoring methods which
provide publicly available code. ADN dehaze [45] is based
on a novel generative adversarial network with a 2D dis-
crete wavelet transform structure. A two-branch dehazing
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TABLE 4. Quantitative comparison of AED-Net with Codalab competition
2021 challenge top methods.

network (TBD) [12] proposes a simple but effective approach
for nonhomogeneous dehazing via ensemble learning. SRK-
TDN [16] is based on Knowledge Transfer Dehazing Net-
work and Trident Dehazing Network. They propose a
model with super-resolution and knowledge transfer meth-
ods. As shown in Table 4, AED-Net outperforms these three
methods on the NH-Haze2 dataset in terms of PSNR and
SSIM values.

IV. CONCLUSION
We propose a novel end-to-end adaptive enhancement dehaz-
ing network called AED-Net for single-image dehazing.
It consists of gray level dehazing (GLD) based on the
Res2Net encoder and a two-branch decoder, a novel region-
aware modified Gamma correction (RAMGC), and a residual
channel attention network (RCAN) that effectively combines
high-level and low-level features. An ablation study demon-
strated the effectiveness of the RAMGC module. Quantita-
tive comparisons based on five key-metrics PNSR, SSIM,
FSIM, VIF, and LPIPS, as well as qualitative analysis, were
performed. The experimental results demonstrate that the
proposed method outperforms state-of-the-art methods on
benchmark datasets, real-world images, and the NH-Haze2
dataset of the Codalab NTIRE 2021 competition. We con-
clude that our novel RAMGC applied in conjunction with
the two-branch treatment of haze contributes significantly
to dehazing performance. We intend to explore dilated con-
volution with reduced parameters and verify the system’s
performance on other datasets for further research. Another
promising area of future inquiry is combining the proposed
model with the de-raining algorithm.
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