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ABSTRACT Perception is the fundamental task of any autonomous driving system, which gathers all the
necessary information about the surrounding environment of the moving vehicle. The decision-making
system takes the perception data as input and makes the optimum decision given that scenario, which
maximizes the safety of the passengers. This paper surveyed recent literature on autonomous vehicle
perception (AVP) by focusing on two primary tasks: Semantic Segmentation and Object Detection. Both
tasks play an important role as a vital component of the vehicle’s navigation system. A comprehensive
overview of deep learning for perception and its decision-making process based on images and LiDAR point
clouds is discussed. We discussed the sensors, benchmark datasets, and simulation tools widely used in
semantic segmentation and object detection tasks, especially for autonomous driving. This paper acts as a
road map for current and future research in AVP, focusing on models, assessment, and challenges in the field.

INDEX TERMS Autonomous vehicle, deep learning, deep reinforcement learning, semantic segmentation,
object detection, LiDAR, point cloud.

I. INTRODUCTION
As technology constantly evolves, autonomous vehicles are
becoming more popular, accessible, and affordable for more
people in different countries and from different economic
classes. Increasing accessibility results in a safer transporta-
tion experience, fewer deaths, and minimal injuries due
to human-made mistakes that cause catastrophic accidents.
To ensure the safety of individuals, it is necessary to deploy
highly efficient and accurate learning models trained on a
broad range of driving scenarios to precisely detect the sur-
rounding objects under different weather and lighting con-
ditions. This learning procedure via training will adjust the
vehicle’s decision-making process and control mechanism to
take the necessary actions.

Autonomous Vehicle Perception (AVP) in driving systems
collects the necessary information about the surrounding
environment of the moving vehicle. The perception data is
then fed to a learning model to obtain an optimum decision.
The two main methods used in the perception of autonomous
vehicles: Semantic Segmentation and Object detection; both
tasks work primarily with images. Semantic segmentation is
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the process of assigning each pixel in an image to a particular
class. These class labels could be a person, bicycle, tree, etc.
Semantic segmentation is considered as an image classifi-
cation task at a pixel level. Object detection is the task of
identifying and locating an object of interest in an image and
drawing a bounding box around that object.

Machine learning is used in many classification and
categorization tasks in AVP [1]. Recently, Deep learning
has widely been adopted in semantic segmentation and
object detection. For example, the two semantic segmen-
tation networks, Efficient Neural Network (ENet) [2], [3]
and Segmentation Network (SegNet) [4], [5], utilize a
compact encoder-decoder architecture. Both networks con-
sist of an encoder and a corresponding decoder network
followed by a pixel-wise classification layer. The com-
monly used object detection model used in the literature
is called YOLOv2 (You Only Look Once) [6], [7]. This
model performs object detection in one stage, making it
fast. Another widely used Object Detection model is called
Faster-RCNN [8], [9]; it consists of two networks: a Region
Proposal Network (RPN) that ranks region boxes and pro-
poses the boxes that are most likely to contain objects.
Another network to detect objects using the generated
proposals.
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To the best of our knowledge, no research highlights the
current state-of-the-art modelling methods in AVP, focusing
on deep learning, assessment criteria, and challenges. Thus,
the main contributions of this paper are:

1) Surveying the most recent research work on the
two main methods used in the perception of
autonomous vehicles: Semantic Segmentation and
Object Detection.

2) Providing a comprehensive overview of the various
deep learning method used in the AVP

3) Discussing the various evaluation metrics in AVP
4) Presenting and discussing the current challenges

in AVP, including datasets, evaluation metrics, and
modelling.

The rest of this paper is organized as: Section II discusses
sensors types, Section III introduces Autonomous Vehicle
Perception, Section IV presents related work on Semantic
Segmentation, Section V discusses the state-of-the-art mod-
elling methods in Object Detection, Section VI focusses on
Deep Learning for AVP, the benchmark datasets are dis-
cussed in section VII, the performance evaluation metrics
are introduced in section VIII; finally, conclusion and future
directions are presented in section IX.

II. ACTIVE AND PASSIVE SENSORS
Unlike human drivers that rely primarily on their auditory and
visual systems to drive a car, the autonomous vehicle’s per-
ception relies on multiple sensors to overcome the limitations
of individual sensors. The sensors can be divided into two
categories: Active sensors, such as Radar, LiDAR, and Sonar
emit energy into the surrounding environment and measure
the reaction of the environment when the energy bounces
back off each object in that environment to produce outputs,
and Passive sensors, such as Stereo and Monocular Cameras
receive the emitted energy from the surrounding environment
to produce outputs. Most of the research work on autonomous
vehicle perception is mainly focused LiDAR, Camera, and
Radar sensors.

A. CAMERAS
Any autonomous vehicle must be equipped with cameras
because cameras can collect the richest information about
the car’s surrounding environment and objects. Monocular
Cameras can provide shape and texture information, which
is needed to detect and classify the lanes’ shape and color
(e.g., Broken white or double yellow), traffic light color clas-
sification, traffic sign recognition, and other object detection
and classification tasks. However, this type of camera cannot
provide the depth information needed to estimate the detected
object’s position and size. Thus, Stereo Cameras can retrieve
the relative depth of each point.

B. LIDAR
The LiDAR (Light Detection and Ranging) sensors emit
laser pulses and receivers that receive the returned pulses.
This sensor is widely used in autonomous vehicles to detect

and recognize the object’s class and accurately measure the
distance and location of the object, regardless of the lighting
and weather conditions. It measures the time taken to send
and receive the pulse, which helps accurately determine the
object’s distance in each direction. It sends thousands of
pulses per second to create a point cloud map (or a depth
map), which provides a 360-degree view of the surroundings.
LiDAR cannot be used as a standalone sensor because it is
a depth-based sensor, and it cannot recognize the readings
on the traffic signs, nor can it classify the colors of the
traffic lights. Hence LiDAR Sensors will always be used in
coordination with Camera sensors.

C. RADAR
Radar sensors, which stands for Radio Detection and Rang-
ing, have an antenna that emits radio signal in a specific
direction and a receiver that detects the radio signal that has
bounced off objects in the surrounding environment. The
distance between the antenna and an object is determined
by calculating the radio signal’s time to and from the object.
Radars can function better than other sensors in unpleasant
weather conditions, such as snow, fog, and rain, and detect
the car ahead. However, Radar tends to be less accurate than
Camera and LiDAR and provides insufficient details for the
perception of autonomous vehicles. Thus, it cannot be used to
detect and classify objects accurately. Due to its limitations,
Radars are used in very defined areas, and it is usually cou-
pled with Camera and LiDAR sensors. The computer then
pieces the gathered data from different sensors to create a
coherent picture of the surrounding environment.

III. AUTONOMOUS VEHICLE PERCEPTION
Perception is the ability of an autonomous system to extract
important information from the environment. It is a funda-
mental task to enable autonomous driving; it provides crucial
information about the driving environment, including the free
drivable areas, the locations, velocities, and prediction of
the future state of the surrounding obstacles. Autonomous
vehicles use LiDAR and Camera sensors for their perception,
as described in the previous section, to accurately detect
obstacles and take the appropriate actions for a given scenario
to avoid potential accidents. The essential tasks for a safe
driving experience are Semantic Segmentation and Object
Detection; these tasks are summarized next.

IV. SEMANTIC SEGMENTATION
Autonomous vehicles rely heavily on semantic segmentation
to navigate through routes. It operates by assigning each pixel
in the image a particular class, and all the pixels that belong
to a specific class are assigned a single color. As shown in
Figure 1, vehicles are painted red, vegetation is painted green,
buildings are painted grey, etc.

A. SPATIAL AND SEMANTIC FEATURES
Spatial features can be represented in image or vector mode,
containing spatial and location information. The spatial
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FIGURE 1. Semantic Segmentation on Cityscapes dataset [40].

features can be defined as neighboring cells in the image
mode, called regions. The spatial features can be defined as
a line, point, or polygon in vector mode. In addition to the
image and vector mode, spatial features can be found in the
LiDAR data, collected via vehicles, satellites, drones, and
other aerial devices. Spatial data is processed and analyzed
using a Geographic Information System (GIS), a program or
a combination of programs to enable users to manage, manip-
ulate, analyze, customize, and create visual displays to make
sense of the spatial data. Semantic features describe the visual
contents of an image by correlating the content of the image
scene with low-level features such as color. For instance, cor-
relating the green color with trees, the blue color with sky and
sea. In the autonomous driving scenario, the semantic features
are the vehicles, road signs, traffic lights, lane markings, etc.
The relationship between semantic features defines how the
lanes work: when it can change lanes, where to stop, and
which lanes to use to travel from points A to B.

B. LITERATURE REVIEW
In [2], the authors tackled the problem of validating the
performance of semantic segmentation algorithms under var-
ious operating conditions of autonomous vehicles, such as
precipitation and illumination. Because even a slight variation
in the environmental conditions could affect the classifica-
tion performance and accuracy of the segmentation model,
which can lead to catastrophic consequences. To solve this
challenging problem, they proposed a pipeline that incorpo-
rated a Lidar sensor to test the performance of the semantic
segmentation of a particular model in different real-world
scenarios. They were able to distinguish the boundaries of
the road around the vehicle. They automatically generated
a large amount of ground truth road labels by testing the
geometric properties of the surrounding Lidar points. They
chose the ‘Road’ class from the semantic segmentation output
to compare it with the ground truth generated by the Lidar
sensor to prove the possibility of obtaining a measure of
the classification performance and accuracy to validate the
model. They also collected a weekly dataset of the area
around their campus for 6 months to analyze the trained seg-
mentation network performance and compare the validation
accuracy of the model for datasets with different lighting
and weather conditions. They used the NVIDIA DRIVE
PX 2 computing platform, which is designed to acceler-
ate the production of autonomous vehicles. They used the

proposed validation pipeline to compare the performance of
two different semantic models, namely ENet and Bonnet.
By performing these comparisons, they concluded that the
best model selection depends on the operating conditions, and
the accuracy of the models varies depending on the dataset.
The authors in [3] tackled the problem that current semantic
segmentation models face: the edge of the detected object is
not clear. The proposed method utilized EfficientNet as the
backbone network, coord convolution is applied to low fea-
tures to add the position information, because of this addition
the performance of this method was higher than the exist-
ing semantic segmentation models, the experiment showed
that the application of Direction Convolution led to a more
accurate edge detection compared to existing techniques. The
proposed method was validated on the ‘Cityscape’ dataset
and resulted in a high performance, particularly on people
and bicycles of different shapes. In [10], the authors tack-
led the need for a large computational resource for spatial-
to-temporal approaches implemented in autonomous vehicles
when tracking the various patterns of spatial positions for
their motion. They proposed a temporal-to-spatial approach
to cope with the vehicle’s speed in autonomous navigation
by sampling a 1-pixel line at each frame in the video. The
temporal connection of lines from consecutive frames makes
a road profile image consisting of vehicles, road, lane mark,
roadside, etc., and turning and stopping of ego-vehicle. This
approach reduces the processing data to a fraction of video
to catch up with the vehicle driving speed. They used RGB-F
images (where F is a channel that describes features around
the sampling line) of the road profile to perform semantic
segmentation to retrieve individual regions and their spatial
relations on the road. They tested their proposed method on
naturalistic driving video, and the results were promising.
They used a single NVIDIA GTX 780Ti GPU to train and
test the proposed model. A comparison of some of the current
research work in semantic segmentation based on the used
algorithm, available datasets, and the current challenges is
provided in Table 1.

TABLE 1. Semantic segmentation approaches.

V. OBJECT DETECTION
Object detection is a fundamental task in any autonomous
driving system, which identifies and locates object classes of
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interest in an image and creates a bounding box around those
objects. Some popular object detectors include YOLOv2,
YOLOv3 (Figure 2), and Viola-Jones algorithm. Others use
more sophisticated deep learning-based models.

A. POINT CLOUDS
Point clouds are a simple form of 3D models, a collection
of points plotted in a 3D space. Each point represents sev-
eral measurements, including the X, Y, Z coordinates, the
color value stored in RGB format, and the luminance value,
which determines the brightness of the point. Point clouds
are created by scanning an object or structure using a laser
scanner. Laser scanners work by sending laser pulses to the
surface of an object and measuring the time taken for the
pulse to return. These measurements are used to determine
the exact position and the shape of the object. These points are
then used to create a point cloud. As discussed in Section II,
point clouds are collected using the LiDAR sensor in the
autonomous driving scenario.

B. RELATED WORK
A real-time classification based on the Real AdaBoost algo-
rithm is introduced in [1]. Lidar 3D point clouds are used
to compute various features of road objects. The proposed
classifier achieved over 90% accuracy in a 50-meter range.
This algorithm can be used for autonomous driving because it
classifies an object in just 0.07× 10 −3 seconds. The authors
in [6] have tackled the problem of unreliable and noisy 3D
maps generated by LIDAR sensors for precise mapping and
localization of Autonomous vehicles due to the existence of
moving objects in the map, which leads to bad localization.
Their proposed system takes 3D points from LIDAR, camera
images, and GPS/INS information as input and outputs a
vehicle-free 3D point cloud map. They used YOLOv2 Vehi-
cle Detection Network (YVDN) to find the bounding boxes
of the vehicles in an image and used K-Frames forward-
backward bounding box tracking algorithm to find the miss-
ing bounding boxes. The 3D points that fall into the detected
bounding boxes are then removed from the LIDAR frame.
They registered each vehicle-free LIDAR scan to a global
coordinate based on theGPS data to reconstruct a vehicle-free
3D point map. They validated their proposed method on the
Oxford RobotCar Dataset and proved that it could generate a
precise vehicle-free 3D point cloud map. The network was
trained on NVIDIA TITAN X GPU for 30 epochs. In [7],
the authors built a system to detect the surrounding vehicles
and warn the driver of potential collisions. The proposed
method consisted of two parts is implemented in a Robot
Operating System (ROS). The first part uses the YOLOv2
algorithm for vehicle detection in an autonomous vehicle
environment and is configured to detect four different classes
of vehicles: trucks, buses, vans, and cars. The second part uses
two ROS nodes, the first node is used for distance assessment
in the Carla simulator, and the second node is used for real-
world distance assessment. The evaluation of the proposed
method showed promising results. The algorithm runs at

40 FPS (close to real-time) on the NVIDIA GTX1060 (3Gb)
graphics card. The authors [11] focused on object detection
and tracking, an integral part of Advanced Driver Assistance
Systems (ADAS). Object detection and tracking provide
necessary information for collision avoidance, emergency
braking, path planning, etc. The authors used two object
detection algorithms: Viola-Jones and YOLOv3. The Viola-
Jones algorithm was used to create nine object detectors
classified under four groups: traffic light detector, pedestrian
detector, traffic sign detector, and vehicle detector. Viola-
Jones was compared with YOLOv3 based on their Precision,
Recall, and processing speed. It was concluded that YOLOv3
achieved higher Precision and Recall and shorter processing
time than Viola-Jones. They also used Median Flow tracking
and Correlation tracking methods for object tracking. Median
Flow tracking has a faster processing time, but both methods
achieved similar results in terms of Multiple Object Tracking
Accuracy (MOTA). They validated the proposed method on
various datasets, such as German Traffic Sign Recognition
(GTSR) Benchmark, INRIA Person, Udacity, and CARS
Correlation tracking. Table 2 provides a comparison study for
some related work in the literature of object detection.

FIGURE 2. Object Detection obtained by YOLOv3 model [7].

TABLE 2. Object detection methods.
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VI. DEEP LEARNING FOR AUTONOMOUS VEHICLE
PERCEPTION
Deep learning is the backbone of every autonomous driv-
ing system, it is being used by object detection and clas-
sification algorithms (Supervised Learning) to detect and
classify obstacles around the vehicle. It is also used for
decision-making (Deep Reinforcement Learning) based on
the observed data. Autonomous vehicles extensively use Con-
volutional Neural Networks (CNN), one of the most famous
deep learning models. A CNN model consists of three main
layers: A Convolutional Layer is used to extract features
from the input image by convolving (dot product) the input
image with a filter of size M x M, and it outputs a feature
map. A Pooling Layer is often placed after the convolutional
layer to reduce the size of the feature map, reducing the
computational cost of the model. A Fully Connected layer
consists of neurons along with weights and biases. It connects
each neuron to all the neurons in the previous and the next
layer. It takes the flattened image as a vector as its input and
outputs the classification results.

A. DEEP LEARNING FOR SEMANTIC SEGMENTATION
In [4], they argue that the existing Semantic Segmenta-
tion methods partition the images into several semantically
meaningful parts to classify each part into one of the pre-
determined classes, ignoring the different importance levels
of classes. For example, bicycles, other cars, and pedestrians
are much important than the buildings or the sky in the scene
when driving autonomously, so they need to be segmented
as accurately as possible to avoid catastrophic incidents.
They proposed ‘Importance-Aware Loss’ IAL to tackle this
problem, emphasizing the importance of critical objects in
an autonomous driving scene. The IAL is designed based
on a hierarchical structure, such that classes with different
importance levels are located on a different level of the hierar-
chy. They also derived the forward and backward propagation
of the IAL on four deep neural networks, namely, FCN,
ENet, ERFNet, and SegNet. And tested these four networks
on the ‘CamVid’ and ‘Cityscapes’ datasets, which obtained
improved segmentation results on the pre-defined important
classes. All semantic segmentation models are trained on
two K80 GPUs. Road lane marking and road edge detec-
tion on Lidar-based autonomous cars are addressed in [5].
This includes obstacle avoidance capability but cannot detect
road lane markings. They solved this problem by installing
and calibrating a low-cost monocular camera on a Formula-
SAE electric car with a Lidar sensor. They first tested the
system on video recording of local roads to ensure the fea-
sibility of SegNet semantic segmentation. Then they tested
on the Formula-SAE car with Lidar readings. The obtained
results from the semantic segmentation performed on the
CamVid dataset proved that lane markings and road edges
could be classified using the proposed method. The SegNet
model ran on an NVIDIA GTX Titan X GPU with a 480 x
360 resolution and resulted in an image output at 10 FPS

segmented at each video frame. The authors in [12] address
the lack of research in the real-time RGB-D fusion semantic
segmentation domain, despite accessible depth information.
They proposed a real-time fusion semantic segmentation
network named RFNet. The encoder part consists of two
independent branches to extract the features of the input
RGB and Depth images separately. They chose ResNet-18
as the backbone model to extract the features from the input
images due to ResNet-18’s residual structure and moderate
depth. Its small operation footprint makes it compatible with
real-time applications. After every layer of ResNet-18, the
output features from the Depth branch are fed to the RGB
branch after theAFCmodule. The SPP produces featuremaps
with multiscale information by collecting the fused RGB-D
features from both branches. Finally, they used up-sampling
modules to restore the resolution of the produced feature
maps with a direct connection from the RGB branch and
skip the Depth branch. They also used multi-dataset training
to incorporate small obstacle detection to enrich the rec-
ognizable classes, which will help detect unforeseen haz-
ards in real-world scenarios. They used the ‘Cityscapes’ and
‘Lost and Found’ datasets to test their model, outperforming
previous state-of-the-art semantic segmentation models on
the ‘Cityscapes’ dataset with high accuracy. The proposed
RFNet operates at 41.6 HZ with half-resolution Cityscapes
images and 22HZwith full resolution on a singleGTX2080Ti
GPU, suitable for autonomous driving. The authors in [13]
proposed an encoder-decoder-based deep CNN model in
semantic segmentation of autonomous vehicle scenarios. The
proposed model architecture is based on the VGG16 model.
The encoder part of the architecture like VGG16 consists
of 13 convolutional layers with 3 × 3 filters. After each
convolutional layer, the convolutional stride and the spatial
padding are fixed to 1 pixel. To decrease the size of fea-
ture maps, Max-pooling layers are used. They used residual
learning by performing element-wise addition and shortcut
connection to preserve the context and spatial information.
On the other side, the decoder part has a similar structure
as the encoder, but with only a few differences, such as the
convolutional layers are replaced by de-convolutional layers
and the Max-pooling layers by Up-sampling layers. They
validated their proposed model on two popular benchmark
datasets, namely, ‘Cityscapes’ and ‘CamVid.’ The experi-
ments incorporated comparative analysis with popular net-
works such as ENet and SegNet, proving that their model
outperformed both ENet and SegNet. The experiments were
conducted on NVIDIA Titan X GPU. In [14], the problem
of accurate road marking extraction is discussed. Addressing
the complexity of road marking, they used a Dense Feature
Pyramid Network (DFPN) based deep learning model, which
concatenates the deep feature channels with shallow feature
channels to help the shallow feature maps with abundant
image details and high resolution utilize the in-depth features.
Their deep learning model was trained end-to-end on mobile
laser scanning (MLS) point cloud to extract the road mark-
ings. They optimized the model using the focal loss function.
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Experiments proved that the proposed method outperformed
the existing state-of-the-art methods in instance segmentation
of roadmarkings. To train themodel, four GPUswere used by
400k iterations. In [15], a 3D Semantic Segmentation of point
clouds in urban areas using deep learning is introduced. They
conducted a comparative study on three novel deep learning-
based semantic segmentation algorithms, PointCNN, Point-
Net, and SPGraph. The algorithmswere trained on an outdoor
aerial survey point cloud dataset and were evaluated based on
the overall accuracy. The evaluation showed that SPGraph,
PointNet, and PointCNN achieved 83.4%, 83%, and 72.7%
accuracy for 3D semantic segmentation, respectively. Various
semantic segmentation models trained on different datasets
experience performance gaps when applied to actual scene
images. Training Task Conversion (TTC) and domain adap-
tation have originally been proposed to solve this gap. But
even with TTC and domain adaptation, the performance is
not as good as the original task model. To solve the challenge
of completing TTC while maintaining good performance,
the authors in [16] proposed a deep learning model named
DLnet for TTC from image dataset-based training to actual
scene image-based training. Experimental results show that
DLnet can achieve state-of-the-art performance on four pop-
ular datasets and four actual urban scenes. The DLnet is
trained on Geforce GTX1080Ti GPU, which took 67 hours
to train the model on the Cityscapes dataset and 97 hours on
actual scene images. In [17], they proposed a self-attention
mechanism and bi-directional Gated Recurrent Unit (GRU) to
extract contextual information to achieve better semantic seg-
mentation performance of urban traffic scenes by consider-
ing information distributed in the long-distance image plane,
long-distance sequence information, and feature space corre-
lation. They also proposed a cascade refinement supervised
method using two loss functions to achieve precise segmen-
tation. Experimental results on four semantic segmentation
datasets, CamVid, Cityscapes, Mapillary, and KITTI, have
demonstrated outstanding performance. The experiment was
implemented on a computer with two GTX1080 Ti GPUs.
A ERFNet-based multi-task instance segmentation network
is proposed [18] to segment both road objects and road lanes.
The ERFNet approach allows real-time segmentation even
with limited hardware by allowing feature sharing, which
reduces the computational requirements of the overall seg-
mentation architecture. Results on a dataset derived from the
large-scale BDD100K dataset and in real scenarios proved
the robustness of the proposed approach in semantically seg-
menting objects on roads and road lanes effectively and in
real-time. The segmentation network is trained and tested on
an NVIDIA TITAN Xp GPU. In [19], the authors proposed a
network called ADFNe,t, a neural network with accumulated
decoder features based on ENet and ERFNet. ADFNet is a
simple and efficient model that operates in real-time by only
using the decoder information without the skip connections
between the encoder and decoder.

Experimental results on the cityscapes dataset proved
that the proposed ADFNet outperforms the state-of-the-art

TABLE 3. Semantic segmentation performance & processing time.

networks and the baseline network (ERFNet). The ADFNet
model is trained on an NVIDIA GTX1080 Ti GPU.
Table 3 shows the trade-off between the performance of
semantic segmentation models (in terms of Accuracy, mIoU,
and Precision) and the processing time of each image.

B. DEEP LEARNING FOR OBJECT DETECTION
1) SUPERVISED LEARNING
Supervised learning is an essential part of all autonomous
driving systems. It is the process of training the machine
learning models on a large number of labelled images, the
labels being the bounding boxes with specific colors around
each class of object. After training, the model will be able to
detect and classify each object in the surrounding environ-
ment of the autonomous vehicle. The output classification
will then be fed to the decision-making system to take the
optimum decision, which will ensure the safety of the driver
and all other cars and pedestrians. To solve the performance
limitations of self-driving cars equipped with a single sensor
in severe weather conditions, the authors in [20] proposed
a fusion scheme that uses a millimetre-wave radar as the
main sensor and a camera as the auxiliary sensor. To match
the observed values of the target sequence, they used the
Mahalanobis distance, and the data fusion is based on Joint
Probabilistic Data-Association (JPDA) method. The target
detection algorithm is based on Faster R-CNN architecture,
and it is tested on actual sensor data gathered from a vehicle
while performing real-time perception. Experimental results
showed that the proposed fusion of radar and camera per-
forms better than single sensor perception in severe weather,
reducing the missed detection rate in such scenarios. The
detection and tracking of dynamic objects (e.g., bikes, vehi-
cles, and pedestrians) in autonomous driving scenarios are
of utmost importance for reliable decision-making and smart
navigation of autonomous vehicles. However, current vision-
based tracking systems have limitations, such as their lack
of ability to re-track after the object is lost. The authors
in [21] tackle such limitations by building a dynamic object
tracking system in 3D space. The proposed system combines
a LiDAR and monocular camera-based 3D position track-
ing algorithm to track the dynamic objects using a Siamese
segmentation network and a re-tracking mechanism (RTM)
to resume tracking the object after it reappears in the cam-
era view using the YOLO object detection algorithm. The
authors tested this method in a real-world autonomous driv-
ing environment and achieved a 10HZ update rate for real-
time performance. To perform all experiments, an NVIDIA
Geforce GTX 2080 was used. Over the last few years, the
number of bicycle collisions on sidewalks has increased.

10528 VOLUME 10, 2022



H.-H. Jebamikyous, R. Kashef: AVP Using Deep Learning: Modeling, Assessment, and Challenges

Many researchers have developed algorithms to detect peo-
ple and bicycles to prevent such incidents. However, those
algorithms cannot distinguish between bicycle pushers and
bicycle riders because they mainly rely on the shape of
the bicycle or people’s shapes. To solve this problem, the
authors in [22] have proposed a CNN-based algorithm called
VGG-16, which uses video frame images to detect pedestri-
ans, bicycle riders, as well as bicycle pushers. The algorithm
is trained on 15,000 images of pedestrians, bicycle riders, and
pushers. It is evaluated on a video recorded by the authors
on public roads to assess bicycle riders’ detection rate,
which achieved 80.7%. Pedestrian detection has improved
significantly with the advancement of convolutional neural
networks, but the detection of small-scaled pedestrians and
occluded pedestrians has been a challenging problem. The
authors in [23] have proposed a pedestrians detection method
with a coupled network to address these two problems. The
first sub-network is a gated multi-layer feature extraction
network to generate discriminative features for pedestrian
candidates to detect large-scale variations of pedestrians. The
second sub-network uses a deformable regional region of
interest (ROI) pooling to solve the occlusion problem in
pedestrian detection. Experimental studies on the CityPer-
sons dataset have shown the effectiveness of the proposed
coupled framework, which achieved missing rates of 40.78%
and 34.60% on detecting small and occluded pedestrians,
outperforming the second-best performing model by 6% and
5.87%, respectively. The experiments are performed on a
single TITAN X Pascal GPU. In [24], the authors proposed
an object detection and identification method. They utilized
3-D Lidar data to generate object region proposals. Then,
they mapped those candidates onto the image space from
which the proposals’ ROI (Region of Interest) is selected and
input to a CNNmodel based on the VGG16model to perform
object recognition. Then, they combined the features of the
last three layers of the CNN to extract multiscale features
from the Region of Interests to precisely identify the sizes of
every object in the scene. They evaluated the proposed model
on the KITTI dataset and reached the following conclusions:
• The processing time of each frame is 66.79ms, which is
suitable for real-time processing.

• 3-D Lidar produces 86 candidate object-region propos-
als, compared to a sliding window that produces thou-
sands of candidates per frame.

• The average identification accuracy of pedestrians and
cars is 78.18% and 89.04%, respectively.

The authors in [25] designed a real-time pedestrian detection
system for autonomous vehicles using CNN. They designed
the system from scratch without using any available libraries.
They evaluated their model on three datasets: INRIA, PETA-
CUHK, and real-time video input and achieved accuracy
ranging between 96.73% and 100%. The experiment was
executed on a laptop with 8GB RAM and NVIDIA Geforce
940MX Graphics Processor. Deploying advanced Deep Con-
volutional Neural Network (DCNN) detectors in autonomous
vehicles with limited memory and computing power is a

challenging task [26]. It is necessary to design lightweight
and robust detectors to solve this problem. Recently, a novel
algorithm has been proposed named ‘Group Convolution’ to
make the detection network faster and lighter by reducing
the floating-point operations. But the existing guidelines do
not indicate the optimal number of groups in the Group
Convolution to maximize the detection speed. This paper
introduced three new guidelines to indicate the optimum
number of groups needed to design a fast and lightweight
detector and named this detection network ‘DenseLightNet’.
The proposed method runs three times faster than the existing
state-of-the-art detector YoloV3 and has a weight of 10.1MB
compared to the YoloV3’s 247MB. The algorithm was
trained on the NVIDIA Titan X GPU. A Deep Neural Net-
work (DNN) based object detector called Single-Shot Detec-
tor (SSD) is designed in [27]. The SSD architecture consists
of a base network and an auxiliary network. VGGNet is used
as a base network for good quality classification, and the
auxiliary network is used to predict detection at multiple
feature maps. A non-maximum suppression follows the base
and auxiliary networks to decide the final detections. The
proposed method was evaluated on the KITTI dataset, and
it outperformed the original object detection model based
on precision by 6%. The experiments were run on NVIDIA
Geforce GTX TITAN X GPU and achieved 29.4 FPS, verify-
ing its feasibility of running in real-time. In [8], a method
for simultaneous detection of people, vehicles, lanes, and
non-motor vehicles using RGB-D images is discussed. The
task consists of two parts: the detection of vehicles, people,
and non-motor vehicles as a general detection task, and lane
detection as a segmentation task. They used two separate
networks to improve the accuracy and speed, the first network
is called LaneNet to segment the lanes, and the second is
Faster-RCNN to detect the rest. They introduced a real-time
synchronization method with multi-GPU for both networks’
separate training and simultaneous detection. The detection
frame rate of the system reached 15 FPS with four 1080Ti
GPUs. The system was evaluated on a self-collected dataset,
achieving high accuracy. They also tested the system in a
real-time scenario on the streets of China, which proved that
the system could be applied in real-time autonomous driv-
ing. In [9], the authors address the two main tasks involved
in tracking and localizing vehicles and objects surrounding
an autonomous vehicle: detecting and classifying obstacles.
They proposed a region-based convolutional neural network
named Faster-RCNN trained with PASCAL VOC dataset to
detect and classify obstacles such as pedestrians, vehicles,
animals, etc. This method was implemented on an NVIDIA
GeForce GTX 980 Ti GPU and achieved a detection frame
rate of 10 FPS on a VGA resolution image frame. The
achieved fast frame processing rate ensures the usability of
this system on highways. They validated the detection and
classification performance of the system on the KITTI and
iRoads datasets. They concluded that the performance did not
vary on different shapes, views of an object, and different
climate and lighting conditions. In [28], a model to predict

VOLUME 10, 2022 10529



H.-H. Jebamikyous, R. Kashef: AVP Using Deep Learning: Modeling, Assessment, and Challenges

the future trajectory of the objects using the Gated Recur-
rent Unit (GRU) is introduced. This model understands the
behaviour of the surroundings in a mixed scene of bicycles,
vehicles, and pedestrians. Since these objects have different
behaviours, they applied different models to different cate-
gories. The proposedmethod takes three observed trajectories
with different time steps as its input and predicts an accu-
rate future trajectory. The model was then compared with
GRU and LSTM and resulted in a smaller Mean Absolute
Error (MAE) and converged faster than GRU and LSTM.
In [29], the brake-lights recognition problem is presented,
focusing on deep learning. The ‘‘Brake Lights Patterns’’
(BLP) are learned using a Multi-Layer Perceptron (MLP)
based classifier that classifies the vehicles in an image as
‘‘Normal’’ or ‘‘Brake’’. The authors explored road segmenta-
tion and novel vanishing point ROI determination methods to
speed up the detection and improve the system’s robustness.
The validation results conducted on on-road videos collected
by the authors have shown the efficiency and robustness of
the proposed method. In [30], a comparative study on object
recognition using deep convolutional neural networks (CNN)
in autonomous vehicle environments is presented. They used
four well-known CNN models, Faster R-CNN Inception
V2, Faster R-CNN Resnet 50, SSD Inception V2, AND
Faster R-CNN Resnet 101. These models were pre-trained
on the COCO dataset, and they were retrained with the
new dataset using transfer learning. The new dataset was
formed using GRAZ-01 andGRAZ-02 datasets and consisted
of 517 images of 10 objects: Cars, Bicycles, Pedestrians,
and 7 traffic signs. The experimental results have shown
that Faster R-CNN outperformed the model models, with an
accuracy of 85.1%. A deep learning model is proposed for
3D object proposal generation and detection from point cloud
data called PointRCNN [31]. The framework is composed
of two stages: The first stage generates a small number of
high-quality 3D proposals in a bottom-up manner by seg-
menting the point cloud data into background and foreground
points, unlike previous methods that used to generate pro-
posals by projecting point cloud to bird’s view or from RGB
images. The second stage transforms the segmented points
in the first stage to canonical coordinates to learn much
better local spatial features. Those spatial features are com-
bined with global semantic features for accurate confidence
prediction and box refinement. The experiments performed
on the KITTI dataset showed that the proposed PointR-
CNN architecture outperforms state-of-the-art methods by
only using point cloud as its input data. For self-driving,
a deep learning system can use LiDAR point clouds and
depth image-based rendering (DIBR) [32]. The DIBR is used
to generate parallax map information and obtain the depth
image, which is then combined with LiDAR point cloud
to repair the objects in the point cloud image. They also
combined the Histogram Equalization and Optimal Profile
Compression (HEOPC) with the accuracy of deep learning to
optimize the color image enhancement. Based on the restored
point cloud image, they used a cutting algorithm to divide the

areas of interest, such as cars, people, and bus and trained
a MobileNet-YOLO model to identify those three objects.
Detecting 3D objects in point clouds is challenging [33]. This
problemwas previously solved by projecting a 3D point cloud
into 2D images. This means transforming the 3D detection
problem into 2D detection. This method produces multiple
2D detection tasks, which increases the complexity and limits
the performance of the 2D detection algorithm. To solve this
problem, the authors proposed using a Convolutional Neural
Network (CNN) model to perform the 2D detection task
because CNN can predict multiple classes of objects using the
same network without using an individual detector for each
class. They concatenated two early rejection networks with
binary outputs before the detection network to improve the
detection efficiency. Extensive experiments have shown that
the proposed method achieved a competitive performance,
with at least ten times the speed of the latest 3D point cloud
detection methods.

2) REINFORCEMENT LEARNING
Reinforcement learning is also a machine learning paradigm
commonly used in autonomous driving systems. It has an
autonomous agent which learns to improve its performance
at a given task by interacting with its environment without the
help of an expert. The agent takes action and receives a reward
from the environment based on the usefulness of the action
taken. The performance is measured based on the reward
function Q or R, and the agent’s primary goal is to maximize
the function reward function. Deep Reinforcement Learning-
based obstacle detection and autonomous navigation, named
Deep Q Network (DQN,) on a simulated car in an urban
environment, has received popular attention in the last few
decades [34]. The model takes input camera and laser sensor
data placed on the car’s front end. They also designed a proto-
type of a cost-efficient high-speed car to run the algorithm in
real-time. They placed a Hokuyo Lidar sensor and a camera
on the car and used an Nvidia-TX2 GPU to run the deep
learning models. In [35], the authors worked on autonomous
vehicle learning simulation results to drive in a simple envi-
ronment containing static obstacles and lane markings. The
algorithm takes an image of the street captured by the car front
camera as an input. It computes the Q values representing
the rewards that correspond to future actions taken by the
autonomous vehicle. The actions are angles through which
the vehicles steer at a fixed speed. The system enforces the
car to act with the highest reward (Q value). The simulation
results showed a high accuracy achieved by the model by
following the lanes and avoiding obstacles. The algorithm
is trained on an 8-core Xenon CPU x2, 256 GB RAM, and
NVIDIA P100 GPU x5. Vehicle speed control using Rein-
forcement Learning methods is addressed in [36]. Their main
motivation was the instability of the Q-learning algorithm in
some games in the Atari 2600. They used an algorithm called
Double Q-learning to control the vehicle’s speed based on
the surrounding environment. They proposed a new method
that depends on the direct perception approach called the
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integrated perception approach to construct the environment.
Both low dimensional data processed from the sensors and
high dimensional data with road information from the video
make up the input of the Double Q-learning model. Experi-
mental results have shown that the Double Q-learning algo-
rithm outperformed the traditional Q-learning algorithm in
terms of policy quality and value accuracy. The total model
score is 271.73% times that of Q-learning. A collision avoid-
ance system for autonomous vehicles based on Reinforce-
ment Learning can learn from mistakes and readdress its
movement accuracy [37]. They used the Q-learning method
to record and update the Q-values in a table for different
movements, which will be used by the autonomous vehicle
to determine how and where to move. A deep neural net-
work was used to learn the Q-value table, which encoun-
ters many situations from different actions performed by the
autonomous vehicle. The input to the model is 10000 images
captured by a depth camera placed on the car’s front end.
The model was trained for 9000 epochs and achieved an
obstacle avoidance rate of 95%. The autonomous braking
problem is analyzed and discussed in [38] through precise
decision-making and control to reduce accidents. They pro-
posed a Deep Reinforcement Learning-based autonomous
braking system in emergencies. They considered three key
factors: accuracy, efficiency, and passengers’ comfort. These
factors were fully satisfied by the proposed system. They
designed a multi-objective reward function for compromising
the passengers’ comfort, the degree of the accident, and the
achieved rewards of different brake moments. To solve the
autonomous braking problem, they adopted an actor-critic
(AC) algorithm called Deep Deterministic Policy Gradient
(DDPG), which improves the system’s efficiency and makes
it stable in continuous control tasks. They evaluated the pro-
posed method through extensive simulations, which proved
its efficiency in driving safety, decision-making accuracy, and
learning effectiveness. Table 4 shows the trade-off between
the performance of object detection models (in terms of
Accuracy, Precision, and Recall) and the processing time.
In Table 5, a comprehensive comparative study is provided
among the state-of-the-art deep learning methods in semantic
segmentation and object detection.

TABLE 4. Object detection performance & processing time.

VII. DATASETS
Since autonomous vehicle perception relies heavily on var-
ious deep learning models, the need for a large amount of

TABLE 5. A comparison between deep learning models.

data is obvious. Object detection and segmentation require
accurately labeled data and many images and LiDAR point
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TABLE 5. (Continued.) A comparison between deep learning models.

cloud data to cover broader driving scenarios. This section
presents the commonly used real and simulated datasets for
object detection and semantic segmentation in autonomous
driving.

A. THE KITTI DATASET
One of the largest and widely used benchmark datasets in
the autonomous driving research community [8], [12], [25],
[27], [37], [38] is the KITTI dataset [39], which provides
LiDAR point clouds, stereo color, and grayscale pictures, and
GPS coordinates. The data was captured on the highways and
rural areas of a mid-sized city in Germany called Karlsruhe.
The tasks that can utilize this dataset include 3D Object
Detection, Visual Odometry, Stereo Matching, and Optical
Flow. The Object Detection part of the dataset consists of
7,481 training and 7,518 test images, with annotated boxes
around the objects of interest.

B. THE CITYSCAPES DATASET
One of the diverse datasets for the semantic segmentation task
in autonomous driving [1], [2], [7] is called Cityscapes dataset
[40], collected from 50 different cities in different seasons

(spring, summer, fall) with variousweather conditions. It con-
sists of 20,000 images with coarse annotations and 5,000
images with fine annotations of 30 different classes.

C. THE CAMVID DATASET
Another dataset for semantic segmentation in [7], [10],
and [11] is The Cambridge – driving Labeled Video Database
(CamVid) [41]. It provides per-pixel semantic segmentation
of over 700 images, 367 training, 101 validation, and 233 test
images of 32 semantic classes. Many papers use simulation
tools to generate training data with specific conditions and to
train autonomous driving systems.

D. THE CARLA TOOL
A widely used open-source simulation tool is called
CARLA [42], which provides flexible and adjustable sensor
and environmental configuration to generate simulated data.
Configurations could include adjusting the lighting and the
weather with various virtual sensors such as a ray-casting
LiDAR sensor, depth andRGB cameraswith the ground, truth
frames. Table 6 summarizes the used benchmark datasets
along with their configurations and applications.

E. THE PASCAL DATASETS
The main dataset is called PASCAL Visual Object Classes
(VOC) project [26]. It provides standardized image datasets
for object class recognition. The project ran from 2005 to
2012. The PASCAL VOC 2010 [43] dataset contains
20 classes, its train/validation data has 10,103 images with
23,374 ROI annotated objects and 4,203 segmentations. The
PASCAL-Context dataset [44] used in [16] is a set of addi-
tional annotations of PASCALVOC 2010. It goes beyond the
original semantic segmentation task by providing annotations
for the whole scene with 400+ labels.

F. THE BDD100K DATASET
The largest and the most diverse dataset for computer vision
research in autonomous driving is the BDD100K dataset [45],
used in [11]. As the name implies, the dataset consists
of 100 thousand videos; each video is 40s long, 720p, and
has a frame rate of 30fps. The videos were recorded in
different states in the United States, covered different weather
conditions and different times of the day. Each video comes
with GPS/IMU information recorded by cell phones to show
driving trajectories. The dataset is labelled at several levels:
road object bounding boxes, lane markings, drivable areas,
and full-frame segmentations.

G. THE CITYPERSONS DATASET
The CityPersons dataset [46] is built upon the Cityscapes
dataset [40] specifically for pedestrian detection; it is used
in [23]. In the Cityscapes dataset, humans are labeled as a
rider or person. In CityPersons, humans are classified based
on their postures to four categories: rider, pedestrian, sitting
person, and another person. It contains 5000 images with 35k
person, and 13k ignored region annotations.
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TABLE 6. Benchmark datasets.

H. THE CALTECH DATASET
The Caltech dataset [47], [48] is built for the task of pedes-
trian detection. It is the largest dataset and is used in [23].
It consists of 10 hours of video with 640 x 480 resolution and
is recorded at 30HZ from a vehicle driving through regular
traffic in an urban environment. It includes 350,000 bounding
boxes and 2300 unique pedestrian annotations in 250,000
frames. Temporal correspondences and occlusions are also
annotated.

VIII. PERFORMANCE EVALUATION METRICS
Performance evaluation is required to evaluate and optimize
any machine learning model and compare it with other mod-
els. Different evaluation metrics are used in the literature; this
section describes the most efficient and widely used metrics
in semantic segmentation and objects detection tasks.

Intersection Over Union (IoU) matric, also known as Jac-
card Index, is widely used to evaluate semantic segmentation
and object detection models [10]. It computes the percent
overlap between the ground truth bounding box (in object
detection) or the target mask (in semantic segmentation) and

the prediction output. As shown in Eq.1, IoU measures the
number of common pixels between the prediction and target
bounding boxes or masks and divides it by the total number of
pixels present in both bounding boxes or both masks. Multi-
class segmentation or detection tasks [2], [3], [7] use themean
Intersection Over Union (mIoU) metric for model evaluation,
which first computes the IoU of each class and then computes
the average overall classes.

IoU =
Target ∩ Predicted
Target ∪ Predicted

(1)

Precision and Recall are also used as standard performance
evaluation metrics [14], [24]. Precision represents the purity
of the positive detections relative to the ground truth, which
can be calculated using the following equation.

Precision (P) =
True Positive

True Positive+ False Positive
(2)

The Recall represents the completeness of the positive pre-
dictions relative to the ground truth, which can be calculated
using the following equation.

Recall =
True Positive

True Positive+ False Negative
(3)

Another commonly metric used to measure the detection
accuracy is the mean Average Precision (mAP). It is cal-
culated by computing the Average Precision (AP) of each
class, then computes the average of all Average Precisions,
as shown in the following equation.

Average Precision (AP) =

∑
P ∀ True Positive
True Positive

(4)

mean Average Precision (mA) =

∑
AP ∀ Classes

Number of Classes
(5)

IX. CONCLUSION AND FUTURE DIRECTIONS
As the adoption of autonomous vehicles with different levels
of autonomy increases, the need for precise and accurate
perception systems increases drastically to ensure the safety
of the passengers, pedestrians, and the surrounding vehicles’
drivers. This survey concludes that deep learning models
are essential for accurate object detection and semantic seg-
mentation on images and point clouds because only deep
learning models can learn the complex features and patterns
in an image. It is also important to note the importance
of training the models on versatile datasets collected under
a variety of scenarios and weather conditions, which will
play a crucial role in enabling the autonomous vehicle to
make the right decision in a hazardous situation. This survey
paper focuses on AVP tasks: Semantic segmentation and
object detection as critical tasks in the perception process for
autonomous vehicles; future work would involve other tasks
in the autonomous driving system, such as planning, control-
ling, sensing, localization, perception, navigation, control,
decision, and integrity monitoring. The future of autonomous
driving relies on developing more robust algorithms trained
on powerful computers like the system developed by Tesla
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called ‘‘Dojo’’, specifically designed for autonomous driving
applications. Such computers would improve the machine
learning models’ efficiency, accuracy, and speed. Ensemble
learning acts as a future direction in semantic segmentation,
while hybrid learning is promoted for future research on
object detection. The scalability of the existing methods is
a great area of future investigation.
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