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ABSTRACT In this paper, a class of Clifford-valued neutral-type recurrent neural networks with D operator
is explored. By using non-decomposition method and the Banach fixed point theorem, we obtain several
sufficient conditions for the existence of anti-periodic solutions for Clifford-valued neutral-type recurrent
neural networks with D operator. By using the proof by contradiction and inequality techniques, we obtain
the global exponential synchronization of anti-periodic solutions for Clifford-valued neutral-type recurrent
neural networks with D operator. Finally, we give one example to illustrate the feasibility and effectiveness
of main results.

INDEX TERMS Clifford algebra, recurrent neural networks, synchronization, anti-periodic solutions,
D operator.

I. INTRODUCTION
As we well know, a neural networks model, which is
recurrent neural networks model, was extensively explored
by many scholars and has been widely applied in many fields,
such as image processing perception, pattern recognition,
image processing, etc. In the past decades, the dynamics of
recurrent neural networks have been extensively researched
(see [1]–[7]). In recent years, the existence and stability of
periodic and anti-periodic solutions for recurrent neural net-
works have been discussed (see [8]–[10]). Recurrent neural
network is a kind of neural network for memory function,
there are some practical application backgrounds for the
network model, for instance, generate image description
(see [11]–[14]), speech recognition (see [15]–[18]), video
tagging (see [19], [20]).

The Radial basis function neural network has been widely
studied by some authors, in the existing results such as
Fault-Estimation-Based Output-Feedback Adaptive FTC for
UncertainNonlinear SystemsWithActuator Faults (see [21]).
However, radial basis function neural network is different
from recurrent neural network, that is, recurrent neural
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network (RNN) is a kind of neural network with short-term
memory ability; radial basis function (RBF) neural network
is a kind of feedforward network. The difference between the
recurrent neural networkwith the Radial basis function neural
network: (1) For RBF neural network, RBF is used as the
activation function of the hidden layer unit to map the input
data to the high-dimensional hidden space without weight
connection. The transmission of information is one-way.
Although this limitation makes the network easier to learn,
it also weakens the ability of neural network model to some
extent. RBF neural network can be regarded as a complex
function, each input is independent, that is, the output of the
network only depends on the current input. However, in many
realistic tasks, the output of the network is not only related
to the input at the current moment, but also related to its
output in the past period of time. (2) For recurrent neural
network, neurons can not only receive information from
other neurons, but also receive information from themselves,
forming a network structure with loops. Compared with RBF
neural network, recurrent neural network is more consistent
with the structure of biological neural network. Because
recurrent neural networks have short-term memory ability,
which is equivalent to storage devices, their computational
power is very strong. Recurrent neural networks can process
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arbitrary length of time series data by using self-feedback
neurons.

Time delays are inevitable in implementation of neural
networks, since the finite switching speed of neurons and
amplifiers. In many practical applications for delayed neural
networks, especially neutral-type neural networks, which is
described as non-operator-based neutral neural networks and
D-operator-based neutral neural networks. However, neutral
neural networks with D operator have more general and
more realistic significance than non-operator-based ones,
thus it is received many scholars favor. There are many
good results about periodic, anti-periodic, almost periodic,
pseudo almost periodic, almost automorphic solutions for
neutral-type neural networks withD operator (see [22]–[35]).
As all know, the one neural network is Clifford-valued

neural network, which represents a generalization of the
real-valued, complex-valued and quaternion-valued neural
networks. Although the multiplication of Clifford algebras
does not satisfy the commutativity, it is not necessary
to decompose the Clifford-valued neural networks into
real-valued neural networks, thus it reduces the complex-
ity of the calculation. Recently, there are a number of
research results about the Clifford-valued neural networks
(see [36]–[41]).

In practical applications for the synchronization of neural
networks, particularly the anti-periodic synchronization,
which has attracted the research interest of many scholars.
The anti-periodic synchronization has played an key role in
the research of neural network. In recent years, there’s been
a lot of research about the synchronization by many authors
(see [42]–[49]). Some authors have explored the anti-periodic
synchronization (see [50]).

With the inspiration from the previous research, in order
to fill the gap in the research field of Clifford-valued
neutral-type recurrent neural networks, the work of this
article comes from three main motivations. (1) Recently,
neutral-type neural networks with D operator have been
discussed by many authors. However, there is little research
about Clifford-valued neutral-type recurrent neural networks
with D operator. (2) Many authors have discussed the
synchronization for neural networks, but there are few
research results on anti-periodic synchronization for neural
networks. (3) Up to now, in practical applications for
neural networks, there has been no paper about anti-periodic
synchronization for Clifford-valued neutral-type recurrent
neural networks with D operator. Therefore, in this paper,
we will study anti-periodic synchronization of Clifford-
valued neutral-type neural networks withD operator by using
non-decomposition method, Banach fixed point theorem and
the proof by contradiction.

Compared with the previous literatures, the main contribu-
tions of this paper are listed as follows. (1) Firstly, the intro-
duction of the Clifford-valued neutral-type recurrent neural
networks with D operator, for the first time in the literature,
to the best of our knowledge. (2) Secondly, in [50], some
authors have studied the anti-periodic synchronization by

FIGURE 1. The structure diagram of the network model.

using decomposition method. By contrast, without separating
the Clifford-valued neural networks into real-valued neural
networks, our methods of this paper reduces the complexity
of the calculation. (3) Thirdly, this is the first time to study the
anti-periodic synchronization of Clifford-valued neutral-type
neural networks with D operator. (4) Fourthly, our method of
this paper can be used to discuss the synchronization for other
types of Clifford-valued neural networks with D operator (or
without D operator). (5) Finally, we give one example to
verify the effectiveness of the conclusion.

Inspired by the above ideas, we will study the Clifford-
valued neutral-type recurrent neural networkswith delays and
D operator:

[xi(t)− ri(t)xi(t − τi(t))]′

= −ci(t)xi(t)+
n∑
j=1

aij(t)fj
(
xj(t)

)
+

n∑
j=1

bij(t)gj
(
xj(t − γij(t))

)
+ Ii(t), (1.1)

where i = 1, 2, · · · , n, xi(t) ∈ A is the state vector of the
ith unit at time t , ci(t) > 0 represents the rate with which the
ith unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs,
aij, bij ∈ A denote the strength of connectivity, the activation
functions fj, gj ∈ A show how the jth neuron reacts to input,
delay factors satisfy that τi(t), γij(t) ∈ R+, Ii ∈ A denotes
the ith component of an external input source introduced from
outside the network to the unit i at time t , ri(t) is a continuous
function with respect to t .

The initial value of system (1.1) is the following

xi(s) = ϕi(s), s ∈ [−θ, 0], (1.2)

where ϕi(s) ∈ C
(
[−θ, 0],A

)
, i = 1, 2, · · · , n,

θ = max
{
τ, γ

}
, τ = max

1≤i≤n

{
sup

t∈[0, ω2 ]
τi(t)

}
, γ =

max
1≤i,j≤n

{
sup

t∈[0, ω2 ]
γij(t)

}
.

This paper is organized as follows: In Section 2,
we introduce some definitions and preliminary lemmas.
In Section 3, we establish some sufficient conditions for
the existence anti-periodic solutions of system (1.1), global
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exponential synchronization for system (1.1) and system
(3.4). In Section 4, some numerical examples are provided
to verify the effectiveness of the theoretical results. Finally,
we draw a conclusion in Section 5.
Notations: R denotes the set of real numbers, R+ =

[0,+∞) denotes the set of non-negative real numbers, A
denotes the set of Clifford numbers, An denotes the n
dimensional Clifford numbers, ‖ · ‖A represents the vector
Clifford norm. For x =

∑
A
xAeA ∈ A, we define ‖x‖A =

max
A

{
|xA|

}
and for x = (x1, x2, · · · , xn)T ∈ An, we define

‖x‖An = max
1≤i≤n

{
‖xi‖A

}
.

II. PRELIMINARIES
The real Clifford algebra over Rm is defined as

A =
{ ∑
A∈{1,2,··· ,m}

uAeA, uA ∈ R
}
,

where eA = eh1 · · · ehν with A = {h1 · · · hν}, 1 ≤ h1 <

h2 < · · · < hν ≤ m and 1 ≤ ν ≤ m. Moreover,
e∅ = e0 = 1 and eh, h = 1, 2, · · · ,m are said to be
Clifford generators and satisfy e2p = −1, p = 1, 2, · · · ,m,
and epeq + eqep = 0, p 6= q, p, q = 1, 2, · · · ,m. Let
Q = {∅, 1, 2, . . . ,A, . . . , 12 · · ·m}, then it is easy to see that
A = {

∑
A u

AeA, uA ∈ R}, where
∑

A is short for
∑

A∈Q and
dim A = 2m.

In order to study the existence of ω2 -anti-periodic solution
of system (1.1), we need the following assumptions:
(H1) For i, j = 1, 2, · · · , n, ri, ci, τi, γij ∈ R+,

aij, bij, fj, gj, Ii ∈ A, there exists ω > 0 such that
ci(t + ω

2 ) = ci(t), ri(t + ω
2 ) = ri(t), Ii(t + ω

2 ) = −Ii(t),
τi(t + ω

2 ) = τi(t), γij(t +
ω
2 ) = γij(t), aij(t +

ω
2 )fj(u) =

−aij(t)fj(−u), bij(t + ω
2 )gj(u) = −bij(t)gj(−u);

(H2) For j = 1, 2, · · · , n, there exist positive constants Lf ,Lg
such that

‖fj(u)− fj(v)‖A ≤ Lf ‖u− v‖A,

‖gj(u)− gj(v)‖A ≤ Lg‖u− v‖A;

(H3)

δ :=
1

c−i

[
c−i r
+

i + c
+

i r
+

i +

n∑
j=1

a+ij Lf +
n∑
j=1

b+ij Lg

]
< 1,

where

r−i = inf
[0, ω2 ]

ri(t), r+i = sup
[0, ω2 ]

ri(t), c
−

i = inf
[0, ω2 ]

ci(t),

c+i = sup
[0, ω2 ]

ci(t), a
+

ij = max
1≤i,j≤n

‖aij(t)‖A,

b+ij = max
1≤i,j≤n

‖bij(t)‖A, Ii = max
1≤i≤n

‖Ii(t)‖A.

Lemma 2.1: [51] Let X be a Banach spaces, E ⊂ X is a
closed subset, mapping T : E −→ E be a contraction, i.e.
there exists a constant θ ∈ (0, 1) such that

‖Tx − Ty‖ ≤ θ‖x − y‖, ∀x, y ∈ E .

Then T has at least one fixed point x̄.
Definition 2.1: A continuous function x =

(
x1, x2 · · · ,

xn
)T
: [0,+∞]→ An is said to be a solution of system (1.1),

if
(i) xi(s) = ϕi(s), for s ∈ [−θ, 0], ϕxi ∈ C([−θ, 0],A), i =

1, 2, · · · , n;
(ii) x(t) satisfies system (1.1) for t ≥ 0.
Definition 2.2: A solution x of system (1.1) is said to be

ω
2 -anti-periodic solution of system (1.1), if there exists ω >

0 such that

x(t +
ω

2
) = −x(t).

III. MAIN RESULTS
In this section, we will investigate the existence and global
exponential synchronization of anti-periodic solutions of
Clifford-valued neutral-type recurrent neural networks (1.1),
based on Banach fixed point theorem and the proof by
contradiction.

Denote

X =
{
x ∈ C

(
[0,

ω

2
],An

)
: x
(
t +

ω

2

)
= −x(t), t ∈ R

}
be a Banach spaces equipped with the norm

‖x‖X = ‖x‖An .

Let E ⊂ X is a closed subset, E =
{
x : x(t) ∈

C(R,An), x(t + ω
2 ) = −x(t), ‖x‖X ≤ ξ

}
, where

ξ :=
1

c−i

[
c−i r
+

i + c
+

i r
+

i +

n∑
j=1

a+ij Lf +
n∑
j=1

bijLg

]
η1

+

n∑
j=1

a+ij η2

c−i
+

n∑
j=1

b+ij η3

c−i
+

Ii
c−i
,

and

η1 = sup
[0,ω]
|xAi (t)|, η2 = max

A

{
|f Aj (0)|

}
, η3 = max

A

{
|gAj (0)|

}
.

Theorem 3.1: Assume that assumptions (H1)-(H3) hold.
Then system (1.1) has at least an ω

2 -anti-periodic solution.
Proof: Let ui(t) = xi(t) − ri(t)xi(t − τi(t)) ∈ A, then

xi(t) = ui(t) + ri(t)xi(t − τi(t)) and system (1.1) can be
described as following differential equations

u′i(t) = −ci(t)ui(t)− ci(t)ri(t)xi(t − τi(t))

+

n∑
j=1

aij(t)fj
(
xj(t)

)
+

n∑
j=1

bij(t)

× gj
(
xj(t − γij(t))

)
+ Ii(t), (3.1)

where i = 1, 2, · · · , n.
It is well known that an ω

2 -anti-periodic solution of system
(3.1) is equivalent to find an ω

2 -anti-periodic solution of the
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integral equation

ui(t) =
∫ t+ ω2

t
−

e
∫ s
t ci(µ)dµ

1+ e
∫ ω2
0 ci(µ)dµ

[
− ci(s)ri(s)

xi(s− τi(s))+
n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)gj
(
xj(s− γij(s))

)
+ Ip(s)

]
ds,

that is,

xi(t) = ri(t)xi(t − τi(t))+
∫ t+ ω2

t
−

e
∫ s
t ci(µ)dµ

1+ e
∫ ω2
0 ci(µ)dµ

×

[
− ci(s)ri(s)xi(s− τi(s))+

n∑
j=1

aij(s)

× fj
(
xj(s)

)
+

n∑
j=1

bij(s)gj
(
xj(s− γij(s))

)
+ Ii(s)

]
ds,

(3.2)

where i = 1, 2, · · · , n.

Let E ⊂ X is a closed subset, E =
{
x : x(t) ∈

C(R,An), x(t + ω
2 ) = −x(t), ‖x‖X ≤ ξ

}
, we define one

mapping T as follows

(Tx)(t) =
(
(Tx)1(t), (Tx)2(t), · · · , (Tx)n(t)

)T
,

where (Tx)i(t) ∈ A and

(Tx)i(t) = ri(t)xi(t − τi(t))+
∫ t+ ω2

t
−

e
∫ s
t ci(µ)dµ

1+ e
∫ ω2
0 ci(µ)dµ

×

[
− ci(s)ri(s)xi(s− τi(s))+

n∑
j=1

aij(s)

× fj
(
xj(s)

)
+

n∑
j=1

bij(s)gj
(
xj(s− γij(s))

)
+ Ii(s)

]
ds, i = 1, 2, · · · , n. (3.3)

For any x ∈ E and t ≥ 0, by (H1), from (3.3) we have that

(Tx)i(t +
ω

2
)

= ri
(
t +

ω

2

)
xi
(
t +

ω

2
− τi

(
t +

ω

2

))
+

∫ t+ ω2+
ω
2

t+ ω2

−
e
∫ s
t+ ω2

ci(µ)dµ

1+ e
∫ ω2
0 ci(µ)dµ

×

[
− ci(s)ri(s)xi(s− τi(s))

+

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)

× gj
(
xj(s− γij(s))

)
+ Ii(s)

]
ds

= −ri(t)xi(t − τi(t))+
∫ t+ ω2

t
−

e
∫ ν
t ci(µ)dµ

1+ e
∫ ω2
0 ci(µ)dµ

×

[
− ci

(
ν +

ω

2

)
ri
(
ν +

ω

2

)
xi
(
ν +

ω

2

− τi

(
ν +

ω

2

))
+

n∑
j=1

aij
(
ν +

ω

2

)
fj
(
xj
(
ν +

ω

2

))
+

n∑
j=1

bij(ν +
ω

2
)jq
(
xj
(
ν +

ω

2
− γij

(
ν +

ω

2

)))
+ Ii

(
ν +

ω

2

)]
dν

= −ri(t)xi(t − τi(t))+
∫ t+ ω2

t
−

e
∫ ν
t ci(µ)dµ

1+ e
∫ ω2
0 ci(µ)dµ

×

[
ci(ν)ri(ν)xi(ν − τi(ν))−

n∑
j=1

aij(ν)fj
(
xj(ν)

)
−

n∑
j=1

bij(ν)gj
(
xj(ν − γpq(ν))

)
− Ii(ν)

]
dν = − (Tx)i(t),

which shows that (Tx)(t) is ω2 -anti-periodic.
Next, we show that ‖Tx‖X ≤ ξ . For any x ∈ E , i =

1, 2, · · · , n, we have

‖(Tx)(t)‖X = ‖(Tx)i(t)‖An = max
1≤i≤n

{
‖(Tx)i(t)‖A

}
= max

1≤i≤n

{∥∥∥∥ri(t)xi(t − τi(t))+ ∫ t+ ω2

t
−e

∫ s
t ci(µ)dµ

×
1

1+ e
∫ ω2
0 ci(µ)dµ

[
−ci(s)ri(s)xi(s− τi(s))

+

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)gj
(
xj(s− γij(s))

)
+ Ii(s)

]
ds

∥∥∥∥
A

}
≤ max

1≤i≤n

{
r+i ‖xi(t − τi(t))‖A +

∫ t+ ω2

t
e
∫ s
t ci(µ)dµ

×
1

1+ e
∫ ω2
0 ci(µ)dµ

[
c+i r
+

i ‖xi(s− τi(s))‖A

+

n∑
j=1

‖aij(s)‖A
(
‖fj
(
xj(s)

)
−fj(0)‖A+‖fj(0)‖A

)
+

n∑
j=1

‖bij(s)‖A
(
‖gj
(
xj(s− γij(s))

)
− gj(0)‖A

+‖gj(0)‖A
)
+ ‖Ii(s)‖A

]
ds
}

≤ max
1≤i≤n

{
r+i ‖xi(t − τp(t))‖A +

∫ t+ ω2

t
e
∫ s
t ci(µ)dµ
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×
1

1+ e
∫ ω2
0 ci(µ)dµ

[
c+i r
+

i ‖xi(s− τi(s))‖A

+

n∑
j=1

a+ij Lf ‖xj(s)‖A+
n∑
j=1

b+ij Lg‖xj(s−γij(s))‖A

+

n∑
j=1

a+ij ‖fj(0)‖A+
n∑
j=1

b+ij ‖gj(0)‖A+‖Ii(s)‖A

]
ds
}

≤
1

c−i

[
c−i r
+

i +c
+

i r
+

i +

n∑
j=1

a+ij Lf +
n∑
j=1

bijLg

]
η1

+

n∑
j=1

a+ij η2

c−i
+

n∑
j=1

b+ij η3

c−i
+

Ii
c−i
≤ ξ.

Hence, we have (Tx)(t) ∈ E .
Finally, we show T is a contraction mapping. For any x,

x∗ ∈ E , i = 1, 2, · · · , n, we have

‖(Tx)(t)− (Tx∗)(t)‖An

= max
1≤i≤n

{
‖(Tx)i(t)− (Tx∗)i(t)‖A

}
= max

1≤i≤n

{∥∥∥∥ri(t)(xi(t − τi(t))− x∗i (t − τi(t)))
+

∫ t+ ω2

t
−

e
∫ s
t ci(µ)dµ

1+ e
∫ ω2
0 ci(µ)dµ

[
− ci(s)ri(s)

×

(
xi(s− τi(s))− x∗i (s− τi(s))

)
+

n∑
j=1

aij(s)

×

(
fj
(
xj(s)

)
− fj

(
x∗j (s)

))
+

n∑
j=1

bij(s)

×

(
gj
(
xj(s− γij(s))

)
− gj

(
x∗j (s− γij(s))

))]
ds

∥∥∥∥
A

}
≤ max

1≤i≤n

{
r+i
∥∥xi(t − τi(t))− x∗i (t − τi(t))∥∥A

+

∫ t+ ω2

t

e
∫ s
t ci(µ)dµ

1+ e
∫ ω2
0 ci(µ)dµ

[
c+i r
+

i

∥∥∥xi(s− τi(s))
− x∗i (s− τi(s))

∥∥∥
A
+

n∑
j=1

a+ij Lf
∥∥xj(s)− x∗j (s)∥∥A

+

n∑
j=1

b+ij Lg
∥∥xj(s− γij(s))− x∗j (s− γij(s))∥∥A]ds}

≤
1

c−i

[
c−i r
+

i + c
+

i r
+

i +

n∑
j=1

a+ij Lf +
n∑
j=1

bijLg

]
×‖x − x∗‖X ≤ δ‖x − x∗‖X,

that is,

‖(Tx)(t)− (Tx∗)(t)‖X =≤ δ‖x − x∗‖X.

Thus, T is a contraction mapping.
Therefore, by Lemma 2.1, system (1.1) has at least an

ω
2 -anti-periodic solution. The proof is completed. �

Next, in order to investigate drive-response synchroniza-
tion, we will consider neural network system (1.1) as the
master system, and the slave system is given by

[yi(t)− ri(t)yi(t − τi(t))]′

= −ci(t)yi(t)+
n∑
j=1

aij(t)fj
(
yj(t)

)
+

n∑
j=1

bij(t)gj
(
yj(t − γij(t))

)
+ Ii(t)+ εi(t), (3.4)

where i = 1, 2, · · · , n, yi(t) : R → A denotes the state of
the response system, εi(t) ∈ A is a state-feedback controller,
other notations are the same as those in system (1.1).

The initial value of system (3.4) is the following

yi(s) = ψi(s), s ∈ [−θ, 0],

where ψi ∈ C
(
[−θ, 0],A

)
, i = 1, 2, · · · , n.

In order to realize synchronization between (1.1) and (3.4),
the controller εi is designed as

εi(t) = −σi(t)zi(t)+
n∑
j=1

µij(t)hj(zj(t − αij(t))), (3.5)

where i = 1, 2, · · · , n, σi, αij : R −→ R+, µij, hj ∈ A.
We are now in a position to discuss the problem of systems

(1.1) and (3.4). Let zi = yi − xi, i = 1, 2, . . . , n, Zi(t) =
zi(t)− ri(t)zi(t − τi(t)), then the error system is given by

Z ′i (t) = −ci(t)zi(t)+
n∑
j=1

aij(t)
(
fj
(
yj(t)

)
− fj

(
xj(t)

))
+

n∑
j=1

bij(t)
(
gj
(
yj(t − γij(t))

)
− gj

(
xj(t − γij(t))

))
− σi(t)zi(t)+

n∑
j=1

µij(t)

× hj(zj(t − αij(t))). (3.6)

System (3.6) is supplemented with initial values given by

zi(s) = ψi(s)− ϕi(s), s ∈ [−θ, 0]. (3.7)

Definition 3.3: The response system (3.4) and the drive
system (1.1) are said to be globally exponentially synchro-
nized, if there exist constants λ > 0 and M > 0 such that

‖y(t)− x(t)‖X ≤ M‖ψ − ϕ‖Xe−λt ,∀t > 0,

where

‖y(t)− x(t)‖X = max
1≤i≤n

{
‖yi(t)− xi(t)‖A

}
,

and

‖ψ − ϕ‖X = max
1≤i≤n

{
‖ψi − ϕi‖A

}
.

Theorem 3.2: Assume that (H1)-(H3) hold. If the following
conditions are satisfied:
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(H4) For i, j = 1, 2, · · · , n, σi(t), αij ∈ C(R,R+),
µij(t), hj(·) ∈ A, there exists positive constant ω such
that

σi(t +
ω

2
) = σi(t), αij(t +

ω

2
) = αij(t),

µij(t +
ω

2
)hj(u) = −µij(t)hj(−u);

(H5) For j = 1, 2, · · · , n, hj(0) = 0, there exists a positive
constant Lh such that

‖hj(u)− hj(v)‖A ≤ Lh‖u− v‖A;

(H6) There exists a positive constant λ such that

ν := 1− r+i e
λτ > 0

and

0 <
1

c−i + σ
−

i − λ

[
(c+i + σ

+

i )r+i e
λτ
+

n∑
j=1

a+ij Lf

+

n∑
j=1

b+ij Lge
λγ
+

n∑
j=1

µ+ij Lhe
λα

]
1
ν
< 1,

where

σ−i = inf
[0, ω2 ]

σi(t), σ
+

i = sup
[0, ω2 ]

σi(t),

µ+ij = max
1≤i,j≤n

‖µij(t)‖A, α = max
1≤i,j≤n

{
sup

t∈[0, ω2 ]
αij(t)

}
.

Then the drive system (1.1) and the response system (3.4) are
globally exponentially synchronized.

Proof: Let Zi(t) = zi(t)− ri(t)zi(t − τi(t)), we have that

eλt‖zi(t)‖A = eλt‖zi(t)− ri(t)zi(t − τi(t))+ ri(t)

× zi(t − τi(t))‖A
≤ eλt‖zi(t)− ri(t)zi(t − τi(t))‖A + r

+

i

× eλτ eλt‖zi(t)‖A.

Hence, we have

eλt‖zi(t)‖A ≤
eλt‖Zi(t)‖A
1− r+i e

λτ
.

By (H6), let

M : = (c−i + σ
−

i )
[
(c+i + σ

+

i )r+i e
λτ
+

n∑
j=1

a+ij Lf

+

n∑
j=1

b+ij Lge
λγ
+

n∑
j=1

µ+ij Lhe
λα

]−1
ν > 1,

then

1
M
=

1

c−i + σ
−

i

[
(c+i + σ

+

i )r+i e
λτ
+

n∑
j=1

a+ij Lf

+

n∑
j=1

b+ij Lge
λγ
+

n∑
j=1

µ+ij Lhe
λα

]
1
ν

≤
1

c−i + σ
−

i − λ

[
(c+i + σ

+

i )r+i e
λτ
+

n∑
j=1

a+ij Lf

+

n∑
j=1

b+ij Lge
λγ
+

n∑
j=1

µ+ij Lhe
λα

]
1
ν
.

From (3.6), For i = 1, 2 · · · , n, we can have that

Zi(t) = Zi(0)e−
∫ t
0 (ci(ξ )+σi(ξ ))dξ

+

∫ t

0
e−

∫ t
s (ci(ξ )+σi(ξ ))dξ

[
−
(
ci(s)

+ σi(s)
)
ri(s)zi(s− τi(s))+

n∑
j=1

aij(s)

×

(
fj
(
yj(s)

)
− fj

(
xj(s)

))
+

n∑
j=1

bij(s)

×

(
gj
(
yj(s− γij(s))

)
− gj

(
xj(s− γij(s))

))
+

n∑
j=1

µij(s)hj(zj(s− αij(s)))
]
ds.

When t ∈ [−θ, 0], it is easy to see that there exist two
constants ε > 0 and M > 1 such

‖Zi(0)‖A < ‖φ‖X + ε

and

‖Z (t)‖X = max
1≤i≤n

{
‖Zi(t)‖A

}
< M (‖φ‖X + ε)e−λt ,

that is,

‖z(t)‖X <
M

1− r+i e
λτ

(‖φ‖X + ε)e−λt ,

where ‖φ‖X = ‖ψ − ϕ‖X. We claim that

‖Z (t)‖X < M (‖φ‖X + ε)e−λt , t ∈ [0,+∞). (3.8)

If it is not true, then there must be some t̂ > 0 such that

‖Z (t̂)‖X = max
1≤i≤n
{‖Zi(t̂)‖A} = M (‖φ‖X + ε)e−λt̂ (3.9)

and

‖Z (t)‖X < M (‖φ‖X + ε)e−λt , t ∈ [−θ, t̂).

Hence, we have

‖Zi(t̂)‖A =

∥∥∥∥Zi(0)e− ∫ t̂0 (ci(ξ )+σi(ξ ))dξ
+

∫ t̂

0
e−

∫ t̂
s (ci(ξ )+σi(ξ ))dξ

[
−
(
ci(s)+ σi(s)

)
ri(s)

× zi(s− τi(s))+
n∑
j=1

aij(s)
(
fj
(
yj(s)

)
− fj

(
xj(s)

))
+

n∑
j=1

bij(s)
(
gj
(
yj(s−γij(s))

)
−gj

(
xj(s−γij(s))

))
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+

n∑
j=1

µij(s)hj(zj(s− αij(s)))
]
ds

∥∥∥∥
A

≤ ‖Zi(0)‖Ae
−
∫ t̂
0 (ci(ξ )+σi(ξ ))dξ+

∫ t̂

0
e−
∫ t̂
s (ci(ξ )+σi(ξ ))dξ

×

[
(c+i +σ

+

i )r
+

i ‖zi(s−τi(s))‖A+
n∑
j=1

‖aij(s)‖A

×

∥∥∥(fj(yj(s))− fj(xj(s)))∥∥∥A +
n∑
j=1

‖bij(s)‖A

×

∥∥∥(gj(yj(s− γij(s)))− gj(xj(s− γij(s))))∥∥∥A
+

n∑
j=1

‖µij(s)‖A‖hj(zj(s− αij(s)))‖A

]
ds

≤ (‖φ‖X + ε)e−(c
−

i +σ
−

i )t̂
+M (‖φ‖X + ε)∫ t̂

0
e−

∫ t̂
s (ci(ξ )+σi(ξ ))dξ

[
(c+i + σ

+

i )r+i e
λτ

+

n∑
j=1

a+ijLf+
n∑
j=1

b+ijLge
λγ
+

n∑
j=1

µ+ij Lhe
λα

]
×
e−λs

ν
ds

≤ M (‖φ‖X+ε)e−λt̂
{
e(λ−c

−

i −σ
−

i )t̂

M
+

1

c−i +σ
−

i −λ[
(c+i + σ

+

i )r+i e
λτ
+

n∑
j=1

a+ij Lf +
n∑
j=1

b+ij Lge
λγ

+

n∑
j=1

µ+ij Lhe
λα

]
1− e(λ−c

−

i −σ
−

i )t̂

ν

}

≤ M (‖φ‖X + ε)e−λt̂
{
e(λ−c

−

i −σ
−

i )t̂
(

1
M

−
1

c−i + σ
−

i − λ

[
(c+i + σ

+

i )r+i e
λτ
+

n∑
j=1

a+ij Lf

+

n∑
j=1

b+ij Lge
λγ
+

n∑
j=1

µ+ij Lhe
λα

]
1
ν

)

+
1

c−i + σ
−

i − λ

[
(c+i + σ

+

i )r+i e
λτ
+

n∑
j=1

a+ij Lf

+

n∑
j=1

b+ij Lge
λγ
+

n∑
j=1

µ+ij Lhe
λα

]
1
ν

}

≤ M (‖φ‖X + ε)e−λt̂
{

1

c−i + σ
−

i − λ

[
(c+i + σ

+

i )

× r+i e
λτ
+

n∑
j=1

a+ij Lf +
n∑
j=1

b+ij Lge
λγ
+

n∑
j=1

µ+ij

×Lheλα
]
1
ν

}
< M (‖φ‖X + ε)e−λt̂ .

Hence,

‖Z (t̂)‖X < M (‖φ‖X + ε)e−λt̂ ,

FIGURE 2. Curves of x0
i (t) = (x0

1 (t), x0
2 (t))T of system (4.1) with the initial

values (x0
1 (0), x0

2 (0))T = (0.2,−0.1)T , (0.4,−0.4)T .

which contradicts the equality (3.9), and so (3.8) holds.
Letting ε → 0+, then

‖Z (t)‖X ≤ M‖φ‖Xe−λt ,

that is,

‖z(t)‖X ≤
M

1− r+i e
λτ
‖φ‖Xe−λt ,

where

‖φ‖X = ‖ψ − ϕ‖X.

Therefore, the drive system (1.1) and the response system
(3.4) are globally exponentially synchronized. The proof is
complete. �

IV. ILLUSTRATIVE EXAMPLE
In this section, we give one example to show the feasibility
and effectiveness of main results.
Example 4.1: Consider the following delayed Clifford-

valued neutral-type recurrent neural networks with two
neurons as the drive system:

[xi(t)− ri(t)xi(t − τi(t))]′

= −ci(t)xi(t)+
2∑
j=1

aij(t)fj
(
xj(t)

)
+

2∑
j=1

bij(t)gj
(
xj(t − γij(t))

)
+ Ii(t), (4.1)

The corresponding response system is given by

[yi(t)− ri(t)yi(t − τi(t))]′

= −ci(t)yi(t)+
2∑
j=1

aij(t)fj
(
yj(t)

)
+

2∑
j=1

bij(t)gj
(
yj(t − γij(t))

)
+ Ii(t)+ εi(t), (4.2)
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FIGURE 3. Curves of x1
i (t) = (x1

1 (t), x1
2 (t))T of system (4.1) with the initial

values (x1
1 (0), x1

2 (0))T = (−0.1, 0.1)T , (0.3,−0.2)T .

FIGURE 4. Curves of x2
i (t) = (x2

1 (t), x2
2 (t))T of system (4.1) with the initial

values (x2
1 (0), x2

2 (0))T = (−0.2, 0.2)T , (−0.5, 0.4)T .

and the controller is as follows:

εi(t) = −σi(t)zi(t)+
2∑
j=1

µij(t)hj(zj(t − αij(t))), (4.3)

where m = 2, i = 1, 2, c1(t) = 2.2 + 0.1 sin 2t , c2(t) =
2.5 + 0.3 sin 2t , ri(t) = 1

5 +
1
5 sin 2t , τi(t) =

1
15 +

1
15 sin 2t ,

γij =
1
10+

1
20 sin 2t , σi = 1.2+0.3 sin 2t , αij = 1

15+
1
30 sin 2t

and

a11 = 0.1e0 sin t + 0.2e1 sin t + 0.1e2 sin t,

a12 = 0.2e0 sin t + 0.1e1 sin t + 0.2e12 sin t,

a21 = 0.2e0 sin t + 0.2e2 sin t + 0.1e12 sin t,

a22 = 0.1e1 sin t + 0.1e2 sin t + 0.3e12 sin t,

b11 = 0.2e0 sin t + 0.1e1 sin t + 0.3e12 sin t,

b12 = 0.1e0 sin t + 0.1e1 sin t + 0.2e2 sin t,

b21 = 0.3e1 sin t + 0.1e2 sin t + 0.1e12 sin t,

b22 = 0.2e0 sin t + 0.1e2 sin t + 0.1e12 sin t,

µ11 = 0.1e0 sin t + 0.1e2 sin t + 0.2e12 sin t,

µ12 = 0.1e1 sin t + 0.1e2 sin t + 0.3e12 sin t,

µ21 = 0.2e0 sin t + 0.1e1 sin t + 0.2e2 sin t,

µ22 = 0.2e0 sin t + 0.2e1 sin t + 0.1e2 sin t,

Ii = 0.3e0 sin t + 0.2e1 sin t + 0.2e2 sin t + 0.1e12 sin t,

fj =
1
10

(
sin x0j e0 + sin x1j e1 + sin x2j e2 + sin x12j e12

)
,

FIGURE 5. Curves of x12
i (t) = (x12

1 (t), x12
2 (t))T of system (4.1) with the

initial values (x12
1 (0), x12

2 (0))T = (0.3,−0.3)T , (−0.1, 0.1)T .

FIGURE 6. Curves of y0
i (t) = (y0

1 (t), y0
2 (t))T of system (4.2) with the initial

values (y0
1 (0), y0

2 (0))T = (0.2,−0.1)T , (0.4,−0.4)T .

FIGURE 7. Curves of y1
i (t) = (y1

1 (t), y1
2 (t))T of system (4.2) with the initial

values (y1
1 (0), y1

2 (0))T = (−0.1, 0.1)T , (0.3,−0.2)T .

gj =
1
15

(
sin x0j e0 + sin x1j e1 + sin x2j e2 + sin x12j e12

)
,

hj =
1
20

(
sin z0j e0 + sin z1j e1 + sin z2j e2 + sin z12j e12

)
.

Let λ = 0.3, and by calculating, we have

c−i = 2.1, c+i = 2.8, r+i =
2
5
, a+ij = 0.3,

b+ij = 0.3, µ+ij = 0.3, σ−i = 0.9, σ+i = 1.5,

Lf =
1
10
, Lg =

1
15
, Lh =

1
20
, ω = 2π,

1− r+i e
λτ ≈ 0.5837 > 0,

δ :=
1

c−i

[
c−i r
+

i + c
+

i r
+

i +

n∑
j=1

a+ij Lf +
n∑
j=1

b+ij Lg

]
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FIGURE 8. Curves of y2
i (t) = (y2

1 (t), y2
2 (t))T of system (4.2) with the initial

values (y2
1 (0), y2

2 (0))T = (−0.2, 0.2)T , (−0.5, 0.4)T .

FIGURE 9. Curves of y12
i (t) = (y12

1 (t), y12
2 (t))T of system (4.2) with the

initial values (y12
1 (0), y12

2 (0))T = (0.3,−0.3)T , (−0.1, 0.1)T .

FIGURE 10. Synchronization errors zi (t) = yi (t)− xi (t).

≈ 0.9810 < 1,

and

0 <
1

c−i + σ
−

i − λ

[
(c+i + σ

+

i )r+i e
λτ
+

n∑
j=1

a+ij Lf

+

n∑
j=1

b+ij Lge
λγ
+

n∑
j=1

µ+ij Lhe
λα

]
1
ν
≈ 0.7690 < 1

It is not difficult to verify that all conditions (H1)-(H6)
are satisfied. Therefore, by Theorem 3.1 and Theorem 3.2,
we have that system (4.1) has a unique π -anti-periodic
solution, and the system (4.1) and (4.2) are globally
exponentially synchronized.

V. CONCLUSION
This paper deals with a class of delayed Clifford-valued
neutral-type recurrent neural networks with D operator.
In order to overcome the complexity of the calculation,
we obtain several sufficient condition for the existence
of anti-periodic solutions for Clifford-valued neutral-type
recurrent neural networks with D operator by using
non-decomposition method and the Banach fixed point
theorem. By using the proof by contradiction and inequality
techniques, we obtain the global exponential synchronization
of anti-periodic solutions for Clifford-valued neutral-type
recurrent neural networks with D operator, one example is
given. Our method can be extended to discuss the existence
and synchronization (or stability) of anti-periodic (or almost
periodic) solutions for other types Clifford-valued neural
networks.
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