
Received December 14, 2021, accepted January 10, 2022, date of publication January 18, 2022, date of current version January 31, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3144458

New Genetic Operators for Developing S-Boxes
With Low Boomerang Uniformity
MAN KANG AND MINGSHENG WANG
State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: Man Kang (kangman@iie.ac.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61772516 and Grant 61772517.

ABSTRACT The boomerang uniformity measures the resistance of block ciphers to boomerang attacks
and has become an essential criterion of the substitution box (S-box). However, the S-boxes created by
the Feistel structure have a poor property of boomerang uniformity. The genetic algorithm is introduced to
improve the properties of the S-boxes created by the Feistel structure. New genetic operators are designed
for the genetic algorithm to improve its searchability. The new genetic algorithm generates some 8 × 8
bijective S-boxes with differential uniformity 6, nonlinearity 108, and boomerang uniformity 10, which
has dramatically improved the properties of the S-boxes created by the Feistel structure. Furthermore, the
new genetic algorithm also improves the properties of the S-box population created by the Feistel structure
as a whole. We compare the S-boxes generated by the new genetic algorithm with those generated by the
traditional one. The comparison results show that the S-boxes generated by the new genetic algorithm have
better properties than the S-boxes generated by the traditional genetic algorithm, demonstrating the new
genetic algorithm’s effectiveness and superiority in developing S-boxes.

INDEX TERMS Boomerang uniformity, S-box, genetic algorithm, genetic operator.

I. INTRODUCTION
The boomerang attack [1] is a variant of the differential
attack. For ciphers that the probabilities of the differential
characteristics decrease exponentially with respect to the
growth of rounds, the boomerang attack can concatenate two
short characteristics to form a longer characteristic with a
better probability. In boomerang attack, two short parts E0
and E1 make up a larger characteristic E . Assume that p
is the probability of the differential characteristic (α, β) for
E0, and q is the probability of the differential character-
istic (γ, δ) for E1. Then the probability of the boomerang
distinguisher is

Pr
[
E−1 (E(x)⊕ δ)⊕ E−1 (E (x ⊕ α)⊕ δ) = α

]
= p2q2.

The boomerang attack is an effective cryptanalysis tool,
which has been successfully applied to famous block ciphers
such as AES, IDEA and SHACAL1 [2]–[5].

Boomerang connectivity table (BCT) [6] provides a uni-
fied representation for boomerang-style attacks, which has
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become a new tool of substitution boxes (S-boxes) for more
accurately evaluating the probability of generating a right
quartet in boomerang-style attacks. The boomerang unifor-
mity [7] is the maximum value in BCT among all nonzero
input differences and output differences that measures the
resistance of an S-box to a boomerang attack.

S-boxes are crucial nonlinear building blocks providing
confusion in modern block ciphers. The emergence of cryp-
tographic attacks has led to the development of criteria for
resisting such attacks. Existing attacks require S-boxes to
meet cryptographic properties, including bijectivity, low dif-
ferential uniformity [8], and high nonlinearity [9]. With the
development of boomerang attacks, boomerang uniformity
has become a new essential criterion for the S-box, which has
attracted the interest of researchers.

Boura and Canteaut [7] completely characterized the BCT
of all differentially 4-uniform permutations of 4 bits and
then studied these objects for inverse functions and quadratic
permutations. Their work provided the first examples of
differentially 4-uniform S-boxes optimal against boomerang
attacks for an even number of variables. The boomerang uni-
formities of some specific permutations were studied in [10]
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and a class of 4-uniform BCT permutations over F2n were
obtained. Mesnager et al. [11] focused their research on
the boomerang uniformity of quadratic permutations in even
dimensions. A new class of optimal S-boxes was found by
generalizing previous results on quadratic permutations with
optimal BCT. Calderini and Villa [12] further studied the
boomerang uniformity of some non-quadratic differentially
4-uniform functions. Wang et al. [13] studied the boomerang
uniformity of all normalized permutation polynomials of
degree up to six over the arbitrary finite field Fq by using the
resultant elimination method. Li et al. [14] presented infinite
families of permutations of F22n for a positive odd integer n,
which have the best-known nonlinearity and boomerang
uniformity 4.

In addition to mathematical methods, intelligent methods
have also been used to create S-boxes in recent years. Rein-
forcement learning was used to train a method expressed in
the Markov decision process to an agent to generate S-boxes
that can effectively resist the side-channel attack [15]. Heuris-
tic evolution strategy improved the initial S-Boxes created
by a modular operation [16]. The S-box construction time
was reduced by constrainedly maximizing the nonlinearity
of the S-boxes created by a random-restart hill-climbing
algorithm [17]. The S-boxes based on chaos were designed
in [18]. The combination of the chaos method and intelligent
algorithmwas also used to generate S-boxes. An artificial bee
colony algorithm was used to optimize the S-boxes gener-
ated by chaotic sequence [19]. A β-hill climbing search was
applied to improve the S-boxes based on chaotic map [20].
As an intelligent algorithm simulating the evolution of nature,
the genetic algorithm provides a practical solution to the
combinatorial optimization problem that is difficult to deal
with by traditional methods and provides a new idea and
means for the complex problems in cryptography.

In recent years, genetic algorithms have been increasingly
used to generate S-boxes with good performances. The tra-
ditional genetic algorithm was used to generate S-boxes with
good values of the confusion coefficient in terms of improv-
ing their side-channel resistance [21]. A method based on
chaos and the genetic algorithm was proposed by [22] for
designing an S-box. The full use of the traits of chaotic map
and evolution process makes it possible to obtain a stronger
S-box. A genetic algorithm working in a reversed way was
proposed by [23], which can rapidly and repeatedly generate
a large number of strong bijective S-boxes. Several genetic
algorithms and problem sizes were explored by [24] to find
functions having differential uniformity equal to 6. In addi-
tion, simulated annealing and genetic algorithm were used to
optimize the design of symmetric-key primitives in [24].

A. OUR CONTRIBUTIONS
S-boxes constructed by the Feistel structure have the advan-
tage of low hardware implementation cost [26]; however,
they have high boomerang uniformities. In this paper, a new
genetic algorithm is introduced to improve the properties
of the S-boxes created by the Feistel structure. A new

crossover operator and a new mutation operator are proposed
to improve the performance of the genetic algorithm. The
new genetic algorithm generates 8 × 8 bijective S-boxes
with low differential uniformity, high nonlinearity, and low
boomerang uniformity. It is the first time that a meta-heuristic
algorithm has been used to search for S-boxes with low
boomerang uniformity. Benefiting from the full use of the
advantages of gene exchange and gene mutation, the new
genetic algorithm in this paper dramatically improves the
properties of the S-boxes created by the Feistel structure.
The new genetic algorithm generates the best S-box with
differential uniformity 6, nonlinearity 108, and boomerang
uniformity 10, whereas the Feistel structure creates the best
S-box with differential uniformity 16, nonlinearity 96, and
boomerang uniformity 52. Furthermore, the new genetic
algorithm improves the properties of the population created
by the Feistel structure. In addition, we compare the S-boxes
generated by the new genetic algorithm and the S-boxes
generated by the traditional genetic algorithm. The compar-
ison results show that the S-boxes generated by our new
genetic algorithm have better properties than those generated
by the traditional genetic algorithm. The experimental results
show the effectiveness and superiority of our new genetic
algorithm.

B. OUTLINE
This paper is organized as follows. Section 2 gives some
preliminaries on necessary concepts. Section 3 describes our
new genetic algorithm and the traditional genetic algorithm.
Section 4 illustrates the experimental parameters and gives
the results of this paper. Then the results are compared and
analyzed. Finally, Section 5 concludes this paper.

II. PRELIMINARIES
A bijective n × n S-box is a permutation on Fn2. Mathemat-
ically, S-box is a vectorial Boolean function F : Fn2 → Fn2,
which can be defined as a vector F = (f1, f2, . . . , fn). The
Boolean function fi : Fn2 → F2, i ∈ {1, 2, . . . , n} is called
the coordinate function of F . The component functions of
an n × n-function F are all the linear combinations of the
coordinate functions with non all-zero coefficients.
Definition 1 (Differential Uniformity [8]): Let F : Fn2 →

Fn2 be an n× n vectorial Boolean function. The derivative of
F with regard to vector a ∈ Fn2 is b = F(x ⊕ a)⊕ F(x). The
difference distribution table (DDT) of F is

DDTF (a, b) = #
{
x ∈ Fn2|F(x)⊕ F(x ⊕ a) = b

}
.

The symbol # here represents the number of elements in
the set. Differentially δF -uniform is the maximum value of
DDTF (a, b) for every non-zero a ∈ Fn2 and every b ∈ Fn2, i.e.,

δF = max
a,b∈Fn2;a 6=0

DDTF (a, b).

Definition 2 (Nonlinearity and Linearity [9]): Let F :

Fn2 → Fn2 be an n × n vectorial Boolean function.
The nonlinearity of an S-box F is defined as the minimum
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Hamming distance between all non-zero component func-
tions of F and all n-variable affine Boolean functions, which
can be represented by the Walsh spectrum,

NF = 2n−1 −
1
2

max
a,b∈Fn2;b 6=0

|WF (a, b)| .

TheWalsh spectrum of an n×n F with respect to two vectors
a, b ∈ Fn2 is

WF (a, b) =
∑
x∈Fn2

(−1)b·F(x)⊕a·x ,

where b · F for all b ∈ Fn2 and b 6= 0 are called component
functions and symbol · is an inner product over F2. The linear
approximation table (LAT) of F is

LATF (a, b) =
1
2
WF (a, b).

The linearity of an S-box F is defined as

LF = max
a,b∈Fn2;b6=0

|WF (a, b)| = max
a,b∈Fn2;b 6=0

2 |LATF (a, b)| .

Definition 3 (Boomerang Uniformity [7]): Let F : Fn2 →
Fn2 be an n×n invertible vectorial Boolean function. For input
difference a ∈ Fn2 and output difference b ∈ Fn2, the entries of
the boomerang connectivity table (BCT) are defined as

BCTF (a, b)

= #
{
x ∈ Fn2|F

−1(F(x)+ b)+ F−1(F(x + a)+ b) = a
}
,

where F−1 denotes the compositional inverse of F . The
boomerang uniformity of F is defined as

βF = max
a,b∈Fn2;a,b6=0

BCTF (a, b).

III. GENETIC ALGORITHMS
Genetic algorithm [27] is a computational model that sim-
ulates the evolution process of nature, which has been suc-
cessfully applied to various optimization problems. Many
researchers have also applied genetic algorithms to design
block cipher primitives in recent years.

The genetic algorithm principle is based on Darwinian nat-
ural selection and Mendelian genetics. The selection method
allows high-quality individuals to be more likely to survive,
thereby improving the quality of individuals in the popu-
lation. Mendelian genetics provides a theoretical basis for
the population to produce new individuals. The crossover
operator recombines the genes of the two-parent individuals
to generate two new individuals, which is the primary way
to generate new individuals. The mutation operator generates
new individuals by changing the genes at specific loci. As the
primary way of generating new individuals, genetic operators
have a significant impact on the performance of the genetic
algorithm. Traditional genetic operators are universal, but
they can not guarantee to generate better new individuals.
We design new genetic operators for the genetic algorithm
to produce better individuals in the process of evolution.

Algorithm 1 depicts the framework of our genetic algo-
rithm. In Algorithm 1, the size of population P is N . Indi-
viduals in the initial population are created by an unbalanced
Feistel structure. rp is a randomly generated probability. The
parents in the population perform crossover according to
probability pc. pm is the mutation probability. In our work,
the termination condition of the genetic algorithm is that the
maximum number MAX of generations is reached. CF is
the fitness function that calculates the fitness value fp for
the individual. Next, the components of the genetic algorithm
will be introduced in detail.

Algorithm 1 The Framework of Our Genetic Algorithm
1: for each p ∈ P do
2: p← Unbalanced Feistel structure;
3: fp← CF (p);
4: end for
5: g← 0;//Number of iterations
6: while g <MAX do
7: g++;
8: //Tournament selection operator;
9: for i ∈ [0, N2 ) do
10: k individuals are randomly selected;
11: Two individuals with the lowest fitness values are

copied into the new population;
12: end for
13: //The process of crossover;
14: for i ∈ [0, N2 ) do
15: if rp < pc then
16: (p, q) ← randomly select two individuals from

the population;
17: (p, q)← Crossover operator (p, q);
18: fp← CF (p);
19: fq← CF (q);
20: end if
21: end for
22: //The process of mutation;
23: for i ∈ [0, N2 ) do
24: if rp < pm then
25: p← The i-th individual in P;
26: p←Mutation operator (p);
27: fp← CF (p);
28: end if
29: end for
30: end while

Permutation Encoding:
The form of permutation encoding is intuitively more

suitable for representing S-boxes. In this representation, the
bijectivity property is automatically satisfied. An n×n S-box
is represented as an array of 2n integer numbers with elements
in range [0, 2n − 1]. Each value occurs exactly once in an
array and represents one entry for the S-box lookup table.
Initial Population:
Individuals in the initial population are created by an unbal-

anced Feistel structure. We extend the method in [26] to
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generate 8 × 8 S-boxes. Let f be a seven-variable nonlinear
Boolean function, and xi ∈ Fn2, 1 ≤ i ≤ 7 is the variable. One
round conversion of the unbalanced Feistel structure is

t(x0, x1, x2, x3, x4, x5, x6, x7)

= (x1, x2, x3, x4, x5, x6, x7, x0⊕f (x1, x2, x3, x4, x5, x6,x7)),

where

f (x1, x2, x3, x4, x5, x6, x7) = xr1 · xr2 ⊕ xr3 · xr4 ⊕ xr5 · xr6.

r1, r2, r3, r4, r5, r6, r7 are random integers in [1, 7]. Then,
an S-box on F8

2 can be obtained through 8 rounds of
conversion

F(x0, x1, x2, x3, x4, x5, x6, x7)

= t8(x0, x1, x2, x3, x4, x5, x6, x7),

where t j = tt j−1, 2 ≤ j ≤ 8, t1 = t .
Fitness Function:
The fitness function design is related to the criteria for

evaluating the S-box. The properties of the S-box con-
cerned about in this paper mainly include differential uni-
formity, nonlinearity, and boomerang uniformity. Our fitness
function is

CF = δF + LF + βF .

It is easy to see that the first term δF and the third term
βF are differential uniformity and boomerang uniformity,
respectively. Both of these two terms in the S-box are as low
as possible. However, the higher the nonlinearity, the better.
For consistency, the second term in the fitness function is
linearity LF . Algorithm 2 gives the calculation process of the
fitness function.

Algorithm 2 Fitness Function CF
Input: Individual p
Output: δp + Lp + βp
1: (DDTp,LATp,BCTp) ← Calculate the DDTp, LATp,
BCTp of p;

2: δp← max
a,b∈Fn2;a 6=0

DDTp(a, b);

3: Lp← max
a,b∈Fn2;b 6=0

2
∣∣LATp(a, b)∣∣;

4: βp← max
a,b∈Fn2;a,b 6=0

BCTp(a, b);

5: return δp + Lp + βp;

Selection Operator:
The k-tournament selection [28] is suitable for target min-

imization problem. First, k individuals are randomly selected
from the population P. Then the two individuals with the
smallest fitness values are copied into the new population.
Repeat this process until the size of the new population
reaches N .

A. NEW GENETIC OPERATORS
1) NEW CROSSOVER OPERATOR
In order to improve the performance of the genetic algorithm,
we design a new crossover operator for the genetic algorithm.
The fitness function considers three properties of an S-box:
differential uniformity, linearity, and boomerang uniformity.
The smaller their values, the better. In each iteration, the
new crossover operator takes advantage of gene exchange to
reduce the values of three properties.

The new crossover operator is described in Algorithm 3.
First, randomly select two individuals p and q from the
population as the two parents. Let p = p0, · · · , p2n−1 and
q = q0, · · · , q2n−1. The crossover processes performed on
p and q are similar. We take individual p as an example.
Find the input-output differential pair (a, b) that satisfies
DDTp(a, b) = δp in the differential distribution table. For
each pair (a, b), find pi, i ∈ [0, 2n − 1] that increases
DDTp(a, b) of p, and exchange pi and pj to obtain a new
individual p′, where pj = qi. If δp′ ≤ δp, Lp′ ≤
Lp, βp′ ≤ βp, DDTp′ (a, b) ≤ DDTp(a, b) and no new
value is added to δp after exchange, replace p with p′.
If DDTp′ (a, b) < DDTp(a, b), find the next input-output
differential pair (a, b) satisfyingDDTp′ (a, b) = δp′ and repeat
the process. If DDTp′ (a, b) = DDTp(a, b), find the elements
adding DDTp′ (a, b) in p′ and perform the same operation to
reduce DDTp′ (a, b). The process of reducing the boomerang
uniformity is similar to that of reducing the differential uni-
formity. When reducing the linearity, it should be consid-
ered in two cases: Lp = max

a,b∈Fn2;b 6=0
Wp(a, b) and Lp =

max
a,b∈Fn2;b6=0

−Wp(a, b). When Lp = max
a,b∈Fn2;b 6=0

Wp(a, b), the

purpose of gene exchange is to reduce the number of b · px =
a · x; when Lp = max

a,b∈Fn2;b 6=0
−Wp(a, b), the purpose of gene

exchange is to reduce the number of b · px 6= a · x.

2) NEW MUTATION OPERATOR
This paper also designs a new mutation operator. Randomly
select a position c1 ∈ [0, 2n − 1]. Exchange the gene at
position c1 in individual p with genes at other positions in p
in turn to generate new individuals. For the new individual p,
if one or more of δp′ < δp, Lp′ < Lp and βp′ < βp are
satisfied, replace the original individual p with the new indi-
vidual p′; otherwise, retain the original individual p and delete
the new individual p′. The mutation process is described in
Algorithm 4.

B. TRADITIONAL GENETIC OPERATORS
1) TRADITIONAL CROSSOVER OPERATOR
The partially mapped crossover (PMX crossover) [29] is the
traditional crossover operator we use. Randomly select two
individuals p and q from the population as the two parents. Let
p = p0, · · · , p2n−1 and q = q0, · · · , q2n−1. Randomly select
two positions (c1, c2), c1, c2 ∈ [0, 2n − 1], and exchange
the gene fragments of the two parents between c1 and c2.
Check the elements in the uncrossed gene segment of the
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Algorithm 3 New Crossover Operator
Input: Parent individuals p and q
Output: Offspring individuals p and q
1: p′′← p;
2: p← Exchange (p, q);
3: q← Exchange (q, p′′);
4: return p and q;
5: The procedure of Exchange (p, q):
6: p← ReduceProcess(p, q,DDT);
7: p← ReduceProcess(p, q,LAT);
8: p← ReduceProcess(p, q,-LAT);
9: p← ReduceProcess(p, q,BCT);
10: return p;
11: The procedure of ReduceProcess (p, q,T):
12: if T=DDT then
13: uniformity (a, b)← DDTp(a, b) = δp;
14: condition (p, q, i)← pi ⊕ pi⊕a = b;
15: increase (x, y) ← DDTp′ (x, y) = δp and

DDTp(x, y) < δp;
16: else if T=LAT then
17: uniformity (a, b)← LATp(a, b) = 1

2Lp;
18: condition (p, q, i)← b · pi = a · i;
19: increase (x, y) ← LATp′ (x, y) =

1
2Lp and

LATp(x, y) < 1
2Lp;

20: else if T=-LAT then
21: T=LAT;
22: uniformity (a, b)← LATp(a, b) = − 1

2Lp;
23: condition (p, q, i)← b · pi 6= a · i;
24: increase (x, y) ← |LATp′ (x, y)| = 1

2Lp and
|LATp(x, y)| < 1

2Lp;
25: else if T=BCT then
26: uniformity (a, b)← BCTp(a, b) = βp;
27: condition (p, q, i)← p−1(pi⊕b)⊕p−1(pi⊕a⊕b) = a;

28: increase (x, y)←BCTp′ (x, y) = βp and BCTp(x, y) <
βp;

29: end if
30: for uniformity (a, b), a, b ∈ [0, 2n − 1] do
31: p′← Exchange pi and pj, where pi = qj;
32: for condition (a, b, i), i ∈ [0, 2n − 1] do
33: if δp′ ≤ δp,Lp′ ≤ Lp, βp′ ≤ βp, Tp′ (a, b) ≤ Tp(a, b)

and @x, y ∈ [0, 2n − 1], increase (x, y) then
34: p← p′;
35: If Tp(a, b) is reduced, jump out of this loop;
36: end if
37: end for
38: end for
39: return p;

first parent p. If an element is the same as the element at
position j, j ∈ [c1, c2], replace it with the element pj in q.
Repeat this process until p becomes a permutation with no
repeating elements. Then perform the same operation on the
second parent q. This process is described in Algorithm 5.

Algorithm 4 New Mutation Operator
Input: Parent individual p
Output: Offspring individual p
1: c1← Randomly generate a position;
2: for i ∈ [0, 2n − 1] do
3: if i 6= c1 then
4: p′← Exchange pi and pc1 ;
5: fp′ ← CF (p′);
6: if fp′ < fp or fp′ = fp, δp′ < δp or fp′ = fp, δp′ <

δp,Lp′ < Lp then
7: p← p′;
8: end if
9: end if
10: end for
11: return p;

Algorithm 5 Traditional Crossover Operator
Input: Parent individuals p and q
Output: Offspring individuals p and q
1: (c1, c2)← Randomly generate two positions;
2: exchange(p; q; c1; c2)=(

p0, · · · , qc1 , · · · , qc2 , · · · , p2n−1
q0, · · · , pc1 , · · · , pc2 , · · · , q2n−1

)
;

3: for i ∈ [0, c1) do
4: if pi = qj, j ∈ [c1, c2] then
5: pi ← pj e.g.

p =
{
p0, · · · , pj, · · · , qc1 , · · · , qc2 , · · · , p2n−1

}
;

6: end if
7: if qi = pj, j ∈ [c1, c2] then
8: qi ← qj e.g.

q =
{
q0, · · · , qj, · · · , pc1 , · · · , pc2 , · · · , q2n−1

}
;

9: end if
10: end for
11: for i ∈ (c2, 2n − 1] do
12: if pi = qj, j ∈ [c1, c2] then
13: pi ← pj e.g.

p =
{
p0, · · · , qc1 , · · · , qc2 , · · · , pj, · · · , p2n−1

}
;

14: end if
15: if qi = pj, j ∈ [c1, c2] then
16: qi ← qj e.g.

q =
{
q0, · · · , pc1 , · · · , pc2 , · · · , qj, · · · , q2n−1

}
;

17: end if
18: end for
19: return p and q;

2) TRADITIONAL MUTATION OPERATOR
The inversion mutation [30] is the traditional mutation
operator we use. First, two positions (c1, c2), c1, c2 ∈

[0, 2n − 1] are randomly selected for the individual p to
be mutated, where p = p0, · · · , pc1 , · · · , pc2 , · · · , p2n−1.
Then, the genes between two positions (c1, c2) in individual
p are arranged in an inverted order to obtain a new p =
p0, · · · , pc2 , · · · , pc1 , · · · , p2n−1.
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C. CONVERGENCE ANALYSIS OF NEW GENETIC
ALGORITHM
The convergence of the new genetic algorithm can be ana-
lyzed by the Markov chain, which proves the rationality of
this method theoretically.
Definition 4 (Markov Chain): Let I = {i0, . . . , in} be

the values for stochastic process {X (n), n ≥ 0}. For any
i0, . . . , in, if P {X (0) = i0, . . . ,X (n) = in} > 0, then

P {X (n+ 1) = in+1|X (0) = i0, . . . ,X (n) = in}

= P {X (n+ 1) = in+1|X (n) = in} . (1)

{X (n), n ≥ 0} is defined as Markov chain.
Definition 5 (Transition Probability): Let Pi,j(m, n) =

P {X (n) = j|X (m) = i, n > m} be the transition probability.
Pi,j(m, n) satisfies the properties: Pi,j(m, n) ≥ 0 and∑

j∈I Pi,j(m, n) = 1.
Definition 6 (Homogeneous Markov Chain): For Markov

chain, if

Pi,j(m,m+ 1) = P {X (m+ 1) = j|X (m) = i} = Pi,j, (2)

where i, j ∈ I , i.e. the transition probability from state i to
state j is independent of the time starting point m, then such
Markov chain is called homogeneous Markov chain.
Definition 7 (Stochastic Matrix): For homogeneous Mar-

kov chain, Pi,j is the one-step transition probability. A matrix
P =

{
Pi,j
}
composed of allPi,j, (i, j ∈ I ) is called a stochastic

matrix.
The different operations of the genetic algorithm are per-

formed independently, and the new population has nothing
to do with the previous generations of the parent population.
Therefore, the genetic algorithm can be described as a homo-
geneous Markov chain. Before the convergence analysis,
we need to observe the design of the new genetic operators.
It can be seen from the design of the new genetic operators
that the genic changes are nonlinear, and the properties of
the newly generated individuals are not inferior to those
of the parent individuals, which is very important for the
convergence analysis.
Theorem 1: The probability that the new genetic algorithm

converges to the optimal solution is 1.
Proof: The possible states I of the population are

divided into the state Io and the state In, where Io contains
the optimal solution, and In does not include the optimal
solution. I = Io ∪ In and Io ∩ In = ∅.
The transition probability of the selection operator from

state i to state j is si,j. Similarly, ci,j and mi,j are the transfor-
mation probabilities of crossover operator and mutation oper-
ator, respectively. S =

{
si,j
}
, C =

{
ci,j
}
, andM =

{
mi,j

}
are

the corresponding stochastic matrices. Then the population
state transitionR = SCM = ri,j of genetic algorithm is easily
proved to be positive definite. Let Pj(t), t = 0, 1, . . . . . . be
the probability that the population is state j at time t . Genetic
algorithm can be described as a homogeneous Markov chain.
Therefore, the stable probability distribution of Pj(t) is inde-
pendent of its initial probability distribution.

Both the new crossover operator and mutation operator
retain individuals with better properties, ensuring that the
transition probability from Io to In is equal to 0 and the
probability from any state to Io is greater than 0, i.e. ri,j =
0(∀i ∈ Io, ∀j /∈ Io) and ri,j > 0(∀i ∈ I , ∀j ∈ Io). Then for
∀i ∈ I , ∀j /∈ Io, r ti,j = 0, (t → ∞) i.e. Pj(∞) = 0, (j /∈ Io).
The probability that the population converges to the state
In is 0, i.e. the probability that the new genetic algorithm
converges to the optimal solution is 1.

IV. EXPERIMENTAL SETUP AND RESULTS
This paper uses the new genetic algorithm and the traditional
genetic algorithm to search for 8 × 8 S-boxes with low
differential uniformity, high nonlinearity, and low boomerang
uniformity.

A. EXPERIMENTAL SETUP
For the traditional genetic algorithm and the new genetic
algorithm, we run 30 experiments, respectively. Except for
the different genetic operators, the other parameters of the
two genetic algorithms are the same. The parameter values are
determined based on experience and experimental feedback.
The population size N is 256. The tournament size k is set
to 3. Different crossover probabilities and mutation probabil-
ities have no significant impact on the search of traditional
genetic algorithm. The higher the crossover probability and
the mutation probability for our new genetic algorithm, the
better. Therefore, we set these two parameters to relatively
large values. Crossover probability pc = 0.9, and mutation
probability pm = 0.1. The maximum number of iterations is
determined by observing the output of experimental results,
and MAX=400.

B. EXPERIMENTAL RESULTS AND ANALYSIS
In our work, in addition to the differential uniformity and
nonlinearity, we also consider the boomerang uniformity.
Table 3 describes the distributions of these three properties in
the initial population and the final population. The data 16#13
in Table 3 means that the number of differential uniformity
δp = 16 in the initial population is 13.
As can be seen from Table 3, for the initial population

created by the unbalanced Feistel structure, the differen-
tial uniformity, nonlinearity, and boomerang uniformity are
concentrated at 64, 64, and 256, respectively. The initial
population’s best differential uniformity, nonlinearity, and
boomerang uniformity are 16, 96 and 52, respectively. The
best S-box created by the unbalanced Feistel structure is
given in Table 1. It can be seen that the properties of the
initial population created by the unbalanced Feistel structure
are not ideal, especially the boomerang uniformity. At the
end of the iteration, the differential uniformity, nonlinearity,
and boomerang uniformity of the population obtained by our
new genetic algorithm are concentrated at 12, 94, and 20,
respectively. At this time, the best values of differential uni-
formity, nonlinearity, and boomerang uniformity in the pop-
ulation are 6, 108, and 10. At the end of the population, there
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TABLE 1. The best S-box created by the unbalanced Feistel structure.

TABLE 2. The best S-box generated by the new genetic algorithm.

TABLE 3. The property distribution of S-boxes in the initial population
and the final populations.

are 119 δp ≤ 10, 47Np ≥ 96 and 9 βp ≤ 16. Figure 1 shows
the comparison of the distributions of the three properties
in the initial population and the final population. As can be
seen from Figure 1, on the whole, the new genetic algorithm
improves the properties of S-boxes created by the unbalanced
Feistel structure.

In Table 4, S-box1-S-box4 are generated by our new
genetic algorithm, and S-box5 is generated by the traditional
genetic algorithm. It can be seen from Table 4 that the
S-box1 and S-box2 generated by our new genetic algorithm
have the best cryptographic properties: the lowest differential
uniformity 6, the highest nonlinearity 108, and the lowest
boomerang uniformity 10. Table 2 shows the lookup table of
S-box1.

FIGURE 1. Comparison of property distributions between initial
population and final population.

TABLE 4. S-boxes generated in this paper.

Table 5 compares the cryptographic properties of S-boxes
generated in different ways. The values of random S-box are
the expected values of differential uniformity, nonlinearity,
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and boomerang uniformity given in [33]–[34]. As can be
seen from Table 5, the S-box generated by the new genetic
algorithm has better properties than the random S-box. More-
over, the S-box generated by the new genetic algorithm is
comparable with those generated by other methods.

TABLE 5. The comparison of cryptographic properties between the best
S-boxes generated in different ways.

In summary, the new genetic algorithm has successfully
improved the properties of the S-boxes created by the unbal-
anced Feistel structure. Moreover, the S-boxes generated by
the new genetic algorithm have better properties than those
generated by the traditional genetic algorithm, demonstrating
the new genetic algorithm’s effectiveness and superiority in
developing S-boxes.

V. CONCLUSION
In this paper, a genetic algorithm is used to improve the
properties of the S-boxes created by the Feistel structure.
New genetic operators are designed for the genetic algorithm
to develop 8 × 8 S-boxes with low differential uniformity,
high nonlinearity, and low boomerang uniformity. It is the
first time that a genetic algorithm has been used to improve
the boomerang uniformity of the S-box. Experimental results
show that the new genetic algorithm successfully improves
the properties of the S-boxes created by the Feistel structure.
The S-boxes generated by the new genetic algorithm have
better properties than those generated by the traditional one,
which shows the effectiveness and superiority of the new
genetic algorithm. In the future, genetic algorithms can be
used to generate S-boxes of different sizes. On the other
hand, other new genetic operators can be designed to generate
S-boxes with better performances.
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