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ABSTRACT The main purpose of this study was to demonstrate the uses of regularization, a machine
learning technique, in exploring important predictors for online student success. We analyzed student and
learning behavioral variables from undergraduate fully-online flipped classrooms. In particular, students’
instructional video watching behaviors at an instructional unit level were extracted from LMS (learning
management system) log data, and Enet (elastic net) and Mnet were employed among regularization.
As results, regularization not only showed comparable prediction performance to random forest, a nonlinear
method well-known for its prediction capabilities, but also produced interpretable prediction models as
a linear method. Enet and Mnet selected 17 and 19 important predictors out of 159, respectively, and
could identify potential low-performers as early as the first instructional week of the course. Important
variables rarely recognized in previous studies included complete viewings of the first video before class
and repeated complete viewings of challenging contents after in-class meetings. Unlike previous studies,
aggregate measures of video lecture views were not important predictors. Variables less frequently studies
in previous studies were the number of non-mandatory quiz-taking and mobile lecture watching frequencies.
Variables in line with previous research were student attitudes towards the course, gender, grade level, and
clicks on learning materials postings. Many students turned out not to watch lecture videos completely before
class. Further research on regularization and exploration of these variables with other potentially important
predictors can provide more insight into students’ online learning from a comprehensive perspective.

INDEX TERMS LMS log data, machine learning, regularization, random forest, flipped classroom, online

learning, learning analytics.

I. INTRODUCTION

The COVID-19 pandemic has changed the education system
worldwide. Online learning is no longer an option, and an
increasing number of online classes have incorporated com-
ponents of flipped classrooms (FC) in an effort to improve the
quality of learning and instruction. Despite varying results
regarding the effectiveness of flipped learning in higher
education [1]-[4], FC has grown rapidly as an innovative
pedagogical approach in recent decades. FCs are designed
to integrate in-class activities (e.g., group discussions) and
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out-of-class activities (e.g., watching lecture videos in
advance) to accomplish high levels of academic achieve-
ment. Thus, in FCs, students’ self-directed pre-class activities
are greatly emphasized as a necessary condition to enhance
in-class learning and instruction [5].

However, there has been little empirical research using
quantitative observational data [6] for specifically identify-
ing FC learning behaviors significant for academic success.
This may relate to methodological limitations of previous
research analyzing LMS (learning management systems) log
data in terms of data collection and analysis methods. First
of all, particularly in traditional FC designs LMS cannot cap-
ture all the students’ learning activities; data from pre-class
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assignments representing prior engagement in learning typi-
cally exist outside LMS. However in fully-online FCs, which
are increasingly prevalent in the COVID-19 situation, collect-
ing trace data has become much easier, as students’ pre-class
video watching activities, for instance, are stored in LMS.
If LMS log data representing learners’ study behaviors and
patterns are analyzed, researchers could discover unknown
relationships among many variables explaining learning in
online environments.

Furthermore, it is possible to unobtrusively collect near-
real-time information through LMS; students’ behaviors in
LMS are automatically stored in the log files without the
students’ cognizance [7]-[10]. Previous research collected
data from ex post facto self-report surveys asking students
how well pre-class assignments were carried out (e.g., [11]),
which is meaningful to some extent. However, self-report
questionnaires rely on memories and reflections, and thus are
prone to social desirability bias.

Second, analysis methods have room for improvement;
LMS log data of students’ learning behaviors have not been
utilized to its full potential. Despite the aforementioned
advantages that log data bring to data analyses, the intractabil-
ity of LMS log data has been a practical hindrance. Log
data are unstructured, which can lead to high-dimensional
data (i.e., more variables than observations), depending on
data pre-processing and cleaning. Relatedly, previous stud-
ies employing traditional methods (e.g., [12], [13]) or early
ML techniques (e.g., [14], [15]) have analyzed aggregate
variables such as total login frequencies or average login
hours, which contributed to preventing possible problems
of traditional methods combined with high-dimensional data
such as convergence. However, instructional unit-based data
traced from log data can serve as better indicators of study
behaviors. For instance, study habits of online students with
high levels of academic success can be observed even in the
first few weeks of a course [16]. By implementing instruc-
tional unit-based analysis, more can be learned about when
and how instructor intervention should be provided during the
semester.

When behavioral variables at an instructional level are
to be analyzed, more advanced ML appears to be a nec-
essary technique due to its capacity to handle possible
high-dimensional data without convergence problems. In the
similar vein, a large number of predictors can be explored
in one ML model, which in turn propagates the creation
of a new theory or complements existing ones [17]. Exten-
sive modeling with as many predictors as possible via
ML appears necessary to explore yet uninvestigated impor-
tant variables to predict students’ academic achievement.
Of note, compared to the traditional OLS (ordinary least
squares) regression, nonlinear ML methods such as random
forest, support vector machines, and deep learning consist
of complex higher-order interactions, and do not provide
explainable prediction models. Nonetheless, learning analyt-
ics is one of the fields which needs to be augmented with
explanation.
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We propose regularization (penalized regression) among
ML to analyze LMS log data. There has been little research
employing regularization methods in LMS log data analy-
sis, but regularization can contribute to the field in that it
produces interpretable prediction models [18]-[20]. Based
on linear regression, the regression coefficients of regular-
ization can be interpreted similarly to those in traditional,
non-penalized regression. This is a great advantage in learn-
ing analytics, as prediction models need to be interpreted
under certain educational settings, for instance to plan more
effective intervention strategies for at-risk students. While
regularization produces interpretable prediction models, non-
linear ML methods may outperform regularization in terms
of prediction. Therefore, it was worthwhile to compare regu-
larization to random forest, a popular nonlinear ML method
famous for its prediction capabilities.

In summary, this study examined the prediction perfor-
mance of ML methods for online student success, and
explored important learning behaviors in fully online flipped
classrooms at an instructional unit level. Specifically, the
following research questions were posed.

1. Which ML technique, random forest or regularization,
shows better performance in analyzing LMS log data in terms
of prediction?

2. In fully-online flipped classrooms, which learning
behaviors extracted from LMS are important for predicting
students’ academic achievement?

3. In fully-online flipped classrooms, what are the students’
video watching patterns at an instructional unit level?

Although the focus of this study was on video watching
behaviors at an instructional unit level, we endeavored to
include as many variables as possible in predictive modeling
1) to fully utilize the strengths of ML and 2) to compare
the importance of video watching behaviors to that of other
variables. In particular, students’ gender, grade level, and
attitudes toward the course were investigated as well as class
material downloads, forum postings, and quiz-taking via PC
or mobile. Details of the variables in this study are explained
in IV-C.

Il. LITERATURE REVIEW

A. RECENT ML RESEARCH IN LEARNING ANALYTICS

An increasing number of studies have started to employ ML
in predicting student success. Although regularization has
been in popular use as an approach to predictive modeling in
diverse fields including bioinformatics (e.g., [21], [22]) and
engineering (e.g., [23], [24]), less application of penalized
regression to learning analytics data appears in the litera-
ture. Bertolini [25] summarized a total of 10 recent learning
analytics studies. All the 10 studies employed nonparametric
ML methods such as SVM (support vector machines), ANN
(artificial neural networks), tree, RF (random forest), and
gradient boosting; but only a few studies compared the non-
parametric methods to regularization. When employed, how-
ever, regularization showed comparable or better prediction
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performance. For instance, in a study by Beemer et al.[18]
lasso (regularization) showed better prediction performance
than RF in predicting binary variables, and was next to RF in
predicting continuous variables.

Other studies in learning analytics have utilized ML in
the framework of traditional methods. For instance, Wu [26]
labeled students’ text data with ML, and the labeled variable
was used as a predictor in traditional regression to explain
78 students’ academic performance in a statistics course.
Specifically, he employed weakly supervised ML to rate
students’ Facebook posts and comments. In order to cate-
gorize the students’ text data into four ordinal groups of
relevance, an ensemble ML classifier was created, consisting
of RF, ANN, and SVM. This ML rating served as one of
the nine independent variables in different OLS regression
models. The model containing the ML rating variable out-
performed that of human coding variable in terms of model
fitting criteria such as R-squares and BIC. The ML rating
also showed the highest effect size, followed by help-seeking
tendency, and procrastination. On the other hand, students’
internet and Facebook time, which were aggregate variables
obtained from students’ self-report, were not statistically
significant.

Bosch[27] explored 51 predictors of over 10,000 stu-
dents from a quasi-experimental study with gradient boosting
(a nonlinear ML). He inspected the top 4 to 5 predictors of
highest importance from gradient boosting, but there is no
solid rule on the cut-off. He also calculated Pearson’s r values
and reported statistical significance. This hybrid approach
of ML and significance testing is understandable in that
nonparametric ML models lack interpretability. However,
ML and conventional methods stem from different stand-
points. While conventional methods value explanation, pre-
diction is the goal of ML. The important predictors extracted
from ML best serve the purpose of prediction, not expla-
nation. Therefore, the selected top 4 to 5 predictors were
unlikely to be in the order of the highest statistical signifi-
cance (p. 6). Bosch also reported that OLS regression showed
comparable performance to gradient boosting; nonlinear ML
may be overqualified for experimental data obtained in a
traditional framework.

In summary, many predictive modeling studies in learning
analytics have focused on the comparison of nonlinear ML
methods such as SVM, ANN, tree, RF, and gradient boosting.
However in few studies which included regularization in the
comparison set, nonlinear ML did not outperform regular-
ization in terms of prediction performance. In other recent
studies of learning analytics, ML has been utilized coupled
with traditional methods including OLS regression [26] or
Pearson correlation [27], after serving the purpose of feature
engineering [26] or variable selection [27].

B. PREDICTING EFFECTIVE LEARNING BEHAVIORS IN
FLIPPED CLASSROOMS

In a flipped classroom (FC), students carry out self-study
outside the classroom and then engage in interactive
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learning activities during their in-class meetings. The most
critical aspect of FC is that it is systematically designed to
engage learners in self-regulated learning out of the class that
culminates into higher learning achievements. For instance,
they must exert self-directed effort into pre-class learning,
engage in online activities such as posting their ideas, taking
quizzes, and reviewing class materials so that in-class time
is not wasted. These activities require self-regulated learn-
ing (SRL), which implies the learner’s active engagement
from a metacognitive, motivational, and behavioral point of
view [28].

Since completing pre-class assignments and preparing for
interactive in-class activities are critical in FC, a high level
of SRL is necessary for students to succeed. SRL strategies
such as effective time management, metacognition, and effort
regulation are considered significant predictors of academic
success [29]. Pintrich [30] proposed a conceptual framework
for SRL composed of four phases: 1) Forethought, planning
and activation, 2) Monitoring, 3) Control, and 4) Reaction and
reflection. Behaviors representing each phase are time/effort
planning, self-observation, increase/decrease of effort, and
persistence [30]. In terms of pre-class learning behaviors in
FCs, students must plan ahead their time for watching lecture
videos, watch lectures, monitor their understanding of the
contents, go over the lecture again until understanding is
complete.

Previous studies examining student engagement in learn-
ing have used variables reflecting individual LMS usage,
but not necessarily SRL. SRL is based on the reciprocity
between the learner and the context of learning. Thus, vari-
ables for SRL should use data representing the processes of
learning rather than aggregate data representing total usage.
LMS usage data are usually collected by aggregate mea-
sures of login frequencies, menu usage, material download,
content pages viewed, and posted messages [10], [12]-[15],
[31], [32]. Aggregate measures of these data have displayed
inconsistent effects on student achievement. Login frequen-
cies [13], [15] and LMS menu usage [12]-[14] were sta-
tistically significant or important indicators of students’
academic achievement in online learning. In contrast,
in MOOC (massive open online course) environments, forum
variables such as numbers of messages posted, or com-
ments received were not directly related to students’ learn-
ing [32]. Students’ instructional video watching behaviors
derived from LMS have been another important measure
of SRL in MOOC [31], [32] or FC settings [33]. Studies
on MOOCs obtained video watching behavior data from
access to videos [31], percentages of opened and completed
videos [32], and percentages of video play (or pause) actions
within a study session [33]. Of note, these variables on video
watching were also measured in the form of aggregate vari-
ables such as percentages of video viewed or played [32],
[33] and total user access to videos [31]. These variables
did not significantly improve the predictive power of the
models, particularly when exam (exercise) variables were
present [32].
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Although aggregate data for pre-class learning time are
useful for examining student engagement, more research is
necessary to understand the patterns of students’ learning
behaviors for successful FCs. Specifically, variables associ-
ated with SRL should manifest the behaviors related to the
four phases of SRL. For instance, watching video lectures
completely several times after a difficult class may be a sign
of self-observation, followed by increased effort for master-
ing difficult contents. Thus, using instructional unit variables
rather than aggregate variables may be a solution for measur-
ing SRL behaviors from LMS log data. Students’ behavioral
data at an instructional unit level reveal patterns/processes
of their studies across the phases of the semester, contents,
exams, and such. This type of data can be indicative of SRL
and predict academic achievement with higher accuracy.

Studies analyzing instructional unit variables or the like
have demonstrated patterns of SRL behaviors in online set-
tings. Considering time management a significant SRL fac-
tor for predicting academic performance, Cerezo et al. [34]
showed that early access to the first theoretical resource,
medium amount of time on assignments, and access to
assignments within average time-frame lead to high perfor-
mance. In other words, examining behavioral variables in
relevance to changes in the instructional context through-
out the semester can provide new insights into learning in
online environments. Jovanovic et al. [35] suggested that
course-specific indicators could be better predictors of aca-
demic success by comparing the predictive power of generic
versus course-specific indicators, and demonstrated that the
latter, specifically regularity of pre-class activities, had higher
predictive power. To conclude, the highest meaning of learn-
ing analytics can be achieved when learning analytics is
executed within the instructional context. Analyzing instruc-
tional unit data together with course-specific contexts can
provide us more insight into effective learning behaviors.

IIl. MACHINE LEARNING FOR PREDICTION MODELING
Among ML, we employed regularization and RF. While reg-
ularization produces linear, parametric models, RF is catego-
rized as a nonlinear, nonparametric method. Linear models
are easier to interpret than nonlinear models, but nonlinear
models may have strengths in prediction.

A. REGULARIZATION: ENET AND MNET

The purpose of regularization is to reduce the mean squared
error (MSE) and the subsequent prediction error by intro-
ducing a small bias, thereby lowering variance in the esti-
mates [36]. Regularization imposes a penalty function on
top of the objective function, and shrinks some coefficients
to zero. We chose elastic net (Enet) and Mnet for the fol-
lowing reasons. First, Enet is a combination of LASSO and
ridge [37], and Mnet is a combination of MCP and ridge [38].
By incorporating ridge in the models, both handle multi-
collinearity, a likely challenge in LMS log data analysis.
Second, Enet and Mnet represent convex and concave
regularization, respectively. While Enet has the issue of

VOLUME 10, 2022

inconsistency, Mnet is known to produce nearly consistent
estimates [38].

Consider a linear regression model with p predictors
and n observations. Suppose the predictors are divided into
K non-overlapping groups, the response variable y is an
n-dimensional vector, and X is an n x pj design matrix of
the py predictors in the k-th group. B is the pr-dimensional
vector of regression coefficients of the k-th group, and € is an
n-dimensional vector of mean zero (equation (1)).

K
Y= Xipi+e. (D
k=1

For a Gaussian family, Enet and Mnet are expressed as in
equations (2) and (3), respectively. The same first term on the
right-hand side of equations (2) and (3) is the loss function
of least squares. The second term on the right-hand side of
equation (2) is the penalty function of Enet, consisting of
two tuning parameters: A and «. The parameter A regularizes
shrinkage of the coefficients, and the parameter « controls
the amount of ridge. Typically, « is set to be 0.5 for collinear
data [39].

The second and the last terms of equation (3) are the MCP
and ridge penalties, respectively. The parameter A controls
the amount of the penalty. The parameter y, known as the
concavity penalty, regulates the penalization rate depending
on the size of the coefficients. When the coefficients are larger
than the product of the two penalties, the rate of the MCP
penalty quickly drops, thereby applying less shrinkage to the
coefficients and yielding less biased estimates than LASSO
does [19], [38]. Lastly, the ridge penalty is added to the Mnet
equation, the parameter of which is A;.
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1) CROSS-VALIDATION (CV)

In particular, this study executed subsampling techniques for
variable selection in order to consider the bias resulting from
data-splitting in model validation [40], [41]. The steps were
as follows. First, the whole data were randomly divided with
the ratio of 7:3 to get the training and test data, respectively.
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This resulted in high-dimensional test data (71 students of
159 predictors), while training data consisted of 166 students
of 159 predictors. Data characteristics are explained in IV-C2.
Second, 5-fold CV (cross-validation) was executed on the
training data. For a value of the penalty parameter, the training
data were split with the ratio of 4:1. The 4/5 or 4 folds of the
training data were used in model fitting and the 1/5 or remain-
ing fold was used in model evaluation, which is repeated for
every fold. The prediction error of the X is calculated, which
is referred to as the CV error of the A (equation (4)) [42].
Third, the second step was repeated for every A in the range,
and the A of the lowest CV error served as the penalty value
of regularization. That A value was applied to the test data in
step 1, which yielded prediction errors.

N
VO = ]1\, S - 72 @
i=1

2) SELECTION COUNTS

Of note, the variables of nonzero -coefficients after
regularization should not be interpreted as ‘statistically sig-
nificant.” Regularization produces biased estimates, and sig-
nificance testing is performed on unbiased estimates. Special
techniques such as post-selection inference (e.g., [43]) are
required to perform statistical testing after regularization, but
currently only available with LASSO [19], [20]. Instead of
statistical testing, we iterated data splitting and prediction
modeling, and obtained selection counts as the criterion
for variable importance; variables selected more often bear
more importance than variables selected less often [19], [20].
The aforementioned three steps were repeated 1,000 times
with random data-splitting. The selection or non-selection
of each variable from the second step was counted in the
1,000 iterations, which served as the selection counts of the
study. Specifically, this study presented variables selected 1,
250, 500, 750 times or more, and all 1,000 times. Yoo and
Rho[20] suggest that variables selected 75% or more with
Enet and 50% or more with Mnet are worth investigation in a
simulation study of social science large-scale data, but there
is no such study in the context of learning analytics. All the
programs were written in R 3.6.2. Specifically, the grpreg
library [44] was used for regularization.

B. RANDOM FOREST AND FINE TUNING

The first research question of this study was to compare
the prediction performance of regularization to that of ran-
dom forest (RF). RF models are known to be highly predic-
tive but difficult to interpret. With base learner as decision
trees, RF yields nonparametric models. RF creates boot-
strapped samples, fits decision tree models on the boot-
strapped samples, and combines the decision tree results as
an ensemble method [45]. Tuning parameters of RF include
the number of variables randomly sampled as candidates
at each split (mtry), the number of trees, the minimum
number of observations in a terminal node, sampling with
or without replacement, and splitting criteria [46]. Among
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them, mtry is reported to affect the complexity of the final
model [47]. In particular, small mtry decorrelates trees,
which leads to models of low variance and high bias [46],
[47]. Thus, models from small mtry tend to be stable, but
important predictors might be excluded in modeling, result-
ing in decreased prediction [46]. Despite its importance,
however, there has not been enough empirical research on
the proper values of mitry; researchers typically adopt the
default values that Breiman [45], the inventor of tree and
RF, suggested.

In an effort to maximize the prediction performance of
RF, we tuned mtry in all possible range, using OOB (out-of-
bag) errors as the evaluation criteria. We set the number of
trees to 5,000. This is ten times of the default in the random
Forest library in R [48], and is considered sufficiently large to
yield stable prediction results given the sample size. The other
tuning parameters adopted the default values of the random
Forest library. The steps were as follows. First, the same sets
of training and test data as in regularization (III-A1) were
utilized in model fitting. Second, the mtry parameter was
tuned in the range of 1 (a stump model) and 159 (all the
predictors in the model). For an mtry value in the range, the
training data were fitted and the mtry value of the lowest
OOB errors were identified. Third, the mtry value from step 2
was applied to the test data from step 1, and the RMSE (root
mean square error) of the test data was calculated, which
served as the prediction error of the RF model. As was with
regularization, all three steps were iterated 1,000 times. The
OOBCurve package [49] in R was used.

Of note, we also obtained prediction errors using
Breiman’s default. As there were 159 predictors, the default
value of mtry was 53 (=159 divided by 3). The aforemen-
tioned three steps were employed, except that the mtry value
was set to 53 in step 2; the other steps were the same. The
comparison of what Breiman [45] suggested and what CV
yielded was expected to give another insight into the tuning
process of RF in analyzing LMS log data.

IV. MATERIAL AND METHODS

A. PARTICIPANTS

In the Fall semester of 2020, 242 undergraduate students
in a pre-service teacher program enrolled in 8 fully-online
undergraduate classes titled Measurement and Evaluation.
Students were required to complete 6 out of 9 prerequisite
classes to receive their teaching certificate, and Measurement
and Evaluation was one of the 9 classes. The classes of the
Fall semester were for sophomores majoring in Liberal Arts
and Social Sciences, but a small number of off-semester or
off-grade students who missed taking the classes on time due
to leave of absence or schedule conflict were also allowed
to enroll in the classes. The male-to-female ratio was 37.13%
(88) t0 62.87% (149). On-grade to off-grade student ratio was
85.65% (203) to 14.34% (34). On-semester to off-semester
student ratio was 93.25% (221) to 6.75% (16). Students on
average had 1.38 times of practicum (SD = 0.61).
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B. SETUP OF THE FC

Three instructors (A, B, C) including a head-instructor
(A) taught the 8 classes; A taught 4 classes and B and
C two classes each. Before the semester started, they held
several meetings to discuss details including class progress,
team projects, and the final exam. As a result, all the
8 classes scheduled a simultaneous final exam at the end of
the course, and shared the same class materials including
instructional videos, textbooks, and syllabus. The syllabus
clearly stated that the course would apply flipped learning.
On the orientation day of the first week, each instructor
gave a detailed overview of FC and its potential benefits.
The importance of the weekly assignments of instructional
video watching before class was also emphasized, particu-
larly because students were asked to create and complete class
projects within groups based on the contents of the assigned
videos.

The instructional videos were pre-recorded PowerPoint
presentations carried out by the head-instructor, with content
based on a book also written by the head-instructor. A total
of 34 video clips covered 11 instructional weeks, and the
numbers of 1 to 11 in the video names indicate the cor-
responding instructional weeks (refer to the videos 1_1 to
11_4 in Appendix). The mean length of the 34 videos was
about 11 minutes with an SD of 5.92. The minimum and
maximum values were 4.1 and 29.2, respectively, but most
of them ranged between 5 and 10 minutes. The first, second,
and third quartiles of the video length were 7.13, 9.11, and
13.65, respectively, indicating a right-skewed distribution.
Each week’s running time was between 23.81 and 52 minutes,
and students on average were expected to watch 34.34 min-
utes of videos each week (SD = 8.59). The first, second, and
third quartiles of the weekly length were 28.84, 32.90, and
38.61, respectively.

During class, interactions in small groups of 4 to 6 students
were greatly encouraged. The groups engaged in discussions
on team projects and SPSS exercises in Zoom breakout
rooms. The instructor observed group interactions and at the
end of the class gave short lectures on some of the topics
that students appeared to have developed misconceptions
about. A non-mandatory quiz of 3-4 short questions was also
presented before class for each instructional week in LMS.
Students were told that the quizzes would serve as forma-
tive assessments and the quiz scores did not count toward
grades.

C. DATA

1) LMS LOG DATA

In total, 21,589 rows of video watching activities as well
as 5,107 rows on board-posts readings were recorded in
the log file. As many of the students indicated that they
used the double-speed option of the LMS in video watching,
we used 50% of the video length as a criterion. If a student
watched a video 50% of the length or more, the student
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is counted to have completed watching the video, and vice
versa.

As the second and third research questions related to stu-
dents’ video watching behaviors at an instructional unit level,
this study counted the frequencies of each video watching,
separating before/after and attempted/completed watching.
Specifically, 4 variables were created for each video: BI
(incomplete attempt before class), BC (complete watching
before class), Al (incomplete attempt after class), and AC
(complete watching after class). Eight aggregate variables
were also obtained for comparison purposes to previous
research: BI, BC, and B (=BI + BC) for before class counts;
Al AC, and A (=AI + AC) for after class counts; and lastly I
for all incomplete watching and C for all complete watching.
As a result, students’ video watching activities were reorga-
nized as 144 variables: 136 (=34 videos 4 variables) plus
8 aggregate variables.

Ten other variables extracted from the log data included
the numbers of clicks on SPSS data materials (spss.post,
spss.sum), Q and A (gna.post, gna.sum), and other board
postings (board.post, board.sum). These variables were sum-
marized in pairs. Variables named *.sum (e.g., spss.sum)
indicate the total clicked numbers, while the other pair (e.g.,
spss.post) only counted once for multiple clicks. The frequen-
cies by device (e.g., mobile or PC) of quiz-taking and video
watching were also obtained. Variables test.P and test.M
indicate the frequencies of quiz-taking via PC and mobile,
respectively, and lecture.P and lecture.M for instructional
video watching via PC and mobile, respectively.

2) STUDENT VARIABLES AND RESPONSE VARIABLE

Student variables were measured from a survey admin-
istered in LMS during the second week of the course.
They included gender (l=male; O=female), on-grade
(1=sophomore; O=others), on-semester (l=yes; 0=no),
number of practicum, and the mean score of an attitude
survey. The survey consisted of 25 Likert-scaled items,
and measured students’ attitudes toward measurement and
evaluation (Cronbach’s alpha=.92). Sample items are “It is
important to know and use performance level descriptions
in student evaluation” and ‘‘Establishing alignment between
curriculum, assessment, and instruction is necessary to stu-
dent evaluation.”

The response variable of this study was the final test score.
The final test consisted of 35 multiple-choice items covering
the 11 weeks, and was given simultaneously to all the 242 stu-
dents at the last week of the course. Five students missed the
final, and their data were excluded from further analysis. The
mean score of the final was 25.6 (SD = 5.68). The lowest
score was 5, and the highest (perfect) score was 35. The first,
second, and third quartiles of 22, 27, and 30, respectively,
indicating a left-skewed distribution. The student variables
were merged to the video watching variables from LMS log
data (IV-C1), which resulted in the final dataset of 159 pre-
dictors and 1 response variable of 237 students.
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TABLE 1. Test data RMSE of regularization and RF.

TABLE 3. Selection counts of regularization.

RF-default | 4.26 | 5.18 | 543
RF-tuning 432 | 5.19 5.49

543(038) | 5.68 | 6.94
5.48(0.40) | 574 | 6.98

6.0

RMSE

5.0 1

T T T T
Enet Mnet RF-default RF-tuning

Types of ML Techniques
FIGURE 1. 95% Confidence intervals of test data RMSE.

TABLE 2. Descriptive statistics of the mtry values after RF-tuning.

Min| Ql Med
Value| 1 17 34

Mean(SD) Q3 Max| Mode
44.67(37.83)| 60 158 | 5,8

V. RESULTS

A. MACHINE LEARNING RESULTS (RQ1)

1) PREDICTION MEASURE

The first research question was to examine whether RF
showed better prediction performance than regularization.
Specifically, a total of four ML models, Enet, Mnet,
RF-default, and RF-tuning, were compared in terms of test
data RMSE. Despite the efforts to maximize prediction by
tuning the mtry parameter of RF, the 95% confidence inter-
vals of the four models overlapped (Table 1 and Figure 1).
Test data MAE (mean absolute error) showed similar patterns,
and the 95% confidence intervals also overlapped.! In sum-
mary, the four models were not statistically different in terms
of prediction.

For better understanding, we present the descriptive statis-
tics of the tuned mtry values across 1,000 iterations in Table 2.
The mtry values after tuning covered almost all possible range
with the standard deviation (37.83) being close to the mean
(44.67) or median (34). They also tended to be smaller than
Breiman’s suggestion, the default value of 53.

2) SELECTION COUNTS OF REGULARIZATION
As the confidence intervals overlapped (Figure 1) and regu-
larization produces interpretable prediction models, we chose

IThe MAE results are available upon request.
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Min Ql Med Mean(SD) Q3 Max >1 > 250 > 500 > 750 =1,000
Enet 443 | 531 5.60 5.61(0.43) | 5.92 6.93 Enet 135 34 17 1 0
Mnet 4.56 | 5.39 5.66 5.69(0.43) | 5.97 8.56 Mnet 106 19 2 0 0

regularization for subsequent analyses. Figure 2 shows the
solution paths of Enet and Mnet with a random seed. The
horizontal axis depicts A (penalty parameter) values in range,
and the vertical axis indicates the regression coefficients.
Each curve in the solution path corresponds to a predictor,
and increasing values of A shrink the coefficients toward
zero. While Enet using a convex penalty function imposes the
same penalty on the coefficients, the concave penalty of Mnet
tapers off with larger coefficients in absolute values, and thus
larger coefficients get less shrunken with Mnet than with Enet
(see Figure 2).

The selection counts of regularization after 1,000 iterations
are presented in Table 3. A total of 135 and 106 predictors
were selected out of 159 at least once with Enet and Mnet,
respectively. Applying 25% or more selection counts resulted
in 34 and 19 predictors of Enet and Mnet, respectively. A total
of 17 and 2 predictors were selected at least 1 out of 2 runs
of Enet and Mnet, respectively. No predictor was selected in
all 1,000 iterations with either Enet or Mnet. In sum, Mnet
produced larger coefficients and selected fewer variables than
Enet, consistent with literature (e.g., [38], [50]).

B. IMPORTANT PREDICTORS OF STUDENT ACHIEVEMENT
(RQ2)

The second research question was to investigate important
predictors of student achievement. Mnet always selected
fewer predictors than Enet, but both Mnet and Enet showed
similar trends in selecting important predictors. The summary
of predictors selected 50% or more for Enet and 25% or more
for Mnet are presented in Table 4. The first three predictors
(gender, on-grade, and attitudes) were from a student survey
administered in LMS, predictors 8 to 19 were video-watching
variables at an instructional unit level, and predictors 4 to
7 were other learning behaviors extracted from LMS log data.

1) VIDEO-WATCHING VARIABLES

Among the 144 variables on video watching, 10 to 12 vari-
ables were selected as important depending on the regular-
ization methods. First of all, the very first video (1_1) turned
out to convey crucial information in predicting students’
achievement. Although it covered the easiest contents, for-
mative assessment (refer to Appendix), the more the students
completed watching the first video before class (BCO1_1),
the higher their final scores were. Specifically, one more
completed watching of the first video before class was asso-
ciated with 0.59 (Enet) and 0.69 (Mnet) higher scores in
the final exam. By contrast, one more completed watching
of the first video after class (ACO1_1) was associated with
0.47 and 0.59 lower scores in Enet and Mnet, respectively.
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FIGURE 2. Solution paths of Enet and Mnet (seed = 1234).

TABLE 4. Coefficients of selected predictors by regularization.

Enet Mnet
variable Mean SD # Mean SD #
1 | gender(male) | -0.56 0.31 598 | -0.70 038 341
2 on-grade -0.58 026 731 | -0.76 032 486
3 attitudes 1.39 0.53 819 1.67 0.63 634
4 test.P 0.23  0.10 691 0.30 0.15 460
5 test.M 034 0.12 525 0.50 0.15 306
6 lecture. M 0.01 0.01 516 0.02 0.01 283
7 spss.sum 0.11 0.05 515 0.16 0.07 269
8 BCO1_1 0.59 029 735 0.69 037 497
9 ACO01_1 -047 022 622 | -0.59 029 366
10 BI102_2 -0.45 0.17 518 | -0.63 0.23 278
11 AI04_2 -0.19 0.08 614 | -0.25 0.11 369
12 AC04_3 0.38 0.24 503 0.55 033 295
13 AC06_2 033 021 599 0.40 029 367
14 AC09_3 0.33  0.20 673 045 029 436
15 AC10_2 043 026 704 0.55 037 473
16 ACI1_4 033 023 563 0.44 034 322
17 Alll_4 035 0.17 564 045 025 307
18 Al04_3 -0.21  0.11 293
19 ACO06_1 043 031 269

Note: # indicates selection counts in 1,000 iterations.

This variable, ACO1_1, was the only ‘AC’ variable having a
negative relation to the final exam.

Second, a total of seven ‘AC’ variables were selected
important. With the aforementioned exception of AC01_1,
the other AC variables (e.g., AC04_3, AC06_1, AC06_2,
AC09_3, AC10_2, AC11_4) had positive relations to the
final. These AC variables covered either the earlier unfamil-
iar, technical contents or the most difficult concepts at the end
of the course. Particularly, the unfamiliar, technical contents
included Ebel and Angoff standard setting (AC04_3) and
the first SPSS practice (AC06_2). Videos in the last weeks
of the course (weeks 9 to 11) covered the most difficult
concepts such as Cronbach’s alpha (AC09_3), reliability with
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SPSS (AC10_2), and the relationships between reliability and
validity (AC11_4). Students who completed watching these
earlier technical or later difficult videos multiple times after
class were more likely to obtain higher final scores.

Third, two ‘B’ variables were selected important: BCO1_1
and BI02_2. Aforementioned, completing the first video
before class (BCO1_1) related to higher final scores, but con-
versely incomplete watching of a video assigned in the second
instructional week before class (BI02_2) related to lower
final scores. The video 2_2 was on scoring in performance
assessment including analytic and holistic rubrics. Compared
to other videos covering unfamiliar (e.g., 4_2,4_3), technical
(e.g., 6_2), or difficult contents (e.g., 11_2, 11_4), this video
is said to be easy.

Fourth, three ‘A’ variables were selected as important.
Although all the three Al variables were about rather unfa-
miliar or difficult contents, the coefficients of the earlier
videos (videos 4_2 and 4_3) were negative and that of the
last week was positive (video 11_4). Specifically, AI04_3 was
negative, but AC04_3 was positive. Students who completed
watching video 4_3 multiple times after class obtained higher
final scores, but students’ unsuccessful attempts to watching
it after class related to lower scores. By contrast, students’
mere attempts to watch the difficult last video (AI11_4) were
associated with higher scores. As was with the first video,
this last video also turned out to be crucial in predicting
student achievement; both AI11_4 and AC11_4 had positive
coefficients.

2) STUDENT AND OTHER LEARNING BEHAVIOR VARIABLES
Irrespective of regularization methods, students’ attitudes
toward the course (attitudes) were the most frequently
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TABLE 5. Descriptive statistics on students’ video watching frequencies
per video.

I(incomplete) C (complete)
Min Mean(SD) Max | Min Mean(SD) Max
B(before class) | 0.00 0.19(0.42) 1.66 | 0.00 0.22(0.43) 1.15
A(after class) | 0.25 1.01(0.59) 2.19 | 0.25 1.07(0.40) 1.42
Note: The mean values smaller than 1 indicate that students on average
did not watch all the videos.

selected predictor, followed by completion of pre-class
watching of the first video (BCO1_1) and grade level (on-
grade). Specifically, students’ positive attitudes toward mea-
surement and evaluation were associated with higher scores;
one unit increase in the mean score related to 1.39 (Enet)
and 1.67 (Mnet) increase in the final. On-grade students,
who were sophomores, had 0.58 and 0.76 lower scores than
off-grade students with Enet and Mnet, respectively. Student
gender was also selected important. When the other variables
were held constant, male students had 0.56 and 0.70 lower
scores than female students with Enet and Mnet, respectively.

Among variables extracted from log data, the total number
of clicks on SPSS material postings (spss.sum), the numbers
of quiz-taking via mobile or PC (test.M and test.P), and the
frequencies of video watching via mobile (lecture.M) were
important predictors to the final scores. More clicks on SPSS
postings related to higher scores. Specifically, one more click
on the SPSS material was associated with 0.11 (Enet) and
0.16 (Mnet) increase in the final scores. Similarly, although
students knew that the scores on quizzes did not count toward
the final grade, simply taking the quizzes related to higher
scores regardless of the device (mobile or PC). Interestingly,
mobile test-taking contributed to the final more than PC test-
taking did. The coefficients of mobile test-taking were 0.34
(Enet) and 0.50 (Mnet), while the corresponding coefficients
of PC were smaller: 0.23 (Enet) and 0.30 (Mnet). Likewise,
students who watched the instructional videos mobile (lec-
ture.M) also obtained higher final scores, but lecture.P was
not selected important. Specifically, one more video watched
mobile was associated with score increase of 0.01 (Enet) or
0.02 (Mnet).

C. VIDEO-WATCHING PATTERNS AT AN INSTRUCTIONAL
UNIT (RQ3)
The third research question was to investigate students’ video
watching patterns at an instructional unit level. Table 5 sum-
marizes the descriptive statistics of BI, BC, Al, and AC.
Although video watching was pre-class assignments, students
on average completed watching only about 20% of the videos
before class (BC mean = 0.22). Rather, they watched them
after class (AC mean = 1.07). The range of students’ video
watching frequencies was quite wide. Some students clicked
none of the videos before class (BI min = 0.00; BC min =
0.00), while others after class attempted to watch and finished
watching each video as many as 2.19 (Al max) and 1.42 times
(AC max), respectively.

Figure 3 shows each video’s BI, BC, Al, and AC averages
and 95% confidence intervals. The horizontal axis is the
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34 videos in class progression (instructional weeks of 1 to 11),
and the vertical axis indicates the average watching frequen-
cies. The plot shows interesting patterns. Students completed
the pre-class assignments in weeks 1 to 3, but they stopped
watching assigned videos in the following weeks of 4 to 11.
Particularly, BC averages of weeks 4 and 11 plummeted to
nearly 0, and both AT and AC spiked during this period. While
AC values were consistent, Al fluctuated.

VI. DISCUSSION

A. REGULARIZATION AND LEARNING ANALYTICS

The choice of ML techniques to employ depends on the data
to analyze and research questions to answer. For example,
image data used in classic face recognition [51] are noisy
data, consisting of pixel information. Each pixel serves as
a variable, and the relations are very complex. The sole
research question is to predict face patterns, not to explain
pixel variables. Considering the data characteristics and
research question, models incorporating nonlinear, higher-
order interactions will outperform those consisting of only
main-effects. Nonlinear methods such as RF, SVM, and
deep learning are well-suited for those unstructured, high-
dimensional data; and will be likely to outperform linear
models, particularly when enough training data are available.

Nevertheless, nonlinear methods are not a panacea to every
research question [52], and they particularly have interpreta-
tion issues. Although diagnostics such as variable importance
and partial dependence plots have been in use to assuage
the interpretation problems, heavily predictive models are in
essence complex ones, and only incomplete pictures of the
results can be shown [27]. Relatedly, studies employing neu-
ral networks (e.g., [31]) or RF (e.g., [32]) did not discuss indi-
vidual predictors’ effects on student performance. However,
educational research requires much more explanation than
face recognition does. Although prediction is still important,
researchers and practitioners in education will benefit from
knowing what variables are related to students’ academic
achievement under what conditions.

Therefore, ML methods of interpretability deserve atten-
tion in learning analytics. Regularization produces explain-
able prediction models among ML, as it is based on linear
regression and selects important predictors after shrinkage.
Beyond producing interpretable models, the Enet and Mnet
models of this study were comparable to RF models in terms
of prediction. Likewise, multiple studies across diverse dis-
ciplines reported that linear models are comparable to RF
(e.g., [53]-[55]) or even better than RF (e.g., [19], [20],
[56]). These studies with ours have in common that the
variables were pre-selected based on previous research. For
instance, our raw data were unstructured LMS log data, but
we extracted predictor candidates based on Pintrich’s con-
ceptual framework for SRL. This approach also appears to
have increased the SNR (signal-to-noise ratio) of our cleaned
data. Relatedly, Boulesteix et al. [S7] and Probst et al. [46]
recommend small and large mtry of RF for high and low
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FIGURE 3. Average watching frequencies and the 95% confidence intervals of BI, BC, Al, and AC.

SNR data, respectively. Our mtry values after tuning were
smaller than that of Breiman’s suggestion, which can be
an indication of high SNR. These altogether highlight the
possible advantages of employing regularization in learning
analytics.

B. IMPORTANT VARIABLES FOR PREDICTING LEARNING
ACHIEVEMENT

1) VIDEO WATCHING BEHAVIORS

The prediction models could identify potential low- or
high-performers as early as the first instructional week, right
after the orientation week. Specifically, multiple viewings
of the first video before class was a strong predictor of
higher final scores, while after class viewings of the same
video produced opposite results. This finding is indicative
of the importance of SRL behaviors, particularly forethought
and planning [30] by high performance students. Relatedly,
students who attempted but failed to complete watching the
second week’s video multiple times before class had lower
scores. Students who failed to watch the first and second
week’s videos before class might have had other issues not
directly related to class. The significance of these variables
demonstrates that procrastination and lack of persistence,
a strong predictor of achievement, may be revealed at a very
early stage. Thus, it appears that instructor intervention early
in the semester is worth pursuing in FCs.

Watching videos completely with difficult or unfamiliar
content (weeks 4, 6, and 9 to 11) multiple times after class
lead to higher scores in the final exam. High performers
seem to have thought that they did not perfectly understand
those videos covering difficult or unfamiliar contents and
thus repeated watching them after class. This result also
demonstrates higher-performing students’ employment of
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SRL behaviors. That is, higher-performing students recog-
nized that they did not understand the contents to their con-
tent, and strategically spent extra hours on reviewing the
technical or difficult videos after class.

On the contrary, unsuccessful attempts to watch videos on
unfamiliar contents (e.g., Ebel and Angoff standard setting)
covered in the earlier week (week 4) after class decreased
the scores, while students who completed watching the
same video multiple times after class increased their scores.
Repeated complete viewings of challenging contents after
in-class meetings indicate their self-monitoring behaviors,
increased effort, and persistence. High and low performers
differed in terms of how they plan and invest their efforts in
relevance to the instructional context.

Findings from previous research which tend to use
aggregate variables such as pre-class quiz scores [11] or
self-reports on pre-class engagement [58] provide insight
into factors predicting FC outcomes. Following the previous
research, we included 8 aggregate variables in the predic-
tion models, including BI (incomplete attempt before class),
BC (complete watching before class), Al (incomplete attempt
after class), and AC (complete watching after class). How-
ever, none of them turned out to be important. The regular-
ization methods that this study employed (Enet and Mnet)
handle multicollinear data by selecting predictors in close
relations together. If the aggregate variables were important to
predict student achievement, they could have been selected.
This signifies the need to investigate students’ behavioral data
at an instructional level unit.

2) STUDENT AND OTHER LEARNING BEHAVIOR VARIABLES
Among student variables, attitudes toward the course, gender,
and on-grade were important for predicting the final scores.
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Particularly, students’ attitudes toward the course, measured
in the second week, was the most frequently selected pre-
dictor. Unlike other studies which collected students’ pre-
class engagement via self-reported surveys (e.g., [58]), the
current study measured students’ attitudes or perceptions
toward the course. As expected, students who showed pos-
itive attitudes toward the course from the beginning obtained
higher scores in the final. Male students obtained lower scores
than female students, and on-grade students had lower scores
than off-grade students. Gender and academic status have
been identified as factors impacting academic outcomes [59],
[60]). Particularly in college FCs, females possessed higher
academic readiness than males, and older students had higher
preference for FC methods than freshmen [61]. The course
was intended for sophomores, but no freshmen took the
classes and all the off-grade students were senior students.
Test-savvy senior students might have had advantages over
sophomores.

Other important variables included clicks on SPSS material
postings, the number of quizzes taken via PC or mobile,
and the frequencies of mobile video watching, the regression
coefficients of which were all positive. These variables repre-
sent the tendency to make extra effort for mastering contents
of the course, i.e., mastery goal orientation [62], whenever
possible. In particular, although the quiz scores were not
counted toward the final grade, the more students took the
quizzes (PC or mobile), the higher their final scores were.
Testing is known to be one of the most effective methods for
academic success [63], and students’ quiz-taking appears to
relate to students’ self-monitoring behaviors. Lastly, the pos-
itive relation between mobile learning and academic achieve-
ment may be due to the learner’s motivation to invest more
effort anytime and anywhere. This finding is in line with the
systematic review by Crompton and Burke [64] regarding
the effects of mobile learning on academic achievement.
Although itis beyond the scope of the current study to identify
the cause of this relationship, the finding of this study does
suggest that providing the choice of technological platforms
is necessary to address the needs of various students.

C. VIDEO WATCHING PATTERNS AT AN INSTRUCTIONAL
UNIT

The results of this study demonstrate that differentiating
before and after class viewing behaviors in combination
with complete and incomplete viewing behaviors, provide
a deeper look into the study patterns of students. Contrary
to the premise of FC that students should prepare them-
selves for in-class meetings by watching lecture recordings
in advance, many students did not complete watching lecture
videos ahead. Regardless of completion, students watched the
videos after class. From an instructional design perspective,
these results imply that instructors might have to redesign
the structure and strategies used in FCs. Randomly assigning
students to summarize the lecture at the beginning of in-class
meetings, allowing only students who completed pre-class
assignments to open in-class materials, or setting up a reward
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system for completed viewings ahead of class may be strate-
gies worth considering.

Interestingly, the pattern of after-class complete viewing
was consistent and its frequency was over 1.0. Students who
went through the entire video after class were likely to receive
higher scores for their final exams. These results reveal the
study patterns of high achieving students taking advantage of
the lecture videos that FCs offer. At the same time this also
implies that, FCs are similar to other forms of online classes
in terms of providing lecture videos for repeated viewings, but
not serving its original purpose which is enhancing in-class
learning.

In contrary, incomplete after class viewings fluctuated for
nearly the entire semester, with students opening the videos
multiple times for the first video of each week and less
than once for the rest of each week’s videos. This pattern
of quitting early may be due to the characteristics of these
students who lack the motivation to pursue their goals or the
difficulty level of this course. Whatever the cause may be,
this implies the need for instructors to help these students
solve the difficulties they face during the semester. Regular-
ity of pre-class activities including video watching behav-
iors has been identified as important indicators for learning
achievement [39]. The current study demonstrates the need
to look beyond regularity and investigate how students react
to changes in the instructional context as well.

Furthermore, the question of why the FC model is not
working as intended may be raised. The incompatibility
of students’ total workload with individual FCs requiring
planned effort and time, or the general lack of enthusiasm of
the ordinary student after the early weeks of the semester may
be the cause for very low viewings before class. Other factors
may include the nature of this course, such as mandatory
enrollment, and the switch from norm-referenced scoring to
criterion-referenced scoring due the COVID-19 pandemic.
Extremely low levels of preparation for classes imply the
complexities involved in bringing about successful participa-
tion of students in FCs.

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
Based on the findings, we propose regularization as a suitable
ML method in learning analytics. Regularization particu-
larly combined with LMS log data can explore unknown
relationships among variables related to students’ learning
in the online environment. Beyond producing interpretable
prediction models, the regularization of this study showed
comparable prediction to RF. More regularization research in
learning analytics will open up many possibilities for using
educational big data.

Like other ML techniques, regularization may not yield the
same results mainly due to data-splitting in model validation,
which can be an issue when variable selection is of interest.
Among 159 predictors explored, as many as 135 predictors
were selected at least once and none of them was selected in
all 1,000 iterations. This asserts the need to build models mul-
tiple times and employ selection counts with regularization.
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However, there has been no research on selection counts in
the context of learning analytics. The criteria on the selection
counts deserve attention in future research. Another method-
ological finding is that tuning in random forest did not out-
perform Breiman’s default, but more research is warranted on
this topic to give practical guidance to researchers in learning
analytics.

Findings of this empirical study are either in line with the
existing literature, or present variables rarely recognized in
previous studies. Variables such as gender, grade level, atti-
tudes towards the course have been identified to have impact
on academic achievement in previous studies. Variables less
frequently recognized in previous studies include completion
of the first instructional video before class, completion of
videos of unfamiliar or difficult contents after class, or mere
attempts to watch the last difficult video as well as mobile
learning and non-mandatory quiz-taking. Further exploration
of these variables with other potentially important predic-
tors (e.g., students’ intellectual/socioemotional development,
career-related variables, family and school factors) through
regularization can provide more insight into understanding
students’ learning from a comprehensive perspective.

This study also revealed that contrary to expectations most
students did not watch videos before in-class meetings but
rather completely/incompletely watched them after class.
Further research on patterns of self-regulated learning behav-
iors in relation to pedagogical factors (e.g., motivation strate-
gies, instructional strategies) is needed to understand how
students respond to various instructional stimuli presented to
them during classes.

Given the importance of out-of-class self-directed learn-
ing in FCs, we will need to make more efforts to establish
stronger links between pre-class assignments and in-class
team projects, which will secure students’ motivation in
this course or similar courses, no matter where they were
in the beginning. The low level of pre-class learning from
the beginning of the semester and the fluctuating pattern of
incomplete video watching make us consider methods for
making in-class activities and pre-class learning materials
more attractive, or if FC is an effective method for them
at all. Stronger links can be made not only by developing
class activities heavily relying on pre-class learning, but also
through technological solutions.

The methods of this study allowed us to draw a detailed
picture of what actually takes place in FCs in terms of learning
behaviors. Traditional studies using aggregate variables had
difficulty identifying which behaviors were highly related to
desirable outcomes. By utilizing ML methods in this study,
we hope that methods for fine-tuning interventions, feedback,
lectures, and materials to the individual can be developed
with more precision. The COVID-19 pandemic accelerated
the rate of digitalized learning. The use of online platforms
containing various tools for distributing materials, lecturing,
testing, and interacting is likely to be the norm even for
late-adapters before the pandemic. As the increase in variety
and amount of data collected through future developments of
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LMSs are expected, we anticipate to see more regularization
research in learning analytics in the near future.

APPENDIX
VIDEO IDs, LABELS, AND DIFFICULTY

Video| Label Difficulty|
ID
1 | 01_1 | formative assessment Easy
2 | 02_1 | performance assessment: definition | Easy
3 |1 02_2 | performance assessment: scoring Easy
4 1 03_1 | test construction steps Easy
5 | 03_2 | multiple-choice items Easy
6 | 03_3 | constructed-response items Easy
7 | 03_4 | scoring caveats Medium
8 | 04_1 | norm-referenced evaluation Medium
9 | 04_2 | criterion-referenced evaluation Medium
10 | 04_3 | Ebel and Angoff standard setting Difficult
11 | 05_1 | variables and scales Medium
12 | 05_2 | sampling Medium
13 | 06_1 | descriptive statistics Medium
14 | 06_2 | descriptive statistics (SPSS) Medium
15 | 07_1 | measuring affective domains Easy
16 | 07_2 | observation Easy
17 | 07_3 | interview Easy
18 | 07_4 | survey Easy
19 | 08_1 | item difficulty and discrimination I | Medium
20 | 08_2 | covariance and correlation Difficult
21 | 08_3 | item difficulty and discrimination II | Difficult
22 | 08_4 | item difficulty and discrimination | Difficult
(SPSS)
23 | 09_1 | introduction to reliability Medium
24 1 09_2 | types of reliability Difficult
25 | 09_3 | Cronbach’s alpha Difficult
26 | 09_4 | standard error of measurement Difficult
27 | 09_5 | factors influencing reliability Difficult
28 | 10_1 | objectivity and reliability Medium
29 | 10_2 | reliability (SPSS) Difficult
30 | 10_3 | objectivity (SPSS) Medium
31 | 11_1 | content validity Medium
32 | 11_2 | criterion-related validity Difficult
33 | 11_3 | construct validity Difficult
34 | 11_4 | relationships between reliability | Difficult
and validity

Note: Instructors rated difficulty of each video into three
difficulty categories before semester started.
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