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ABSTRACT The use of artificial intelligence (AI) in the form of pricing algorithms to increase profits is
becoming ubiquitous. However, the literature has focused on specific markets and algorithms so far, but
it is unclear what happens across algorithms and markets. To analyze the business and economic impact
of pricing algorithms, we build a computational model that considers two sophisticated AI algorithms
(Q-learning and Particle SwarmOptimization) competing in prices in three different market structures (Logit,
Hotelling, and linear demand models). From a social perspective, we find that PSO outperforms Q-learning,
which tends to set supracompetitive prices. However, small changes in the algorithm designs may drive
them to set more competitive prices, implying that a proper analysis of algorithmic competition requires
considering the details of the algorithms and the market structure. When firms compete on algorithms,
algorithms may generate price dispersion. Additionally, when facing a traditional competitor that uses a
best-response function, algorithms tend to set supracompetitive prices, and both firms earn extra profits, but
the traditional competitor benefits the most. Overall, the article contributes to understanding algorithmic
competition, discusses implications for managers and policymakers, and identifies opportunities for future
research.

INDEX TERMS Artificial intelligence, algorithmic competition, computational economics, market simula-
tion, pricing.

I. INTRODUCTION
Artificial Intelligence (AI) is a powerful technology that is
transforming today’s business. However, in many cases, the
business and economic impact of AI is not clear. A case in
point is the use of AI-enabled algorithmic pricing.

Algorithmic pricing involves using algorithms that auto-
matically set prices without human supervision. Companies
use algorithmic pricing to compete more effectively and
increase their profits. Algorithmic technology is not exclusive
to big tech companies like Uber or Amazon. Software and
services that allow small retailers to use such a technology
are becoming more affordable and ubiquitous. For example,
between 2014 and 2015, 500 out of 1.600 of the best-sellers
products on Amazon were priced using algorithms, which
allowed those sellers to win the Amazon ‘‘Buy Box’’ most
of the time and outperform non-algorithmic competitors in
Amazon’s rankings [1].
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At first sight, it may seem to be a desirable outcome. Intelli-
gent pricing algorithmsmay lead to more contestable markets
as the frequency of price changes increases, may bring better
service, better product availability, or an improved customer
experience [2], [3]. On the other hand, they also pose a threat.
Several authors and authorities have raised concerns about
the capacity of those algorithms to collude autonomously
and automatically (conscious parallelism). The Competition
and Markets Authority (CMA) has highlighted that, although
authorities have tools to deal with many forms of collusion,
there is a chance that some collusive practices may fall out of
the scrutiny of the institution [3].

Moreover, in the case of suspicious collusion, it is unclear
where lies the burden of proof, whether the company
should explain the algorithm, or whether the authorities
should prove that the algorithm colluded [4]. Competi-
tion authorities have limited tools to deal with a sce-
nario of ‘‘conscious parallelism’’ of algorithms [5]. At the
same time, automated and autonomous collusion is a real
threat, because a simple Q-learning algorithm may learn to
collude [6]–[8].
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However, some authors are more skeptical about real cases
of algorithmic collusion. For instance, maybe the algorithm
homogeneity assumption is too strong, and the collusive
results are not robust ( [3] and [5]). Other limitations for
collusion may be the preference specification, the algorithm
scalability, or the market structure [9].

This article aims to analyze the business and economic
impact of pricing algorithms and algorithmic competition.
We construct AI pricing agents and let them interact in
computer-simulated markets. The advantage of this approach
is that it allows for rigorous computational experiments with-
out the need to recreate all those scenarios in the real world.
We consider two sophisticated artificial intelligence pric-
ing algorithms: Q-learning and Particle Swarm Optimization
algorithms (PSO). Firms using algorithmic pricing compete
in three different market structures: Logit, Hotelling, and
Linear demand. The Logit model has become a standard in
the algorithmic pricing literature [6], [10], [11]. TheHotelling
and the linear demand model are well-known in operations
research and economic modeling [12], [13].

In the main setup, two companies compete on prices using
either Q-learning or PSO. We show that Q-learning leads
to significant supracompetitive prices in some environments,
but the outcome depends on the market structure. A priori,
these results may raise concerns for both competition author-
ities and firms, which may devote significant resources to
these cases.

We also examine how changes in algorithm design
may affect the outcome of the algorithmic competition.
We show that a slight change in the design of Q-learning
and PSO may improve their performance. This finding
raises a new concern because the algorithms are essen-
tially the same, but they achieve more competitive results
in some cases. This situation may suggest that competi-
tion authorities may require a case-by-case approach when
dealing with price algorithms, which also requires access to
the algorithm architecture and implies devoting significant
resources. Moreover, firms should be aware that small mis-
takes in the code may lead to significantly different pricing
behaviors.

We also consider a setting in which firms compete on
algorithms: A firm uses PSO and the competitor Q-learning.
We show a trade-off between exploration and exploita-
tion. Our results suggest that the last algorithm exploiting
its environment has an advantage similar to a Stackelberg
leader. Intuitively, it sets prices knowing how its algorithmic
competitor would react. Interestingly, in all cases, we find
algorithms generate price dispersion. When an algorithm
competes against a traditional best-response firm, we also
find supracompetitive prices. The algorithmic firms earn
extra profits but less than the best-response firm, and it is the
best-response firm that benefits the most. Overall, the article
makes the following contributions:

1) We explore the business and economic impact of AI in
the form of algorithmic pricing. Firms use algorithms to
compete more effectively and increase their profits, but

this raises the risk of intervention by public authorities
concerned about anti-competitive behavior.

2) We develop a computationalmodel of algorithmic com-
petition that considers several algorithms (Q-learning
and PSO) and market structures (Logit, Hotelling, lin-
ear demand).

3) We examine how algorithm design changes may affect
market outcomes.

4) We examine an extension setup of firms competing
on algorithms (instead of competing on pricing using
algorithms).

5) We examine an extension setup of an algorithm com-
peting against a traditional best-response function firm.

The following section provides a background on algorith-
mic pricing. Section III develops the computational model,
while Section IV presents the computational experiments and
results. Lastly, we summarize the results, discuss managerial
and policy implications, and outline opportunities for future
research.

II. ALGORITHMIC PRICING: Q-LEARNING & PARTICLE
SWARM OPTIMIZATION
Algorithmic pricing is a method of automatically setting
prices to maximize a firm’s profit. Simple automated rules,
such as discounts, may not satisfy this definition because they
may not guarantee profit maximization. In 2011, two algo-
rithms increased theAmazon prices of the book ‘‘TheMaking
of a Fly’’ to $24 million.1 Those algorithms do not satisfy our
definition because the objective was to generate marginally
more revenue than the competitor. The Competition andMar-
kets Authority (CMA) takes a much more inclusive definition
that also considers monitoring, recommendation, and ranking
algorithms as pricing algorithms [3]. We focus on price-
setting algorithms.

A pricing algorithm should maximize expected profit, and
it must be complex enough to guarantee that it cannot go out
of control. Many algorithms can fulfill these two conditions,
and the architecture of pricing algorithms is a well-kept secret
of companies.2 Furthermore, the analysis of algorithms based
on complex artificial intelligence (AI) techniques is even
more challenging due to the well-known black-box problem
of AI.

We are interested in simple algorithms characterized by a
few parameters to obtain a clear interpretation of the results,
making it possible to keep arbitrarily modeling choices to
a minimum. Two candidates that fulfill this requirement
are Q-learning and Particle Swarm Optimization (PSO)
algorithms. Both algorithms are used in experimental eco-
nomic problems [6], [7], [14], [15], [16]. The Q-learning
algorithm is part of the Reinforcement Learning (RL) lit-
erature [17], while the PSO is part of the Evolutionary
Algorithms (EA) [18].

1https://www.wired.com/2011/04/amazon-flies-24-million/
2https://www.vice.com/en/article/v7gyp4/uber-drivers-sue-to-gain-

access-to-its-secret-algorithms
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The Q-learning algorithm is the workhorse in current algo-
rithmic pricing research. Q-learning is highly popular among
computer scientists, is simple and can be fully characterized
by just a few parameters, and shares the same architecture as
the more sophisticated programs that have recently obtained
spectacular successes in playing Go and chess [6]. Addi-
tionally, the core of the Q-learning algorithm is based on
Bellman’s value function, which is widely used in economics
and business research. However, Q-learning suffers a dimen-
sionality problem [19]. To set prices, it must keep track of all
the potential actions (prices) it can take; thus, the complexity
grows exponentially with multi-product companies. A large
price range may be infeasible computationally, and a short
range may miss the optimal prices.

PSO does not suffer from the dimensionality problem [20].
It is suitable to address multidimensional optimization prob-
lems because it does not require keeping track of all the poten-
tial actions. Additionally, the more ambitious the goals of
some RL researcher, the more he/she will get drawn towards
methods for [EA], [19]. However, PSO is not as intuitive or
closely linked to economic modeling as Q-learning.

Compared with Q-learning, PSO algorithms do not
‘‘learn’’ strategies, but they ‘‘select’’ good outcomes. In other
words, if we are interested in analyzing strategies, PSO is
not a good option. However, if we are interested in analyzing
just the output (optimal price), PSO can be a good option.
More technically, another advantage of the PSO arises when
the objective function is non-convex. In such a case, RL may
get stuck at local optima while EA, just by virtue of sampling
from a large population, would converge to the global solution
easily. Additionally, PSO does not require a differentiable
problem. In the following, we provide a short description of
the algorithms and explain how they are implemented in our
research.

A. Q-LEARNING
Q-learning is a method for finding an optimal policy with
no prior knowledge of the inherent structure of the game.
The method works by iteratively estimating the Q-function
Qi (s, ai), which represents the cumulative discounted payoff
of taking action ai ∈ A in state s ∈ S by agent i. This
Q-function may be defined recursively as follows,

Qi
(
s, ati

)
= E

(
s, ati

)
+ δE

[
st , ati

]
(1)

In this framework, we assume that A and S are finite, and A
is not state-dependent. Therefore, the Q-function becomes a
|A|∗|S|matrix. To estimate this matrix, Q-learning starts from
an arbitrary initial matrix Q0

i , which is updated at each itera-
tion. After choosing ati in state s

t , the algorithm observes the
payoff π ti , the next state s

t+1, and updates the cell Qi (s, ai)
for (s, ai) =

(
st , ati

)
following the learning equation:

Qt+1i (s, ai) = (1− α)Qti (s, ai)+ α
[
π ti + δQ

t
i

(
st+1, ai

)]
(2)

For all (s, ai) 6=
(
st , ati

)
the Q-values do not change, and

the update of the cell Qi (s, ai) is a convex combination of
the previous value and the current reward plus the discounted
value of the state that is reached next. The weight α ∈ [0, 1]
is the learning rate, which we assume is constant.

Initially, to approximate the true Q-matrix, the algorithm
must experiment by choosing actions that may be sub-
optimal. As it is common in algorithmic pricing, at the begin-
ning is desirable to explore the space and later to exploit the
best results [6], [15]. We use a greedy model of exploration.
The algorithm chooses the action with the highest Q-value in
the current state with probability 1 − ε (exploitation mode)
and randomizes uniformly across all possible actions with
probability ε (exploration mode). At the start, given the lack
of knowledge about the game, the algorithm should explore
widely, but as time goes by, the algorithm must start exploit-
ing the best outcomes it has found. To reproduce such a
behavior, we posit a time-declining exploration rate:

ε = e−βt (3)

where β > 0 is a parameter. The algorithm will start by
randomly selecting actions. The larger the β, the faster the
exploration vanishes.

B. PARTICLE SWARM OPTIMIZATION (PSO)
PSO is a stochastic optimization technique. It generates ran-
dom points in a multidimensional space (particles) that move
towards an optimal solution by sharing information about
which points perform better. This concept is extended to price
competition by assuming that each company may test a lim-
ited set of prices (particles) before going to the market. Then,
companies choose those prices that perform better (higher
profits) and remove those that performworse. After repeating
this operationmultiple times, companies can set the best price
given specific market or regulatory conditions.

Initially, each firm will consider a set of k potential prices,
where k is the number of particles. The position of each
particle in the real numbers represents a price. Thus, firms
can evaluate the performance of each particle (price) in terms
of profits. In the first iteration, the initial positions are random
draws from a U (0, 1) distribution. As time passes, the posi-
tion of each particle will change as new information about the
best positions is available.

In other words, the position of each particle depends on the
locations of the best particles (those that provide the largest
profits), and such an influence is called ‘‘evolutionary veloc-
ity (vi,k )’’, which determines the change of its position. Thus,
a particle position is determined by the best position it has
found before (pli) and the best position any other particle in its
swarm (or in the global swarm if there is only one swarm) has
found before (pgi ). Intuitively, a firm may test several prices,
which is equivalent to controlling several particles. Therefore,
pgi represents the best return found by any of the tested prices.
In other words, the best position any controlled particle by
that firm has found. Formally, the price pi,t at a time t is
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updated as follows:

pi,t = pi,t−1 + vi,t−1 (4)

vi,t−1 = wvi,t−2 + l1u1
(
pli − pi,t−1

)
+ l2u2

(
pgi − pi,t−1

)
(5)

where w is an inertia weight factor that represents how past
actions (prices) influence the current action (price); l1 and
l2 are learning parameters and are called self-confidence and
swarm confidence factors, respectively; and u1 and u2 are
U (0, 1) random numbers. In economic games, the payoff of
a firm also depends on the prices of other companies. Thus,
an optimal price in a previous iteration may not perform well
in the current iteration and vice versa. Thus, pli and p

g may
change over time. In fact, at each iteration, we may have new
different values for these parameters. In this sense, each firm
will have a vector Ms, s = l, g of size m that represents the
memory of each firm. In this vector, firms will record the last
m values of pli and p

g, and among them, theywill choose those
with the best performance (largest profits).

Lastly, the inertia weight w is critical for the PSO’s conver-
gence behavior [21]. There is a trade-off between exploration
and exploitation, like in Q-learning. Thus, we choose a simi-
lar model of exploration that vastly explores at the beginning
and, as time goes by, it starts exploiting the best outcomes

wt = (1− wo)t (6)

where w0 is a constant initial decrease parameter.

III. COMPUTATIONAL MODEL
We consider two firms that compete using pricing algorithms
enabled by AI. First we define demand and market structures
(Logit, Hotelling, and Linear demand). Then, we explain the
model parameterization.

A. MARKET STRUCTURES
Following the recent literature on algorithmic pricing,
we adopt a simple model of price competition with Logit
demand and constant marginal costs [22]. Each company will
face this demand function at each moment t . This price com-
petition game assumes that there are n differentiated products
and an outside good. Formally, the demand for product i is as
follows:

qi =
e
ai−pi
µ∑2

j=1 e
aj−pj
µ + e

a0
µ

(7)

Parameter ai is the product quality of product i, an index
that captures vertical differentiation. Product 0 is the outside
good, so a0 is an inverse index of aggregate demand. µ
captures how different the products in the consumers’ eyes
are; thus, it is an index that represents the horizontal differen-
tiation. The case of perfect substitutes is obtained in the limit
asµ→ 0. Each product is supplied by a different firm, so n is
also the number of firms. Lastly, the profits of each company

are πi = (pi − c) qi, where c is the marginal cost and pi is
the price.

We also adopt the Hotelling model, which is well known
in economic and business research. We assume there are
two firms situated at locations 0 and 1 on a line with unit
length. The consumers are uniformly distributed along the
line and demand one unit of product. A consumer’s utility for
each product is the value that the consumer derives from the
consumption subtracting the price and the disutility from the
mismatch between the firm’s and the consumer’s locations.
The consumer compares two final products and chooses the
one with higher utility. The utility for the consumer-j located
at x from purchasing firms-i’ products are

uij = v− pi − θ
∣∣xj − ki∣∣ (8)

Essentially, θ captures the level of horizontal differentiation
between the competing firms and measures the intensity of
competition. A smaller value of θ implies a lower level of
differentiation and higher competition intensity. The mis-
match cost θ

∣∣xj − ki∣∣ captures such consumer heterogeneity.
The parameter v captures the intrinsic value of the company
that we assume high enough to guarantee that all consumers
participate. Finally pi represents the price paid by consumers.
Thus, the demand for firm i of as follows:

qi =
1
2
+

1
2

(
pj − pi

)
θ

(9)

We also assume 3
2θ < v, which guarantees that all consumers

buy at least from one firm.
Finally, the third model we consider is the classical linear

demand model

qi = ai − pi − dqj (10)

where ai is the intrinsic value of the firm i, pi is the price
for the product of firm i, qj is the quantity produced by a
competitor j, and d ∈ [0, 1] is a parameter that controls the
level of differentiation, where 1 is the Bertrand model and 0 is
the monopoly model.

Among all the variables of interest in these models,
we focus on the comparison between prices (average simu-
lated prices versus monopoly and Nash-equilibrium prices)
and average profit gain (1), which is defined as:

1 ≡
π − πN

πM − πN
(11)

where π is the average profit in the last 1.000 iterations, πM

is the profit under full collusion (monopoly), and πN is the
profit in the Nash equilibrium. Thus, 1 = 0 corresponds to
the competitive outcome and1 = 1 to the perfectly collusive
outcome. The main reason for focusing on1 is that it can be
compared across different economic settings.

B. BASELINE PARAMETERIZATION
To facilitate comparisons with other works, we adopt the
baseline parametrization of [6], [11]. The main reason to
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avoid carrying out several experiments with different parame-
ters is that thoseworks did extensive sensitivity analysis of the
parameter universe. In this way, we can focus our attention on
the effect of themarket environment and different algorithmic
designs. Our baseline environment consists of a symmetric
duopoly (n = 2) with ci = 1, ai−c = 1, a0 = 0, and
µ = 0.25 in the Logit demand case, and θ = 1, c = 0 and
v = 1.75, in the Hotelling model, and ai = 1, d = 0.25,
c = 0, in the linear demand model.

In the case of Q-learning, it requires a finite action space.
Following [6], we compute both the Nash-equilibrium of
the one-shot games and the monopoly prices, PN , and PM

respectively. Then, we consider that the set of feasible prices
(A) is given by 15 equally spaced points in the interval[
PN − 0.15

(
PM − PN

)
,PM + 0.15

(
PM − PN

)]
. Note that

discretizing the action space implies that the exact Nash
and monopoly prices may not be feasible, or even that new
ones appear. For example, there is only one equilibrium in
the continuous Bertrand game, but there are two in the dis-
crete Bertrand one. Nonetheless, there may bemixed-strategy
equilibria, and our algorithms that play pure strategies will
oscillate around a target when it is not feasible. To ensure
that the state space is finite, we posit a bounded memory.
We assume that such memory lasts 1 period. Therefore, each
firm has |A| = 15 and |S| = 152+1 = 3.375. Regarding
exploration, we assume the ε-greedy exploration model with
a time-declining exploration rate, εt = e−βt , where we
assume β = 1.5 × 10E − 4. Finally, we assume that α =
0.15 and δ = 0.95 to let the algorithm discount future profits
and let the initial Q0

i have all its elements equal to zero at
t = 0. On the other hand, the baseline PSO algorithm consists
of 5 particles (k = 5) with l1 = l2 = 1.75, w0 = 0.025,
and m = 1. We also limit the range of evolutionary velocity,
vi ∈ [−0.3, 0.3] to avoid jumping between corner solutions.
Similar parameterization appears in other algorithmic pricing
research [16].

IV. COMPUTATIONAL EXPERIMENTS AND RESULTS
This section explores how each one of the algorithms
performs when competing in prices in different mar-
ket environments. We consider six different cases in
which firms operate either with Q-learning or PSO algo-
rithms. We assume firms update the prices at the same
time, and no algorithm has any frequency advantage.
In all cases (Logit, Hotelling, linear model), the set of
feasible prices includes both the Nash-equilibrium and
monopoly prices. The inclusion/exclusion of some prices
has extreme relevance for this algorithm. It may be real-
istic to assume that some companies may let some prices
out of this interval, for example, prices below marginal
cost. However, if companies constraint too much the price
interval, optimal prices may remain out-of-the-scope of
algorithms.

In Table 1, we observe that Q-learning systematically
sets supracompetitive prices. In all cases, profits are higher
than competitive levels. Interestingly, the Q-learning obtains

TABLE 1. Average prices and 1s. Two competing Q-learning algorithms.

TABLE 2. Average prices and 1s. Two competing PSO algorithms.

approximately 66% and 15% extra profit in the Logit and
Hotelling cases, respectively, compared to the static Nash
equilibrium. In the linear demand case, the higher prices
lead to earning relatively lower profits. Nonetheless, this case
presents a large dispersion. At the end of the simulations,
prices oscillate between the competitive and monopoly out-
comes.

These results suggest that the Q-learning may not tend to
set supracompetitive prices by itself, and it may be more a
consequence of specific market features. Nonetheless, a pri-
ori, the existence of non-competitive prices does not tell us
anything about its nature (i.e. whether they are collusive).
In some cases, it may be genuine collusion, as in [6], but
it may also be the case that Q-learning just learns to play
a different kind of equilibrium, [23]. The key insight is
that, in the three markets considered, Q-learning tends to set
supracompetitive prices. This result is in line with [6], which
shows the same result for other market parameters of the
Logit model. However, the degree of supracompetitiveness
is not constant, and it may depend on specific market char-
acteristics. For example, in the Hotelling model with asym-
metric firms (v2 = v1 + 0.25), we find that 11 = 0.065 and
12 = 0.015, and in the Linear model without differentiation
(Bertrand’s model), we find that only one firm is active with
oscillating but supracompetitive prices, p2 ∈ [0.06; 0.24]
(12 ∈ [0; 0.738]) while the competitor is oscillating between
entering and exiting. These results emphasize that, although
some algorithms may show a tendency to set supracompeti-
tive prices, the market structure cannot be ignored.

Table 2 shows a contrasting result. The PSO sets prices
close to the Nash equilibria, and the divergence that we
observe is likely a consequence of its stochastic nature. Thus,
in the three cases, the PSO leads to more competitive out-
comes thanQ-learning.We have also considered other market
parameters for these three models, but in all cases, PSO tends
to set lower prices than Q-learning.

Interestingly, in the linear demand model, PSO leads
to a solution like Q-learning. This is a consequence
of the model itself, which has the monopoly and
duopoly outcomes close to each other. Thus a small
variation in decimal precision translates into a large
change in 1.
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TABLE 3. Average prices and 1s. Two competing Q-learning algorithms.
2nd Design.

Independently of the nature of those supracompetitive
prices, what can we do to avoid such solutions? We pro-
pose to pay attention to algorithm designs that are more
‘‘competitive’’ or better resemble economic intuition. The
idea is to focus on how the different algorithms simulate
decision-making and modifying those features that represent
the decision-making process of a rational agent. However,
this usually is easier to say than done because the intuition of
how each module behaves and interacts with the rest becomes
blurry as algorithms become complex. Nonetheless, many
algorithms share a similar architecture, which may help in
focusing on specific modules. In the following subsection,
we address two modifications of the Q-learning and PSO
algorithms that lead to more competitive outcomes.

A. ALTERNATIVE ALGORITHMIC DESIGNS
Technically, Q-learning firms can choose any price at each
state given that there is no constraint regarding their own
actions; additionally, any combination of two prices (own
price and competitor’s) is possible given that there is no
way of knowing which price the competitor will choose.
However, it is possible to consider an alternative scenario
where the Q-learning firm can choose any price at each state
but assumes that the competitor will keep its current prices
in the following state. For example, in the previous section,
if both Q-learning algorithms set a price level of 1.70, they
could transition to any of the 225 pairs of potential prices in
the next stage. However, in this design, if both Q-learning
algorithms set 1.70, they can only transition to one of the
15 pairs of potential prices because the competitor’s price
is taken as given at a level of 1.70. This way of behaving
resembles a best-response function. Intuitively, the firm takes
as given the action of the competitors and chooses the best
feasible price. In terms of Q-learning, this modification only
requires a constraint in the transition states. In this regard,
the different specifications of the state space may change
the way algorithms learn, and this change will lead to more
competitive results, given that it resembles a best-response
framework.

In Table 3, we observe that such modification drives down
profits, and in some cases significantly. The 12 column
depicts the results with this new design, while the 11 col-
umn depicts the results with the same design as the previ-
ous section. Interestingly, we observe that 12 is 30% times
smaller than 11 in the Logit and Hotelling cases, which
shows that non-competitive prices may be less likely with this
modification. In contrast, in the linear demand model, there
is almost no change. This result is likely a consequence of the
model, which has the monopoly and duopoly outcomes close
to each other.

TABLE 4. Average prices and 1s. Two competing PSO algorithms. 2nd
Design.

Therefore, even changes in the design may not affect all
markets equally, and some may be more influenced than
others depending on which algorithmic design we choose.
Another possibility would be to assume that each firm con-
siders a different set of prices or may have different memory
lengths. These changes in the state space are also likely to
influence prices, since they modify the state space more than
the one considered in this section. However, analyzing the
sensitivity of Q-learning firms to changes in the state space
goes beyond the scope of this paper, but it is an interesting
research venue with many unknowns so far. However, the
limited evidence so far shows that state space plays a key role
in understanding price patterns.

In the PSO case, we can introduce a new learning parame-
ter (l3) that is influenced by an exogenous price level, pG and
we assume l1 = l2 = l3 = 1 to avoid volatile behavior in the
PSO. This modification implies that this new price would be
an ‘‘attractor’’. Thus, it could be used either to attract a price
toward its Nash equilibrium or to repel it. Formally,

vi,t−1 = wvi,t−2 + l1u1
(
pli − pi,t−1

)
+ l2u2

(
pg − pi,t−1

)
+ l3u3

(
pG − pi,t−1

)
(12)

where u3 ∼ U [0, 1]. In this case, we assume that the price pG

is the most profitable price that any company has found. This
case may represent those situations in which a company sets
an offer that turns out to be quite profitable, and the rest of
the companies imitates that offer. This new parameter would
let the algorithm look for better prices but with a tendency
to look in the neighborhood of that price. Other possibilities
include pG being imposed by authorities at marginal cost or
the Nash equilibrium. This assumption is fundamental, and
assuming other prices may completely change the results. For
example, if instead, we assume that pG is equal to marginal
costs, PSO would drive all prices toward that point, which
could be suboptimal in some frameworks.

In contrast with Q-learning, the introduction of this modi-
fication does not lead to significantly different results. Their
results were already competitive, so this modification should
not modify the previous result.

B. EXTENSION: COMPETING ON ALGORITHMS
Up to now, we analyzedmarkets where both firms adopted the
same algorithm and they competed on pricing. But an inter-
esting extension is a setting in which different firms adopt
different pricing algorithms. In that setting firms compete on
algorithms. Following the previous sections, we compare the
case when a company uses Q-learning, and the competitor
uses PSO. This setup may represent reality better. Moreover,
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TABLE 5. Average prices and 1s. PSO vs Q-learning algorithms.

‘‘if players use different pricing algorithms, each of which
could be learning over time, it will increase the complexity
and difficulty of establishing coordination’’, [3].We adopt the
stateless Q-learning algorithm. This version of the Q-learning
is memoryless, and its state space is just the set of prices that it
can choose. This assumption is necessary because other algo-
rithms may choose prices that are not in the Q-learning price
interval. In this case, they may not be part of the state-space
that Q-learning takes into account. On the contrary, taking
into account all the values that the Best Response function
or the PSO can take implies transforming the Q-learning into
its continuous version, which complicates the analysis and
implies further assumptions. Thus, to keep it simple, we adopt
the stateless version of the Q-learning algorithm, whose inner
workings is a simpler version of the one depicted in the
previous sections.

In Table 5, we observe that, on average, PSO leads to
higher prices in the LOGIT model this time, but the oppo-
site is true with the Q-learning algorithm. However, in the
Hotelling model, both algorithms perform better this time,
but Q-learning keeps leading to higher prices than PSO, and,
in the Linear demand model, both perform worse, and this
time, PSO leads to higher prices. Interestingly, in Hotelling’s
case, the Q-learning’s 1s are lower than in previous sec-
tions despite higher prices. This is because Q-learning faces
a smaller demand, which leads us to this counterintuitive
result. Nonetheless, in all cases, we observe some degree
of price dispersion (see Table 8) and prices higher than the
competitive outcome.

We find that both algorithms set supracompetitive prices,
but it is Q-learning the one that sets the lower prices in
two out of three. This is a consequence of how these two
algorithms interact. Both of them explore and exploit results,
but they do it following different rules and timings. Therefore,
one algorithm may start exploiting results sooner while the
other explores the environment more, in this case, the one
that explores more may end exploiting an optimal position
as a response to a suboptimal position of the first algorithm.
This is likely what we observe here because PSO converged
in all simulations faster than Q-learning, which explored
the environment more. [13] also finds a similar effect when
algorithms can be outsourced and demand shocks are absent.
In such a case, commitment to a pricing algorithm is equiv-
alent to commitment to a particular price. Thus, adoption of
the third party’s pricing algorithm creates a sequential-move
price game.
A key observation is that when different algorithms are

used against each other, the one with the largest explo-
ration phase may have an advantage. Intuitively, our main
setup could be compared with a Cournot model where all

TABLE 6. Average prices and 1s. Q-learning vs. Best Response.

algorithms make decisions at the same time, and they take
as given the competitor’s, but this extension is more similar
to a Stackelberg game where the first mover would be the
one with the largest exploration phase. [24] also find this
price pattern in their theoretical model and argue that this
asymmetry between technologies may be a source of price
dispersion.

C. EXTENSION: ALGORITHMS COMPETING WITH
BEST-RESPONSE FIRMS
We compare the performance of Q-learning and PSO when
they face a traditional competitor, in other words, a firm
that sets prices using a best-response function. This set of
scenarios represents a likely situation where some companies
use pricing algorithms while some competitors rely on more
traditional price-settingmechanisms [1].We assume that both
the algorithm and the traditional firm set prices with the
same frequency. Note that the best-response function will
always dominate a metaheuristic by definition. However, the
interesting point here is understanding how an algorithmic
agent may modify the prices set by a more traditional agent.
Tables 6 and 7 compare the cases when Q-learning and PSO
face a best-response function, respectively. Similar to our
main setup, we observe that the case with Q-learning leads
to larger prices than PSO. It is interesting that Q-learning
does not decrease their prices too much compared to those
of the main setup, but their 1s are significantly smaller.
Interestingly, in this case, we observe that the degree of price
dispersion and magnitude of supracompetitive prices depend
on the algorithm. Although prices are lower with PSO, they
are more disperse, Table 8.

The first interpretation of this result is that algorithms do
not pose a significant anti-competitive threat when facing
competition because, even if they set larger prices, a best-
response firm may capture part of the extra-profits, thus
penalizing the algorithmic pricing. This case may resemble
what has happened on Amazon during the COVID-19 pan-
demic. Six months after the price surge of sanitary prod-
ucts, many products remain overpriced [25]. However, as the
comparison among cases shows, this effect would depend
on the market structure. If we pay attention to the PSO,
we obtain a similar insight, although in general, the mar-
kets are more competitive. Nonetheless, these results may
not hold if pricing algorithms can set prices at a higher
frequency and the algorithm is outsourced. In such a case,
prices may be more volatile and even show the same sen-
sitivity as monopoly prices without being as high. Addi-
tionally, if demand variation is high, it may be optimal to
adopt algorithms by all players, thus making this scenario
suboptimal, [13].
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TABLE 7. Average prices and 1s. PSO vs. Best Response.

TABLE 8. Price Dispersion Measures.

V. DISCUSSION
Companies use AI in the form of algorithmic pricing to
increase their profits and compete more effectively. However,
this may attract the attention of public authorities who are
concerned about threats to competition. In order to provide
insight into these issues, this research analyzes how two
well-known AI algorithms, Q-learning and Particle Swarm
Optimization, set prices in three different market frameworks.
We find that Q-learning leads to supracompetitive prices,
while PSO tends to set competitive prices in several market
structures.

To address whether those results are robust to changes in
the algorithmic design, we consider two alternative designs
of the Q-learning and PSO algorithms. In the Q-learning
case, we observe that such a modification leads to more
competitive outcomes. Thus, the algorithmic design seems to
be essential when addressing algorithmic competition, and
in some instances, supracompetitive prices may be a con-
sequence of an ill-designed algorithm. Therefore, this situa-
tion implies that competition authorities should devote more
resources to address algorithm behavior, and it would prob-
ably lead to a case-by-case approach. From the firms’ per-
spective, small mistakes in the code may lead to significantly
different pricing behaviors. Firms may face anti-competitive
charges or public uproar when some of their prices are tagged
as non-competitive despite being a simple ‘‘bug’’ in the code.

Moreover, we address the case when firms compete using
different algorithms, and we find that, in such cases, there
is a novel issue regarding the timings of exploration ver-
sus exploitation. Our results show that if we let the algo-
rithms interact indefinitely, the one with the most extensive
exploration phase will have an advantage over the competi-
tor intuitively similar to a Stackelberg leader. Additionally,
we observe price dispersion, which is another dimension that
may raise concerns independently of its nature.

Lastly, when instead of an algorithmic competitor, firms
face a best-response firm, prices are reduced compared to
other frameworks but remain higher than those of the Nash
equilibrium. Interestingly, in this case, the best-response
firm benefits the most because it can capture part of
the extra profits generated by the algorithmic distortion.

This result may suggest that algorithmic pricing may artifi-
cially raise prices and keep them above competitive levels,
which would be consistent with the anecdotal evidence of
price increases of sanitary products [25], [26], or the retail
gasoline market [27].

A. IMPLICATIONS FOR POLICYMAKERS AND MANAGERS
Our results suggest that algorithmic pricing should concern
policymakers, but the outcome depends crucially on the
adopted algorithms, the algorithmic design, and the market
structure. We should also note that our results emerge in
duopolies with market power and when the number of com-
petitors increases, algorithms tend to set more competitive
prices [6], [23]. Thus, in a market where companies have
limited influence on the global market outcome, it is likely
that algorithmic pricing would set competitive prices. For
example, if companies are small enough, and they cannot
influence market prices, or the market is big enough, and
one company’s decision is marginal, algorithms face a quasi-
stationary environment. Thus, it is more likely that they fulfill
the conditions to converge to the competitive equilibrium.
In these cases, we would retain all the benefits of algorithmic
pricing (more contestable markets, increased competition,
or better product availability) without the price distortions
that we have observed in previous sections. In addition, better
demand forecasting through algorithms can lead to lower
prices in some cases [28]. Similarly, algorithmic consumers,
who compare multiple firms using AI algorithms, may reduce
the firms’ ability to set supracompetitive prices.

Companies that consider adopting algorithmic pricing
solutions face two problems a priori: their algorithms must
identify the market structure and learn how to behave in it.
There are multiple frameworks, software, and algorithms that
can be used to set prices. The most interesting ones are those
based on Artificial Intelligence (AI) that can autonomously
and automatically identify the market structure and set prices.
However, although these AI algorithms may solve the a priori
problems, they may generate new ones like supracompetitive
prices or price gouging. In this confusing environment, man-
agers must be aware that there is no one-size-fits-all solution.
An algorithm that performs well in a specific market may
not work well in a different one. For example, [6] and [29]
use Q-learning to set prices in different market environments
with opposite results. Likewise, an algorithm that performs
well in training environments may perform poorly once it
has contact with reality and other firms. Moreover, it matters
how competitors set prices. In this sense, a clear insight for
managers is that although algorithmic pricing may be prof-
itable, it is not robust. It would require human supervision and
human intervention in some cases. Uber is a clear example of
this behavior. They make extensive use of algorithms to set
prices but, in emergencies, they usually suspend algorithmic
pricing.3

3https://abcnews.go.com/Business/uber-chooses-surge-price-cap-
emergencies/story?id=28494303
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Another critical challenge for both practitioners and
policymakers is the significant role that different designs and
features may have in the market outcomes. This is espe-
cially relevant in markets where algorithmic pricing research
advances the traditional dynamic pricing research, such as
airlines or electricity markets, where real-time pricing has
been considered the most efficient pricing policy [30]. Small
changes in the code may lead to entirely different results
with dramatic consequences like unintended supracompeti-
tive prices. This circumstance also fuels the necessity of a
different kind of market oversight from public authorities.
Public authorities should not just aim to enforce competition
but also detect unusual price patterns that may be a conse-
quence of ‘‘bugs’’. However, the use of anti-competitive rules
in the algorithm might not be straightforward, which may
increase the costs and efforts of designing and monitoring the
remedy [31].

Collusion is not the only threat that algorithms pose. The
role of algorithms in price gouging is another concern. Uber
faced a great deal of uproar due to charging up to eight times
the usual fares after the 2013 heavy storm in New York and
the 2017 terror attacks in London.More recently, competition
authorities in Spain, Romania, Italy, and Greece announced
investigations into price hikes regarding sanitary products
during the COVID-19 pandemic [26]. In the US, some Ama-
zon sellers were fined for price gouging.4 Algorithmsmay get
trapped in price gouging solutions, which may even drive up
the prices of non-algorithmic firms [11]. Another challenge
that firms may face is whether they should develop their own
algorithms or outsource them. Recent evidence shows that
outsourcing may not reduce competition, but it may reduce
welfare [13].

Overall, our results suggest that algorithmic pricing creates
new benefits and challenges for firms and competition author-
ities alike. Both firms and competition authorities should
refrain from simplistic and one-sided approaches that label
algorithmic pricing as good or bad. Instead, nuance and care-
ful analysis is needed.

B. OPPORTUNITIES FOR FUTURE RESEARCH
Algorithmic pricing and competition is an underexplored
area, and there are many opportunities for future research.
For instance, all our models assume complete information,
but it is not clear what happens in cases of imperfect infor-
mation [32]. Another new topic is how algorithms perform in
markets with multiple equilibria. It is also unclear what hap-
penswhen algorithmic pricing interacts with algorithmic con-
sumers. Moreover, there is very little empirical research on
the presence and effects of algorithmic pricing [27]. Algorith-
mic pricing raises ethical issues that could be studied more in
future work [33]. In the context of algorithmic management,
people are concerned about surveillance, little transparency,
and lack of human interaction [34]. As algorithms become

4https://www.cnbc.com/2020/11/17/amazon-sellers-fined-for-
coronavirus-price-gouging-hand-sanitizer.html

more complex, influential, and ubiquitous over time, this will
create even more research questions.
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