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ABSTRACT Predicting defective software modules before testing is a useful operation that ensures that the
time and cost of software testing can be reduced. In recent years, several models have been proposed for
this purpose, most of which are built using deep learning-based methods. However, most of these models
do not take full advantage of a source code as they ignore its tree structure or they focus only on a small
part of a code. To investigate whether and to what extent information from this structure can be beneficial
in predicting defective source code, we developed an end-to-end model based on a convolutional graph
neural network (GCNN) for defect prediction, whose architecture can be adapted to the analyzed software,
so that projects of different sizes can be processed with the same level of detail. The model processes the
information of the nodes and edges from the abstract syntax tree (AST) of the source code of a software
module and classifies the module as defective or not defective based on this information. Experiments on
open source projects written in Java have shown that the proposed model performs significantly better than
traditional defect prediction models in terms of AUC and F-score. Based on the F-scores of the existing
state-of-the-art models, the model has shown comparable predictive capabilities for the analyzed projects.

INDEX TERMS Software defect prediction, deep learning, graph neural network.

I. INTRODUCTION
The development of source code defect prediction models
plays an important role in improving software quality. Such
models are used to identify defective softwaremodules so that
they can be corrected before the testing process, which ulti-
mately helps to optimize the allocation of testing resources.

Software defect prediction (SDP) models classify soft-
ware modules based on the features used to represent them.
Traditionally, the features are manually designed from the
qualitative or quantitative description of the module or its
development process. However, these features ignore both
the unambiguous syntax and semantics that define a pro-
gramming language used for software development and that
provide additional information about the software modules.
This reason, combined with the suspicion that models using
traditional features have reached a performance limit [1],
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has led recent research to focus on developing a model that
extracts features from the source code of software modules.
These models are developed using deep learning techniques,
which enables them to automatically learn complicated hid-
den patterns from high-dimensional data [2] such as the
Abstract Syntax Trees (ASTs). In recent years, several deep
learning-based models have been proposed to extract features
from ASTs to identify defective source code. So far, the Deep
Belief Network- [3], Convolutional Neural Network- [4]–[7],
Long-Short TermMemory Network- [8], [9], Recurrent Neu-
ral Network [10], Encoder-Decoder-based model [11], and
GCNNs [12], [13] have been proposed for this purpose.

Despite the fact that the proposed defect prediction models
extract features to represent software modules from ASTs
of the modules’ source code, the vast majority of them
treat ASTs as linear sequences of nodes and use natural
language processing models to generate embedding vectors
of these sequences. In this way, they ignore the structure
of ASTs and thus miss the opportunity to use additional
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information about source code that could be used to generate
more expressive features than when the features are generated
from the linear sequences of nodes from AST. Indeed, recent
research has shown that extracting features from a represen-
tation of source code in graph or tree form rather than in
a sequence of AST’s nodes gives better results in various
tasks, such as code classification [14], [15], code clone detec-
tion [14], [16], [17], plagiarism detection [18], [19], program-
mers’ de-anonymization [20], [21], variable naming [22], etc.
Although AST-based methods are used for the tasks, none
of these methods are specialized for addressing the task of
predicting defective software considered in this work.

Although there are some approaches for predicting
defective software modules that encode the structural infor-
mation of ASTs into features for describing modules, short-
comings can be observed in these approaches. In particular,
such approaches compute features either on a bottom-up
basis [8], using specially designed relationships between
AST’s nodes [6], or focuses only on a part of an AST [12].
The bottom-up method used by Dam et al. [8] computes the
features of AST from leaf nodes to root nodes, which makes
it difficult to capture the long-range dependencies between
distant nodes. Furthermore, it is not entirely clear why it is
necessary to define additional relationships in a tree besides
edges, as done by Shi et al. [6], since such relationships do
not provide any new information about the tree itself or about
the defectiveness of the source code. Moreover, using only
a part of an AST to represent the whole software module,
as in work by Xu et al. [12], may be memory efficient, but
it is indisputable that a valuable information about software
module can be lost when neglecting the whole structure of
the AST representing its source code. Finally, Zhao et al. [13]
recently proved that the features extracted from GNN can
be useful for traditional classifiers. They combined features
from the Control Flow Graph (CFG) and AST-based local
features obtained from TBCNN with contextual feature vec-
tors extracted from an Attention-based Graph Neural Net-
work for Directed Graph to represent a source code by a
feature vector. However, they limit the size of GNN layers
and vectors so that the representation of source codes of
different sizes has the same size, which may lead to a loss
of information.

To address this gap, we developed an end-to-end defect
prediction model based on the Convolutional Graph Neural
Network (GCNN), a class of neural network models capable
of effectively categorizing graphs by learning their represen-
tations. Unlike the existing models that predict defective soft-
ware modules based on the ASTs from the modules’ source
code, our model uses a neural network architecture that is
specifically tailored for graph data, which includes ASTs, and
for task of defect prediction. The proposedmodel captures the
information relevant to source code defectiveness from data
representing ASTs of the source code, and the information
is then used by the classification layer that is on top of the
model architecture. By training the model in a supervised
manner, we make it well-suited to the task it is being used for,

which is an opportunity missed when feature extraction and
classification are performed separately, as in many existing
studies [3]–[8], [11], [12].

The developed model learns to identify defective software
modules by relying on the GCNN’s ability to use relatively
unstructured data types, such as ASTs, as input data. In par-
ticular, by using the graph representation of ASTs as input
data, the full information of the modules’ source code can
be preserved, which is not necessarily the case when ASTs
must first be transformed into the form suitable for the fea-
ture extraction and/or classification model. In other words,
by using a model suitable for the data, we can bypass a
transformation step and process the data in its most natural
form without risking the loss of valuable information.

More specifically, themodel uses the graph representations
of ASTs created from the source code of the software mod-
ules. The representations are generated by translating ASTs
into a pair of two matrices: the adjacency matrix and the
feature matrix. The elements of the adjacency matrix indicate
whether the pairs of nodes of AST are adjacent or not, while
the feature matrix describes the nodes of AST. These matrices
are forwarded as an input for the spectral-based GCNNwhich
is trained to identify defective software modules of the future
project version. The performance of the model in terms of
F-score and AUC score is evaluated on seven open source
Java projects commonly used in SDP studies and compared
with the performance of traditional SDP models. The com-
parison shows that the model performs best in both aspects.
In addition, in terms of F-score, the model gives comparable
results to state-of-the-art AST-based approaches.
In summary, this work makes the following contributions:
• We propose an end-to-end SDP model that identifies
defective software modules by using GCNN to capture
the entire information of ASTs representing the source
code of the modules.

• In the experiments conducted, we have shown that the
proposedmodel outperforms the traditional SDPmodels
and provides comparable results to the state-of-the-art
models for predicting defective software modules using
ASTs from the source code of the modules.

The rest of the paper is organized as follows. Section II
introduces the background of SDP and GCNNs. Section III
describes the proposed model. Section IV describes the
design of the experiment conducted and the results obtained,
with a comparison to relevant work. Section V discusses
related work. In Section VI the threats to validity are listed.
Conclusion and future work are presented in Section VII.

II. BACKGROUND
In Section II-A, we present the basics of SDP. GCNNs and
the motivation of using such networks in software defect
prediction are briefly described in Section II-B.

A. SOFTWARE DEFECT PREDICTION
SDP is an important area in software engineering research.
Great efforts in this area have been devoted to the
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development of models for estimating the number of
defects, discovering defective patterns, and classifying
the defect-proneness of software modules, typically into
defect-prone and non defect-prone [23]. This study focuses
on the latter of these tasks, which is therefore referred to as
‘‘defect prediction’’ hereafter.

The task of defect prediction typically consists of three
subtasks: creating or/and collecting features, selecting a sub-
set of the features which is the most relevant to the defect
label, and choosing a suitable classifier. The first subtask is
taken before the other two steps. The second subtask can be
performed before or within the third subtask, which depends
on how the decision on the features to be used is made.

Depending on whether the aim is to identify defect-prone
software modules or changes, two types of defect prediction
can be distinguished: file-level and just-in-time [24]. File-
level defect prediction is usually performed before a product
release, while just-in-time defect prediction is conducted after
each file change. As they are used in different development
phases, the corresponding features are also different. Besides,
defect prediction models can be categorized based on their
purpose. Specifically, if they are used to detect defect-prone
software modules within the project whose historical data is
used for their development, they belong to the Within-Project
Defect Prediction (WPDP) models and to the Cross-Project
Data Prediction (CPDP) otherwise. The WPDP models are
mainly trained on the previous project version and then used
to predict defective modules in the current version, which
is called cross-version defect prediction. These particular
models have achieved remarkable results in file-level defect
prediction [3], [4], [8], [10], [17], [25], [26] we are dealing
with in this study.

For file-level defect prediction, two types of features can be
distinguished: process features, which describes the software
development process, and code features, which reflect code
properties. Process features can be divided into developer
metrics, code change metrics, and development process met-
rics [27]. Code features include static code metrics, object-
oriented metrics, network metrics, and source code features,
which are extracted from a source code represented by an
AST or a control flow graph (CFG).

Together with corresponding defect labels, features that
represent software modules are generally used as an input to a
classifier, which is trained to identify defect-prone modules.
The classifier is typically chosen depending on the type and
size of the features representing modules, whereby the fea-
tures can be selected independently from the classifier or as
a part of its development.

B. CONVOLUTIONAL GRAPH NEURAL NETWORKS
GCNNs are a type of graph neural networks that adapt the
operation of convolution from grid data to graph data. In con-
trast to convolutional neural networks (CNNs), they do not
have strict structural requirements for graphs that are fed as
input, which makes them suitable for handling unstructured
data [28].

Depending on how the convolutional operation is adjusted,
two categories of GCNNs can be distinguished: spectral-
based and spatial-based. Spectral-based GCNNs operate on
the principle from graph signal processing where a graph is
transformed into the spectral domain within which it can be
convolved with a filter [29]. On the other hand, spatial-based
GCNNs define a convolution operation based on a node’s
spatial relations in the graph domain. In this context, apply-
ing the convolution filter on a feature vector representing a
graph node may be perceived as selecting and aggregating
information of nodes that are in a predefined neighborhood
of the node.

An input of a GCNN-based model consists of the adja-
cency matrix A1 and the node feature matrix Xv, v ∈ V of
graph G with a set of vertices V = {v1, v2, . . . , vn}. The
adjacencymatrix is used by spatial-basedGCNNs to calculate
nodes’ neighborhoods, while spectral-based GCNNs use it
to transform the graph into the spectral domain. Specifi-
cally, spectral-based GCNNs perform convolution using the
eigenvalue decomposition of the symmetrically normalized
Laplacian matrix L̃ = I − D−

1
2AD−

1
2 of A, where I is an

identity matrix and a diagonal matrix D is the degree matrix
of A with D(i, i) =

∑n
j=1 A(i, j).

The output and therefore also the architecture of both types
of GCNN-based models depend on whether they are devel-
oped to perform node- or graph-level classification. During
the training for node classification, a model is adjusting its
parameters’ values that are used to generate representations
of nodes such that the nodes’ labels can be predicted from
the generated representations. Precisely, the representation
of node v from the (l + 1)-th layer h(l+1)v of a spatial-based
GCNN can be expressed with Eq. (1), where h(l) denotes
representations of nodes from the l-th layer, N (v) is a set of
neighbors of node v, V and W are the model’s parameters to
be learned, ψ(·) is a permutation-equivariant function, g(·) is
a permutation-invariant aggregation function, and φ(·) is any
function that can be applied on the representation values.

h(l+1)v = φ

(
W (l), h(l)v , g

({
V (l)
vu ψ

(
h(l)u
)
| u ∈ N (v)

}))
(1)

Similarly, using the same notation as in Eq. (1), the represen-
tation of node v from the (l + 1)-th layer of a spectral-based
GCNN can be calculated using Eq. (2), where W (l)(·) is a
function whose parameters are to be learned.

h(l+1)v = φ
(
W (l)
v
(
L̃
)
, h(l)

)
(2)

A model trained for graph classification aims to learn the
representation of a graph that helps predict the label of the
entire graph. A convolutional layer of such model is usually
followed by a pooling layer. As a result, graph is coarsened

1The adjacency matrix A is defined as follows: if there is an edge between
node u and v, then A(u, v) is equal to the weight of the edge (or 1 if graph G
is unweighted); otherwise it is equal to zero.
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through layers so, effectively, a convolutional layer encap-
sulates sub-graph representations. These representations are
summarized into the final graph representation in a readout
layer by aggregating representations of sub-graphs. Formally,
if L is the final graph convolutional layer of the GCNN-based
model’s architecture, then the entire graph’s representation
hG can be obtained using Eq. (3), where SL−1 denotes a set
of representations of sub-graphs from the (L−1)-th layer and
U is the model’s parameter to be learned.

hG = g
({

U (L)
s ψ

(
h(L)s

)
| s ∈ SL−1

})
(3)

The entire graph’s representation hG is given as an input to
a stack of fully connected layers of the GCNN-based model,
which produce the classification output.

III. PROPOSED MODEL
In this section, we describe preparation of data for the
proposed model and the model itself. In subsection III-A,
we describe how ASTs are used to represent a source code
of a software module. The ASTs are used as an input to the
proposed model for predicting defective software modules,
which is described in subsection III-B.

A. REPRESENTING SOFTWARE MODULES WITH ASTs
An AST is a model of source code which represents a
program on the level of abstract syntax, meaning it does not
capture all the details appearing in the code, but rather
only structural and content-related details. Specifically,
each node of an AST denotes a construct, such as
MethodDeclaration, IfStatement, Variable
Access, etc., occurring in the source code, as shown
in Figure 1.

FIGURE 1. An example of a Java method and its abstract syntax tree.

To obtain an AST from the source code of the ana-
lyzed software module, we employ an open-source Python
library javalang,2 which provides a lexer and a parser for
Java programming language. There are numerous types of
AST nodes within the library, but almost all recent stud-
ies, except for study by Xu et al. [12], have excluded some
nodes from the analysis because they do not provide infor-
mation that may indicate a source code being defective, such

2https://github.com/c2nes/javalang

as PackageDeclaration and Type nodes. Similarly,
we have chosen 39 AST nodes defined in javalang that can
be categorized as shown in Table 1. However, as due to the
process of selecting only certain nodes an AST can fragment
into two or more sub-graphs,3 we added a root node and
an edge between root and a root node of each isolated sub-
graph, thus ensuring each AST is being connected.

TABLE 1. AST nodes considered in this work.

The proposed GCNN-based model works with numerical
data, so it is necessary to encode the AST nodes represented
with string tokens, into a suitable data structure. Using the
AST nodes listed in Table 1 and an additional node repre-
senting the root node, we decided to use one-hot encoding,
which is defined in accordance with the order of the AST
nodes listed in Table 1. In this setting, each of the AST nodes
is represented by a one-hot vector of size 40.

B. GCNN-BASED MODEL
Along with the corresponding defect labels, ASTs are used
to train a spectral-based GCNN to identify defect-prone
software modules. The architecture of the proposed GCNN
is adaptive such so the size of its layers depends on the
maximum number of nodes in the ASTs from the project
being analyzed. Accordingly, the padding nodes, which are
represented with all-zeros feature vector, are added to all
ASTs from the project so that they have a size equal to the
number of nodes in the largest AST. Fitting the architecture
to the data allows the model to exploit the data better than
if the data were to be compressed or expanded into a form
predefined by the model.

Processing an AST using the spectral-based GCNN
requires the AST to be represented with the corresponding
adjacency matrix A and feature matrix X . The adjacency
matrix A is used to calculate the symmetrically normalized
Laplacian matrix L̃, which is further used to create a filter
for convolutional layers. To reduce the learning complex-
ity of the model, we followed the approach proposed by
Defferrard et al. [30] and approximated the spectral convolu-
tional filter with the Chebyshev polynomial Tk (x) of order k ,
where Tk (x) = 2xTk−1(x) − Tk−2(x) with T0 = 1 and
T1 = x. Accordingly, the convolutional operation of the

3It may happen, for instance, when there is an annotation in a source code.
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l-th layer from the Eq. 2 with the filter function W (l)
(
L̃
)
is

approximated with
∑K−1

k=0 2kTk
(
L̃
)
, where 2k ∈ RK is a

vector of polynomial coefficients to be learned.
The proposed model’s architecture is shown in the Fig. 2.

Between the input layer and the output layer of the model
there is a sufficient number of levels of alternating layers
of convolution and pooling, whereby each level is followed
by an dropout layer. The model generates hierarchical graph
representations within these levels in a way that it first gen-
erates features of an input graph’s nodes in its convolutional
layer and then reduces the size of the graph in the following
pooling layer. After the last pooling layer, there is a pooling
layer that computes the average node features of the highest
level representation of the input AST. Such features are fully
connected to the last hidden layer, which is followed by
the output layer with sigmoid non-linearity to predict the
probability of the input AST representing defective source
code.

We have designed the model to be able to capture the same
amount of information about each AST. To this aim, sizes of
the model’s layers are defined to be dependent on the largest
number of nodes in an AST from the project. Specifically,
in a convolutional layer, the number of features representing
each node is equal to the size of a graph which inputs the
layer, while a pooling layer halves the number of nodes in the
graph. The number of neurons in the last hidden layer is set to
a half of the number of nodes from the AST that is the output
of the last pooling layer.

To retain the possibility of training the proposed model
end-to-end, its pooling layers should be differentiable. There-
fore, we decided to use the MinCutPool pooling layer [31],
whose parameters are learned by minimizing the relaxed
formulation of the normalized mincut problem.4

IV. EXPERIMENTS AND RESULTS
In this section, we describe experiments conducted to evalu-
ate the performance of the proposed defect prediction model.
The experimental results should allow us to determine if
the proposed model outperforms the state-of-the-art models
that are based on information from ASTs generated from the
modules’ source code in cross-version defect prediction.

The experimental results should answer the following
research questions (RQ):
RQ1: Does the proposed model improve the performance of

the commonly used classifiers based on the traditional
code features in cross-version defect prediction?

RQ2: Is the performance of the proposed model comparable
to the state-of-the-art models in cross-version defect
prediction in terms of F-score?

The proposed model has been implemented using Keras,
a Python library for deep learning, on top of Tensorflow
back end. It was trained using the Adam [32] algorithm and
binary cross-entropy loss function for 200 epochs. In order

4The K -way normalized mincut problem is the task of partitioning graph
vertices in K disjoint subsets by removing the minimum volume of edges.

to avoid overfitting of the model, we randomly selected 10%
of training set as a validation set and used the early stopping
technique [33] with a patience of 20 so the training stops if the
loss on the validation set does not decrease for 20 consecutive
epochs. Other training parameters are to be discussed in
Section IV-C. The commonly used classifiers were created
using scikit-learn modules. All experiments were run on a
NVIDIA GeForce Titan Xp GPU with RAM of 32 GB. The
implementation of the proposed model and the experimental
results are available at GitLab.5

In the following subsections, details of the experimen-
tal setup and results are given. Section IV-A describes
the data set used within experiments. Section IV-B
defines measures used to evaluate models’ performances.
Section IV-C describes how the models’ parameters are set.
In Section IV-D baseline methods are listed. In Section IV-E
the obtained results are shown and discussed.

A. DATA SET
The data set used in this work consists of source code from
seven Java Apache projects collected from PROMISE,6 a
publicly accessible repository of SDP research data collected
by Jureczko and Madeyski [34]. Specifically, each project
version from PROMISE is represented by a list of classes
it consists of, and each class is described by 20 traditional
code features, such as lines of code, and the defect label. The
PROMISE repository does not contain the classes’ source
codes that are required to generate ASTs, so we down-
loaded the corresponding versions of the projects from open
source repositories and extracted the source code from the
open-source project files.

As with the most relevant approaches [3], [4], [8], [10],
[17], [25], [26], we chose two consecutive versions of seven
projects from PROMISE for the purpose of the experiments.
All files from the earlier version of the project were used to
create the ASTs used for a training data set, while the ASTs
from all files in the latest version were used as a test data set.
Detailed information about projects and versions used in this
work can be found in Table 2.

B. EVALUATION MEASURES
The performance of the SDP model is typically evaluated
using Precision, Recall, F-score and Area Under the ROC
Curve (AUC). To be able to compare with the state-of-the-
art models’ performances, we evaluated our model using
F-score. However, we have reported AUC score as well
because it has a lower variance, i.e. it is more static than any
of the above metrics, and is therefore highly preferable for the
evaluation of defect prediction models [35].

The F-score is the harmonic mean of precision and recall.
It is a widely used measure of the accuracy of the test, with
values between 0 for the worst accuracy and 1 for the best
accuracy.

5https://gitlab.com/LSikic/dp-gcnn
6https://github.com/opensciences/opensciences.github.io
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FIGURE 2. The proposed defect prediction model’s architecture.

TABLE 2. Statistical data of projects from PROMISE used in the
experiments.

The AUC is based on the area under the ROC (Receiver
Operating Characteristic). A model whose predictions are
completely wrong has an AUC of 0, while a model whose
predictions are completely correct has an AUC of 1. It is
therefore said that the AUC score measures how well the
developedmodel can distinguish between the defect class and
the non-defect class.

C. HYPERPARAMETER SETTING
Before conducting a study, the parameters of the machine
learning model should be tuned, as this is essential for
optimizing its performance [36]. Therefore, we tuned the
following parameters of the model: number of levels
of convolutional-pooling layer pairs, number of feature
maps (channels) within convolutional layers, order of Cheby-
shev polynomial used within convolutional layers, number of
neurons in the last layer, and dropout rate. For this purpose,
three projects with different average number of AST nodes
were selected. Sorted by the average number of AST nodes,
these projects are as follows: camel, lucene, and xalan. For
each of the selected projects, a 10-fold cross validation was
performed with the earlier version of the project. Together
with the parameters of the model, the optimal values for the
pair of batch size and learning rate were explored.

A grid search has been performed over the space of all the
parameters, except for the order of Chebyshev polynomials

and batch size, which have been fixed at 3 and 4, respectively,
due to the limited experimental environment. For each point
in the parameters grid, the models with 1, 2, 3, and 4 levels
of convolutional-pooling layer pairs have been trained over
50 epochs. The first convolutional layer of eachmodel had the
number of channels equal to the maximal number of nodes in
ASTs from the project being analyzed, while each subsequent
layer has a half of its previous layer channels. The number of
neurons in the last hidden layer is set to a half of the size of
a graph generated by the last pooling layer. The other param-
eters have been varied over the following range: dropout
rate, {0.1, 0.3, 0.5}, and learning rate, {10−7, 10−6, 10−5}.
The average AUC score after running 10-fold cross valida-
tion of the selected project’s models is shown in Figure 3,
with point size and color for the dropout and learning rate,
respectively.

FIGURE 3. Results of hyperparameter tuning on the selected PROMISE
projects.

As can be seen from Figure 3, a model whose archi-
tecture has three levels of convolutional-pooling layer pairs
proved to be the most suitable for each of the three selected
projects. Moreover, it can be observed that applying a dropout
of 0.3 after each level can improve the performance of
a model trained for a PROMISE project with one of the
largest average number of AST nodes, as well as that a
larger dropout rate, i.e. 0.5, yielded better results than smaller
rates for a model developed for a project with the smallest
average number of AST nodes. Based on these considera-
tions, it seems reasonable to develop a model whose archi-
tecture has three levels of convolutional-pooling layer pairs
for each PROMISE project. Furthermore, since it has been
shown that using dropout of 0.3 can be helpful in training a
model for projects with a relatively large average number of
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AST’s nodes, we set the dropout for each project to this
value, except for camel project where a dropout of 0.5 is
set, as suggested by results and having in mind it has a rel-
atively smaller average number of nodes than other projects
being analyzed. The optimal learning rate was searched for
within the range listed above for each PROMISE project
because we did not observe the regularity of its value and
the average number of AST nodes within this hyperparameter
tuning.

D. BASELINE METHODS
To answer RQ1, we compared the proposed model with the
logistic regression classifier (LRC) and the random forest
classifier (RFC), both of which are widely used for defect
prediction of software modules based on traditional code
features describing these modules [37]–[40].

Answering RQ2 requires comparing the proposed model
with the state-of-the-art AST-based approaches. However,
to ensure a fair comparison between the approaches, the
risk of errors in reproducing the results of the approaches
should be avoided. Therefore, we select the approaches
that provide results on all seven PROMISE projects used
in this experiment as baselines. These approaches are the
following:
• DBN [3]: This approach uses a Deep Belief Network
to automatically learn semantic features by using vec-
tors representing tokens extracted of the AST from the
source code.

• CNN [5]: This is a defect prediction model based on
a neural network with three convolutional layers and
four dense layers. It takes an integer vector representing
string tokens of an AST as input.

• SEML [9]: This is an LSTM-based model for defect
prediction. It can automatically learn the semantic infor-
mation of a source code from a sequence of nodes of a
corresponding AST.

• MPT [6]: This approach to defect prediction uses multi-
perspective tree embedding to learn the representation
an AST in an unsupervised manner.

• DP-T [11]: This model classifies a source code
as defective or non-defective based on a repre-
sentation of the sequence of nodes from the correspond-
ing AST generated by Transformer framework.

• CSEM [13] The model is a cascade of a GNN that
extracts features from AST and CFG of the source code
in an unsupervised manner, and a logistic regression
classifier that is trained for the task of defect prediction
using such extracted features.

Although Zhao et al. [13] provided results from CSEM
for six out of seven PROMISE projects, we believe it
is important to perform this comparison as it allows us
to assess whether an end-to-end GNN-based model (ours)
is more successful in predicting defective source code
than a traditional classifier that uses features extracted
from a GNN-based model trained in an unsupervised
manner (CSEM).

E. EXPERIMENTAL RESULTS
This subsection addresses the research questions. It describes
the experiments conducted and their results, which are used
to answer the questions.

1) PERFORMANCE COMPARISON OF THE PROPOSED
MODEL AND TRADITIONAL CLASSIFIERS TRAINED USING
TRADITIONAL FEATURES (RQ1)
To answer this question, we compared the performance of
LRC and RFC trained on traditional code features represent-
ing modules from PROMISE projects with the performance
of the proposed model (DP-GCNN) trained on ASTs from
modules’ source files.

The hyperparameters of the DP-GCNN were tuned before
training, as described in Section IV-C. Similarly, using
10-fold cross-validation while monitoring the average
F-score on PROMISE projects, the solver, penalty,
and C hyperparameters of LRC and the max_depth and
n_estimators hyperparameters of RFC were tuned by
randomly examining the combinations of the values of these
hyperparameters within a set of ranges typical of each of
them. The values of the other hyperparameters of RFC and
LRC were set to the default values provided by scikit-learn.
Moreover, class weights were used in training all three mod-
els to prevent overfitting and improve performance [41].
In particular, the class weights were set to a value inversely
proportional to their respective frequencies. Finally, given
the large inconsistency of prediction results between existing
software defect prediction models [42], we decided to repeat
our experiment 30 times to reduce the likelihood of errors and
thus obtain a more reliable experiment.

The results of AUC and F-score performance measures
are shown in Table 3, with the best results among classifiers
highlighted in bold. Additionally, obtained scores are shown
as the violin plots in Figure 4. Table 4 shows the average
AUC and F-scores obtained by the classifiers in the analyzed
projects.

It can be seen from both the violin plots and numerical
values that the proposed model DP-GCNN was more suc-
cessful than the traditional classifiers LRC and RFC in pre-
dicting defective software modules from PROMISE projects
in terms of both AUC and F-score. Although LRC achieved
the same AUC score as DP-GCNN on lucene project, LRC
was outperformed by DP-GCNN on the same project by
16% in terms of F-score. Moreover, DP-GCNN achieved 5%
better mean AUC score (0.68 vs. 0.63) and 10% better mean
F-score (0.61 vs. 0.51) than LRC on PROMISE projects.
It can be concluded that DP-GCNN generally performed bet-
ter than LRC for PROMISE data set, especially for synapse
and xalan projects, where it outperformed LRC by 9% in
terms of AUC score and by 14% and 12% in terms of
F-score, respectively. Similarly, DP-GCNN outperformed
RFC by 7% in terms of mean AUC score (0.68 vs. 0.61)
and by 13% in terms of average F-score (0.61 vs. 0.48) on
PROMISE projects. It also outperformed RFC in terms of
AUC and F-score for every project from PROMISE data set.
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FIGURE 4. Violin plots of AUC and F-scores achieved by RFC, DP-GCNN nd RFC across 30 repetitions of the experiment.

TABLE 3. Performance comparison in terms of the AUC and F-score of the
proposed model (DP-GCNN), the random forest classifier (RFC), and the
logistic regression classifier (LRC) on seven projects from
PROMISE data set.

TABLE 4. Average AUC and F-score of the proposed model (DP-GCNN),
the random forest classifier (RFC), and the logistic regression
classifier (LRC) for seven PROMISE projects.

The largest performance difference between these two mod-
els is observed in xerces project, where DP-GCNN achieved
13% higher AUC and 21% higher F-score than RFC. In addi-
tion, compared to LRC and RFC, the DP-GCNN performed
better on both measures for camel and xerces projects, which
suffer the most from the class imbalance problem in the
analyzed data set.

In order to ensure the credibility of the results, the sta-
tistical significance of the performance differences in terms
of AUC and F-score of DP-GCNN, LRC, and RFC for the

data set PROMISE should be evaluated. For this purpose,
the performances of these classifiers are compared using the
Friedman test [43], a non-parametric, multiple comparison
tests for related samples. The null-hypothesis of the test states
that there is no difference in the performance of the compared
classifiers based on their ranks. If the p-value obtained by the
test is less than or equal to the level of significance α of the
test, then the null-hypothesis is rejected. In our experiment,
α was set at 0.05.

The Friedman test is performed separately for both perfor-
mance measures, with each classifier represented by a list of
average scores it obtained on each of the seven PROMISE
projects. The classifiers are first ranked for each project
separately, and then their average ranks R are compared, with
the lowest value R being the best. The ranks are shown in
Table 5, where RAUC and RF-score represents the average rank
of the classifiers when compared based on AUC and F-score,
respectively.

TABLE 5. Rankings obtained by the Friedman test of the proposed model
(DP-GCNN), the random forest classifier (RFC), and the logistic regression
classifier (LRC) when they are compared based on AUC (RAUC) and
F-score (RF-score).

For the rank comparison based on the AUC and F-scores
obtained by the classifiers, the Friedman test yielded a
p-value of 0.008415 and 0.003725, respectively. These results
indicate that the null-hypothesis is rejected for both perfor-
mance measures, so a further statistical analysis is required.
The analysis involves the use of an appropriate post-hoc
statistical test to determine which of the compared classifiers
has these differences. Since the power of such a test is much
greater if all classifiers are compared to only one, proposed
classifier and not between themselves [44], we carried out a
step-down many-to-one comparison procedure proposed by
Holm [45]. In this context, we compared the best ranked
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classifier, i.e. DP-GCNN, with other classifiers by testing
the hypotheses in the form ‘‘There is no difference in the
performance of DP-GCNN and CLASSIFIER in terms of the
measure.’’ for a CLASSIFIER ∈ {LRC, RFC}. The test is
performed separately for each performance measure, with the
level of significance α set at 0.05.
Post-hoc analysis using the Holm’s step-down procedure

begins with ranking the hypotheses by their p-values, so that
the hypothesis with the smallest p-value is ranked highest.
Starting with the highest ranked hypothesis, each of these
p-values is compared to the significance level α divided by
a rank of hypothesis i. If a p-value is below such adjusted sig-
nificance level, the corresponding hypothesis is rejected and
the second hypothesis can be tested. The test continues until a
particular hypothesis cannot be rejected. At that moment, all
other hypotheses are also retained. The results of the Holm
test are shown in Table 6, where the column ‘‘Model’’ refers
to a classification model whose performance is compared to
the performance of DP-GCNN.

TABLE 6. The results of the Holm test to evaluate the statistical
significance of the differences in AUC and F-score obtained from
DP-GCNN and each of the random forest classifier (RFC), and
the logistic regression classifier (LRC).

As can be seen from the Table 6, the p-values obtained are
below the corresponding adjusted significance levels, so both
hypotheses are rejected, which means DP-GCNN performs
significantly better than LRC and RFC.

From the comparison, it can be concluded that the perfor-
mance of the proposed model is better than LRC and RFC in
terms of both AUC and F-score for PROMISE projects.

2) PERFORMANCE COMPARISON OF THE PROPOSED
MODEL AND THE STATE-OF-THE-ART APPROACHES (RQ2)
In this experiment we investigate whether the performance
of the proposed model is comparable to the reported perfor-
mances of the state-of-the-art AST-based approaches, listed
in Section IV-D. To this end, the proposed model was trained
using early stopping technique as described in IV and a
weighted loss function, with class weights set as in the exper-
iment analyzed in Section IV-E1. The hyperparameters of
the model were set to optimal values found as described in
Section IV-C, while the learning rate and batch size were
selected separately for each project. In particular, for each
PROMISE project, the learning rate was set to an appropriate
value so that the learning process converges within the itera-
tion limit with the biggest batch size that fits in memory.

The results of the models with which we compare
our model come from the corresponding studies. How-
ever, as suggested in previous statistical studies [46]–[48],
an experiment should be repeated at least 30 times to

minimize the statistical bias and variance of the results; other-
wise, the risk of obtaining non-repeatable results and drawing
wrong conclusions increases [49]. Despite this criterion, all
the studies we compare with, except the study conducted by
Pan et al. [5], repeated their experiments less than 30 times.
Although we are aware of the risk that comparing perfor-
mance is not completely reliable because the reported per-
formances of these models cannot be considered statistically
significant, we make the comparison with more than one
state-of-the-art model, thus allowing a better assessment of
the performance of the proposed model. The result of this
comparison is shown in Figure 5, where the numbers in paren-
theses refer to the number of repetitions of each experiment
involving model training and testing.

Since the result for CSEM on the xalan project is not
reported, the only scientifically correct way to compare the
performance of the models on the PROMISE data set is to
make two comparisons. In the first comparison, the models
that provide results for all PROMISE projects are compared
based on their average score for all PROMISE projects. In the
second comparison, all models are compared, but their aver-
age scores are calculated considering all PROMISE projects
except for the xalan projects. The comparisons are shown
in Figure 6.
Considering the approaches whose results were based on

less than 30 repetitions of an experiment and reported results
for all seven PROMISE projects, DP-GCNN was 3.6% and
2.3% better than DBN and SEML, respectively, in terms of
average F-score. In addition, out of 7 PROMISE projects
analyzed, DP-GCNN was better than DBN and SEML on
6 projects. The largest improvement was in lucene project
where it outperformed DBN by 11.9% and SEML by 8.6%.
Furthermore, looking at the average F-score, DP-GCNN per-
formed slightly worse than DP-T and MPT. More precisely,
DP-T and MPT achieved a 1.3% and 1.5% higher average
F-score than DP-GCNN, respectively. The largest perfor-
mance differences were observed in the camel project, where
DP-T and MPT performed better than DP-GCNN by 13.6%
and 12.8%, respectively. However, among the analyzed mod-
els, the highest reported F-score for the camel project is 0.526
(DP-T), which means that the models generally provide low
results for this project, which may be due to the presence of
high class imbalance. Nevertheless, based on similar results
for other PROMISE projects, and on average, the perfor-
mance of DP-GCNN can be considered comparable to that
of DBN, SEML, DP-T and MPT.

The only statistically significant comparison can be made
between DP-GCNN and CNN, for which the authors report
the average F-score achieved by the CNN in 30 repetitions
of the training and testing process for all seven PROMISE
projects. As can be seen in Figure 5, a large difference can
be observed between the performance of DP-GCNN and
CNN on poi project, with DP-GCNN outperforming CNN by
38.6%. Moreover, DP-GCNN outperformed CNN by 6.9%
and 5% for lucene and jedit projects, respectively. On the
other hand, for the projects camel, synapse, and xalan, CNN
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FIGURE 5. Performance comparison of DP-GCNN, DBN [3], CNN [5], SEML [9], MPT [6], DP-T [11], and CSEM [13], in terms of F-score
on projects from PROMISE data set. The result for CSEM on the xalan project is not reported and therefore not included.

performed better than DP-GCNN by 9.7%, 6.5%, and 6%,
respectively. For xerces project, CNN achieved a significantly
higher F-score than DP-GCNN. However, none of the models
analyzed were nearly as successful as CNN for this project.
In particular, leaving aside the statistical significance, the
model with the second best performance on xerces, DP-T, was
outperformed by CNN by 24.2%. This difference is by far the
largest over all differences in F-scores achieved by all models
on other projects. Despite the large difference in performance
for the xerces project, CNN performed only slightly better
with a 0.5% higher average F-score, which is presented on
the left in Figure 6. In summary, therefore, it can be stated
that DP-GCNN provides comparable results to CNN on the
PROMISE data set.

Based on the F-score for all PROMISE projects except
for the xalan projects, DP-GCNN outperformed CSEM on
five of six PROMISE projects. For the camel project, CSEM
achieved an F-score of 0.57, which is the best result of all
the models analyzed in this experiment, as shown in Figure 5.
However, DP-GCNN performed better than CSEMwith a 4%
higher average F-score (0.61 vs. 0.57) for all six PROMISE
projects. As can be seen in the Figure 6, CSEM and DBN
performed the worst for all PROMISE projects except xalan
project with an average F-score of 0.568. Compared to other
models, i.e. SEML (0.565), MPT (0.614), CNN (0.591), and
DP-T (0.608), DP-GCNN (0.595) achieved the second best
result in terms of F-score.

In the present case, and considering the highest F-score for
the poi project across all analyzed models, we can conclude
that DP-GCNN provides comparable results to state-of-the-
artmodels on the PROMISE data set. Althoughwe cannot say
with certainty that feature extraction by GNN-based models
in an unsupervised manner would not give as good results
as an end-to-end model like DP-GCNN on a different data
set, the results obtained in this experiment support the fact
that learning supervised GNN-based models can give better

FIGURE 6. Performance comparison of DP-GCNN, DBN [3], CNN [5],
SEML [9], MPT [6], DP-T [11], and CSEM [13] in terms of average F-score
on PROMISE data set.

results than learning classifiers based on features extracted by
GNN-based models in an unsupervised manner.

V. RELATED WORK
The existing work on identifying defective software mod-
ules in developing projects are discussed in Section V-A.
Section V-B presents the most relevant existing models that
classify software modules based on information from ASTs
generated from the modules’ source code.

A. IDENTIFICATION OF DEFECTIVE SOFTWARE MODULES
Models for identifying defect-prone project modules can
be developed using the data of defective modules from the
previous project version (WPDP) or from some other soft-
ware project (CPDP). In both cases, features for representing
project modules are first extracted from the data.
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Depending on the project data, modules can be represented
by process features, code features or a specific combination
of these features, which is found to be beneficial for SDP
models [50], [51]. Process features, which can be divided
into developer metrics, code change metrics and development
process metrics [27], have proven to be good indicators of
software defects across many studies [26], [50]–[54]. Among
the existing code features, most commonly used [1], [4], [34],
[55]–[59] are static code and object-oriented metrics, which
include Chidamber and Kemerer’s metrics [60], McCabe’s
complexity measures [61], QMOOD metrics [62], coupling
metrics [63], quality-oriented metrics [64], LCOM3 met-
ric [65], Lines of Code (LOC), etc. In addition, network
metrics, which reflect the interactions between softwaremod-
ules, have been used as features for representing software
modules [7], [66]–[68]. However, in order to integrate the
syntactical and semantic information of a source code into
features as well, recent studies have directed their efforts at
extracting code features from the source code represented by
ASTs [3]–[8], [11] or CFGs [69], thereby leveraging deep
learning-based models. Although the syntactic structure and
semantic information of a source code can be captured by
both AST and CFG, the latter has been rarely used, probably
because it ignores the block structure of the code, which can
be advantageous when integrated into code features.

The features, along with the corresponding defect labels,
are fed as an input to a learning algorithm, which is used to
build a model. Various SDP models have been proposed so
far, with the most common being Logistic Regression clas-
sifier [3], [4], [8], [10], Decision Tree-based classifiers [39],
[70], Naïve Bayes-based classifiers [25], [71], [72], and Sup-
port Vector Machine classifier [73], [74].

B. DEFECT PREDICTION USING ABSTRACT SYNTAX TREES
In recent times, researchers have been taking advantage of
deep learning techniques, since such techniques learn fea-
tures from the data directly, without the need for features
to be constructed manually. In the existing studies, these
techniques are usually applied for extracting relevant fea-
tures from software’s source code represented in the form of
an AST.

A greatmajority of the existing studies have leveraged deep
learning methods to extract features from linear sequences
of AST’s nodes that represent the source code of a software
module. For instance, Wang et al. [3] have shown that a Deep
Belief Network can automatically learn semantic features
from tokens encoded into numerical vectors, which can be
further used instead of traditional code features to yield better
classification results. Moreover, Lie et al. [4] have applied a
Convolutional Neural Network for effective feature genera-
tion from AST’s token vectors, which are first embedded to
real-valued vectors of fixed size. They combined the features
thus obtained with traditional code features, and showed
that such approach performs better in WPDP than some of
the existing approaches on open-source projects. A similar,
but more complex CNN architecture has been proposed by

Pan et al. [5], who have reported that the proposedmodel out-
performs state-of-the-art models in some evaluation metrics.
Furthermore, Fan et al. [10] have proposed a model that first
encodes the sequence of AST tokens into a module embed-
ding. The embedding is then forwarded to a bidirectional
Long Short-Term Memory (LSTM) network with attention
mechanism to capture crucial features, which are then given
as an input to a logistic regression classifier. Another com-
plex deep model has been proposed by Zhang et al. [11].
They first select representative nodes from ASTs to form
token vectors, which are converted into numerical vectors
using a word embedding technique. The vectors are sent to
an encoder-decoder-based model called transformer, which
automatically extracts syntactic and semantic features. The
extracted features are used to train a logistic regression
classifier.

Only in a few work the structural information between
AST’s nodes represented by tokens has been considered.
Specifically, in a study by Dam et al. [8], a tree-based net-
work of LSTM units has been leveraged to obtain a vector
representation of each AST’s token. Using such vectors, they
have generated a representation of the whole AST, which
has shown promising results when used with the correspond-
ing defect label to build a traditional classifier for identi-
fying defective modules. Another unsupervised method for
learning representation of the source code from an AST has
been proposed by Shi et al. [6]. The method, called MPT-
embedding, parses the nodes of ASTs for multiple perspec-
tives and encodes the structural information of a tree into a
vector sequence. The vector sequence representing a software
module and the corresponding defect label are used to train a
CNN-based classifier, whose results on open-source projects
indicate that MPT-embeddings are of comparable quality to
the features for representing software modules used in state-
of-the-art approaches. Similarly, Zhao et al. [13] recently
presented an unsupervised method for learning the contex-
tual semantics of source code via hierarchical dependency
structures and graph attention networks. The method extracts
features to represent a software module from both AST and
CFG from the module’s source code. The features are used
along with the corresponding defect label to train logistic
regression classifiers for three tasks, including defect pre-
diction. Their approach outperformed baseline methods in
open-source projects on all tasks analyzed.

In contrast to these studies, Xu et al. [12] proposed an
end-to-end GCNN-based model that learns the latent defec-
tive representation of software modules from code snip-
pets, project information, and fix-inducing changes. Nodes
of the part of the AST are enriched with the concept fea-
tures, which reflect both the semantic information from the
source code represented by the AST and the information
extracted from the analyzed project and fix-inducing code
changes. The experimental results on modules from various
Java projects showed that their approach led to better defect
prediction performance compared with baseline and state-of-
the-art approaches. Unlike the above-mentioned approaches,
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we propose an end-to-end model which is trained in a super-
vised manner using the whole AST representing the soft-
ware module. Our model utilizes a powerful GCNN whose
architecture is adjusted to each projects modules,allowing the
model to capture the same amount of information regardless
of the modules size. In this way, a complete information
from modules is preserved and can be utilized for the model
development.

VI. THREATS TO VALIDITY
As with any empirical study, there are threats to validity that
should be discussed. Below we discuss the external, internal,
construct and conclusion validity of our study.

A. EXTERNAL VALIDITY
External validity focuses on examining whether and to what
extent a generalization of the research results is possible. The
quality of the experimental results depends on the data set
used, and therefore we have chosen to use the data set com-
monly used in software defect prediction studies. As such,
it should be suitable for developing and validating models
for identifying defect-prone software modules. However, the
experiments conducted in this research can also be performed
with a different data set.

B. INTERNAL VALIDITY
To assess the advantage of using the proposed model for
predicting defective software modules, it should be compared
with the commonly used SDP models. For this purpose,
we had to decide against which SDP models the proposed
model should be compared. Even though our decisions are
made according to the common practice in SDP and are
also justified in this paper, it is possible that the internal
validity of our study is influenced by the preference of the
models chosen. In order to minimize this possibility, we have
decided to use different but commonly used SDP models in
this research. In future research, however, more different SDP
models can be used for the comparison with the proposed
model.

C. CONSTRUCT VALIDITY
The evaluation of the proposed model depends directly on
the measures used to assess the performance. To make the
assessment fair, we reported various performance measures,
including those used in the majority of SDP studies. Never-
theless, other appropriate evaluationmetrics may also be used
for evaluation purposes.

D. CONCLUSION VALIDITY
To test the validity of the conclusions drawn in this study,
we ensured the statistical significance of our results by repeat-
ing each experiment 30 times, thus fulfilling a requirement of
the central limit theorem. To make the research results more
reliable, we also conducted appropriate significance tests to
show that the results of the model are significantly different
from the results of traditional SDP models. For this purpose,

we used the Friedman test and Holm’s step-down procedure,
but it is also possible to perform other statistical tests as
long as the data meet the requirements of the tests. Finally,
considering the insufficient number of experiment repetitions
in the results of the state-of-the-art approaches, an indicative
comparative evaluation was only possible in the context of
this work.

VII. CONCLUSION AND FUTURE WORK
With the rapid development of ever larger and more complex
software systems comes the need for quick and accurate
methods for detecting potential defects in source code of soft-
ware. Various models have been proposed for this task, with
deep learning models that analyze ASTs from source code as
the most successful so far. However, many of such models are
not specialized for tree-structured data such as ASTs, or take
only partial information of ASTs being analyzed.

In this work, we present DP-GCNN, a defect prediction
model based on a neural network architecture that is specif-
ically tailored for graph data, which ASTs belong to. The
architecture of the proposed DP-GCNN is adaptive, meaning
its structure can be adapted to the software to be analyzed,
which ensures the DP-GCNN is able to process the modules
of different projects with the same level of detail, regard-
less of the software size. The experiments conducted have
shown that DP-GCNN outperforms traditional SDP models
based on static code features in terms of AUC and F-score
for projects from the PROMISE data set. Compared to the
F-score reported by the state-of-the-art SDP models based
on AST, DP-GCNN has demonstrated comparable predictive
capabilities for PROMISE projects.

Future work will focus on investigating the applicability
of DP-GCNN and any modification thereof in predicting
fault-prone software modules for source code files of differ-
ent sizes from the file analyzed in this paper and for software
modules written in other programming languages.
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