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ABSTRACT In this study, a new method is proposed to assess heart and lung signal quality objectively
and automatically on a 5-level scale in real-time, and to assess the effect of signal quality on vital sign
estimation. A total of 207 10 s long chest sounds were taken from 119 preterm and full-term babies. Thirty
of the recordings from ten subjects were obtained with synchronous vital signs from the Neonatal Intensive
Care Unit (NICU). As a reference, seven annotators independently assessed the signal quality. For automatic
quality classification, 400 features were extracted from the chest sounds. After feature ranking and selection,
class balancing, and hyperparameter optimization, a variety of multi-class and ordinal classification and
regression algorithms were trained. Then, heart rate and breathing rate were automatically estimated from
the chest sounds. For the deep learning model, YAMNet, a deep convolutional neural network pre-trained
on the AudioSet-Youtube corpus for sound classification was used. After modification of the final output
layers of the neural network and class balancing, transfer learning was applied to YAMNet for heart and
lung signal quality classification. The results of subject-wise leave-one-out cross-validation show that
the best-performing models had a balanced accuracy of 56.8% and 51.2% for heart and lung qualities,
respectively. The best-performingmodels for real-time analysis (<200ms) had a balanced accuracy of 56.7%
and 46.3%, respectively. Our experimental results underscore that increasing the signal quality leads to a
reduction in vital sign error.

INDEX TERMS Breath sound, deep learning, heart rate, heart sound, neonatal monitoring, ordinal regres-
sion, phonocardiogram (PCG), signal quality assessment, respiration rate, telehealth.

I. INTRODUCTION
The neonatal period is the most vulnerable time for sur-
vival, with 1.7% of live births resulting in mortality, totalling
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2.4 million worldwide, in 2019 alone [1]. To address this
major issue, the United Nations created the 3.2.2 Sustainable
Development Goal, to reduce neonatal mortality to 1.2% of
live births by 2030 [2].

Stethoscope-record chest sounds contain important car-
diac and respiratory information that inform neonatal health

10934 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-1563-4976
https://orcid.org/0000-0002-4564-2985
https://orcid.org/0000-0003-4913-6825
https://orcid.org/0000-0001-9664-4182
https://orcid.org/0000-0003-2048-4391
https://orcid.org/0000-0003-0551-1611
https://orcid.org/0000-0002-8584-5947


E. Grooby et al.: Real-Time Multi-Level Neonatal Heart and Lung Sound Quality Assessment for Telehealth Applications

status. This information can enable timely assessment for
signs of serious health risks to potentially improve neonatal
survival and reduce long-term morbidity risk [3]–[5].

However, low-quality chest sounds, due to the noise from
either external environment, other internal body sounds,
or the device itself, hinder the usage of stethoscopes. Low-
quality recordings complicate monitoring and diagnosis, or at
worse lead tomisdiagnosis [6], [7].Whilst having low-quality
chest sounds is unavoidable, identification and exclusion of
low-quality recordings help to improve remote monitoring.
Real-time automated quality assessment of heart and lung
sounds would address this gap by assisting the users in
obtaining better diagnostic-quality recordings and ensuring
the reliability of diagnosis.

Previous research on heart signal quality analysis has
mainly focused on the binary classification of heart sounds
into high and low-quality on adult populations. In our past
work, these methods were reviewed in detail, adapted and
expanded for the neonatal population [6]. To summarise,
heart sound recordings were represented in several ways:
time and frequency domain, autocorrelation signal, wavelet
decomposed signal and segmented heart signal into S1 and S2
sounds [8]–[12]. Features were then extracted from these rep-
resentations including statistical features (variance, skewness
and kurtosis), predictive fitting coefficients, segmentation
quality and agreement, Mel-frequency coefficients (MFCC),
entropy and power. These features were then used to develop
a dynamic classifier with 96% specificity, 81% sensitivity
and 93% accuracy. These results were shown to be superior
to the individual implementation of past heart signal quality
estimation techniques [6].

To date, limited studies have investigated lung sound qual-
ity assessment, either relying on an external reference signal
or by generating an artificial set of low and high-quality lung
sounds [13], [14]. In our past work, heart sound quality meth-
ods were adapted for lung sound quality analysis, with 86%
specificity, 69% sensitivity, and 82% accuracy, for binary
classification of low vs high-quality [6].

There are several key limitations with past works in heart
and lung signal quality classification. Firstly, except for
Kala et al. [13], who created a model to estimate signal to
noise ratio in artificial mixtures of clean lung sounds with
background noise, the majority of works including our previ-
ous work, only provide a binary assessment of signal quality
as either high or low quality. As typically the original sig-
nal quality annotations are on a 5-point scale or continuous
metric, threshold selection to determine a binary high or
low quality can be quite arbitrary. In particular, recordings
around the boundary of high and low quality are difficult to
classify, and the binary classification is not highly informa-
tive. Instead, through providing a finer scale of signal quality
assessment, representative of the original annotations, users
can make more informed decisions on the diagnostic qual-
ity of the recordings. Additionally, a relevant and important
research area of interest is denoising and sound separation to
obtain clean heart and lung sounds from noisy chest sound

recordings [15]. The assessment of these methods is difficult
in the neonatal context, as obtaining high-quality heart and
lung sounds to create artificial mixture test sets is very dif-
ficult. Even if artificial mixture test sets are generated, they
only partially test the effectiveness of these methods. Instead,
a continuous fine-scale signal quality assessment method is
required, to accurately assess these denoising, and heart and
lung sound separation methods on real-world neonatal chest
sounds.

The second limitation with past works including our own,
is the lack of assessment of the appropriateness of these
methods to be applied in the telehealth context. For heart and
lung signal quality classification to adequately inform users
of obtaining better diagnostic-quality recordings, real-time
feedback is required. Thus, an assessment of the computation
cost of the signal quality classification models is required.

The third limitation is the lack of assessment of the signal
quality definitions on the accuracy of extracting vital signs.
Since one of the goals of obtaining high-quality signals is
to achieve an accurate heart and breathing rate, it should be
verified that this is captured in the definition of signal quality
and what this relationship is. This was partially addressed in
our past workwithmanual annotations for heart and breathing
rate [6]. However, to make more accurate conclusions, vital
signs obtained from a gold-standard reference electrocardio-
gram should be used.

The final limitation is the requirement of hand-crafted
features to estimate heart and lung signal quality. Hand-
crafted features generally reduce the generalisability of the
model. For instance, existing works features typically rely
on adult-based heart and lung parameters, which have to be
modified to be applicable for the neonatal population [6].
Furthermore, due to less research in lung signal quality analy-
sis, there are fewer hand-crafted features, resulting in inferior
results, in comparison to heart signal quality analysis [6]. The
development of deep learning models, which take the time-
frequency representation of the audio chest sound signal,
offers the potential for removing the need for hand-crafted
features for the estimation of signal quality [16].

The key contribution of this research is the automated
real-time multi-level quality rating of neonatal chest sounds,
which can guide the user during auscultation and sound
recording. The development of a real-time system enables an
objective assessment of signal quality for the user to obtain
better diagnostic quality recordings. Another contribution of
this research is to extend our previous feature-based binary
signal quality classification model to a five-level quality
scale and compare this to the deep learning model, YAMNet.
This is achieved by introducing new features, providing a
more detailed signal quality assessment for the feature-based
model, and applying transfer learning to a pre-trained convo-
lutional neural network for the deep learning model. Through
providing a finer scale signal quality assessment, users can
make more informed decisions on the diagnostic quality of
the recordings. Unlike previous studies, the processing time
to extract features is assessed to determine the applicability
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FIGURE 1. Confusion matrix of overall annotators’ scores for a) heart signal quality and b) lung signal quality. The x-axis represents the individual
annotator’s score and the y-axis median annotators’ score for each chest sound recording. Green and red squares show the number of annotations
that have the same or different overall median annotation respectively. Additionally, the total percentage of annotations in each square is shown.
Grey squares at the end of each row show total recordings for a particular median annotator score, with the percentage of total annotations in
brackets, and percentage agreement and disagreement in that row shown in green and red, respectively. Grey squares at the end of each column
show similar information, except for total annotations for each individual annotator’s score. Dark grey square summarises the information of the
total number of recordings/total number of annotations and the overall percentage of annotations agreeing with median annotation.

of heart and lung sound quality assessment in real-time. Since
one of the key purposes of acquiring high-quality sounds is to
obtain accurate vital sign estimates, the relationship between
the heart and lung sound quality with heart and breathing
rate accuracy is also assessed using gold standard NICU
recordings.

The rest of this paper is organized as follows. Section II
presents details of the proposed signal quality assessment
models. Evaluation and results are presented in Section V.
Feasibility of real-time analysis and comparison of signal
quality with heart and breathing rate error with the models
are discussed in Sections IV and III, followed by a discussion
in Section VI. Section VII concludes the work, with future
perspectives.

II. METHODS
A. DATA ACQUISITION AND PREPROCESSING
The study was conducted at Monash Newborn, Monash
Children’s Hospital. It was approved by the Monash Health
Human Research Ethics Committee (HREA/18/MonH/471).
A total of 318, 60 s recordings from the right anterior chest
of preterm and term newborns were obtained using a digital
stethoscope [17], [18]. Synchronous vital signs based on
electrocardiogram for reference heart and breathing rate were
collected for 32 recordings, as further detailed in Section III.
The chest sounds were low-pass filtered to avoid aliasing
and down-sampled to 4 kHz. Recordings significantly dam-
aged from artifacts making lung and heart sounds impossible
to recover were automatically removed using methods pre-
sented in our previous work [6]. Next, 10 s segments contain-
ing heart, breathing or both sounds were manually extracted.
After excluding the invalid recordings, a total number of
207 signals (119 subjects) remained, 30 (10 subjects) of
which had synchronous vital signs. These 30 recordings were
held out only for testing the trained models.

B. ANNOTATION SETS AND QUALITY ANNOTATIONS
Randomized heart and lung pools were created from 207 raw
recordings plus 207 frequency filtered recordings, resulting in
414 heart and 414 lung recording pools [6]. Annotated signal
quality was used as ground truth, provided by 3 clinicians and
4 electrical engineers familiar with biomedical auscultation,
producing a set of 5 annotations per recording. To have a
more reliable training set, recordings with inter-rater agree-
ment less than or equal to 0.2 based on Fleiss kappa, were
removed [19]. This resulted in a total of 329 heart recordings
and 305 lung recordings. The short-listed heart and lung
recordings resulted in an inter-rater agreement of 0.37 and
0.39, respectively, which correspond to a fair agreement.
Median annotators signal quality was then used to determine
the signal quality for each recording. The resultant signal
quality distributions are shown in Figure 1.
Further details of the methodology can be found in our

previous work [6].

C. FEATURE-BASED QUALITY ASSESSMENT MODEL
1) FEATURES
From our recent work, a total of 182 and 187 features for
lung and heart sound quality classification are extracted [6].
As strong high-quality heart sound can act as noise and reduce
the quality of lung sound and vice versa, the heart and lung
features were combined together and used for both heart and
lung signal quality classification.

The initial feature set was also expanded in 3 ways,
to overall create a total of 254 features. Firstly, both 5 s
truncated and full autocorrelation signal of Hilbert enve-
lope was used to calculate the autocorrelation-based features,
as proposed by Springer et al. [8]. Secondly, Hilbert, homo-
morphic, Shannon, Short-Time Fourier Transform (STFT),
power for 40-60Hz and 3rd-level detailed wavelet coeffi-
cients with rbio3.9wavelet envelopeswere calculated, as they
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TABLE 1. Feature set used for automatic classification of heart and lung sounds.
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commonly represent heart signals [23], [27], [30], [31].
Similarly, log-variance, variance fractal dimension, spectral
energy and powers in the 0-500Hz, 150-300Hz, 300-450Hz
and 150-450Hz bands were calculated as they are commonly
used to represent lung signals [32]–[35]. As opposed to just
using Hilbert envelope as in the past work, all heart sig-
nal based envelopes were used to calculate hidden semi-
Markov model (HSMM) quality features [9]. Finally, the
percentage acceptable windows feature was modified from
our past work [6]. The original feature used a sliding window
of 2200ms with 25% overlap, and calculated the number
of heart peaks within each window using a method pro-
posed byGieraltowski et al. [26]. The percentage of windows
containing the normal range of 2-4 heart peaks was then
calculated and used to estimate signal quality [11], [26].
Percentage windows with the number of peaks 4-7 and 2-8
were also considered, as these correspond to approximately
the 5th and 95th percentile heart rate, and the full heart rate
ranges of newborns, respectively [6], [36], [37]. Additionally,
Springer et al., Schmidt et al., and Liang et al.methods were
used to detect S1 and S2 heart peaks, as opposed to just
heart peak detection using the Gieraltowski et al. method
previously. The percentage windows in acceptable ranges of
4-8 (original), 9-14 (5th-95th percentile), and 5-16 (full range)
were then determined based on these detected S1 and S2
peaks [6], [11], [27], [28], [31], [36], [37]. The percentage
acceptable windows features was also adapted for lung with
4 s sliding window with 25% overlap and peak detection of
inspiration and expiration peaks using methods developed in
our past work [6]. Percentage of windows with 1-4 and 1-5
corresponding to 5th and 95th and the full range of respiratory
rate, respectively, were then calculated [6], [36], [37].

146 additional features based on previous literature were
also extracted, as summarized in Table 1. Features 85-100
used lung-based envelopes and features 85-128 used the
aforementioned heart-based envelopes. In total 400 features
were extracted for lung and heart sound quality classifica-
tion. The source codes for these features are provided online
in [38].

2) FEATURE RANKING AND SELECTION
The training set was normalized to have zero means and unit
variance, with these same scaling and shifting values used on
the test set.

For feature ranking, the training set was class balanced
with random up-sampling with replacement and maximum
Relevance Minimum Redundancy (mRMR) algorithm with
Mutual Information Difference (MID) method used [39].
The mRMR algorithm maximizes relevance D (Equation 1)
and minimizes redundancy R (Equation 2) based on
their difference (Equation 3), in a first-order incremental
search to rank the most important features as calculated
below:

maxD(S, c), D =
1
|S|

∑
xi∈S

I (xi; c) (1)

minR(S), R =
1
|S|2

∑
xi,xj∈S

I (xi, xj), (2)

maxφ(D,R), φ = D− R (3)

where S is the feature set, xi, xj are individual features, I is
mutual information, and c is the target class.

The mean-square error was plotted against the num-
ber of features used based on the mRMR algorithm in
Figure 5. From this figure, heart classification performance
plateaus from feature 5 onwards and lung classifier per-
formance degrade after feature 20. To find the region of
best performance and minimize overfitting, the ranges of the
top 5-15 features for heart and top 5-20 features for lung
were selected for hyperparameter optimization. Note, while
the same overall 400 feature set was used for both heart and
lung signal quality classification, after feature ranking and
selection, the top features used are specific to each classifier,
as shown in Figures 2 and 3.

3) CLASSIFICATION
The overall model is shown in Algorithm 1, which takes in all
recording features, patient assignment, signal quality annota-
tions and hyperparameters as input to train the classifier.

As shown in Table 1, the distribution of signal qualities
is not even. In particular, there are few recordings of high-
quality, this is because recording in a neonatal intensive
care environment is challenging with a large range of noises
occurring. To resolve this, patient-wise class balancing was
performedwith theminority class being randomly upsampled
with replacement.

Two groups of classifiers were implemented. The first
group was standard regression methods that either had no
parameters (ordinary least squares regression, AdaBoost, gra-
dient boosting, bagging and random forest), had regularisa-
tion strength optimised through 5-fold cross-validation (ridge
regression [alpha = 0.1, 0.5, 1.0, 5, 10.0, 50, 100, 500,
1000], LASSO, Elastic-Net [l1 ratio = 0.001, 0.005, 0.01,
0.05, 0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 0.995, 0.999, 1.0], least
angle regression, LASSO with least angle regression [max
iterations = 50] and orthogonal matching pursuit) or had
numerous parameters optimised using 5-fold cross-validation
grid search parameter optimisation based on mean square
error (support vector machine, decision tree and k-nearest
neighbours) [40]. The second group was ordinal regression
methodswith either single parameter (least absolute deviation
[max iterations = 5000]) or had numerous parameters opti-
mised using grid search (logistic model with all or immediate
threshold, ridge and support vector machine) [41].

With the standard regression method group, test set outputs
were restricted to be in the range 1-5, whereas the ordinal
regression is similar to multi-class classification, except that
the order of the annotations is factored into the training. That
is, if the correct output is 1, then a mis-classification of 2 is
better than a mis-classification of 3. In fact, existing multi-
class classifiers can be modified to be ordinal regression
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Algorithm 1 Quality Assessment Model
Require: features, patientList, annotations, params
1: for each patient in patientList do
2: testSet ← features(patient)
3: testLabel← annotations(patient)
4: trainSet ← features(!patient)
5: trainLabel← annotations(!patient)
6: trainPatients← patientList(!patient)
7: end for
8: scaler ←StandardScaler().fit(trainSet)
9: trainSet ← scaler .transform(trainSet)

10: testSet ← scaler .transform(testSet)
11: trainSet_balanced, trainLabel_balanced ←

RandomOverSampler(trainSet , trainLabel)
12: topFeatures←

mRMR(trainSet_balanced, trainLabel_balanced ,
‘MID’)

13: folds← StratifiedCV(trainSet ,
trainLabel,trainPatients,splits=5)

14: for each fold in folds do
15: fold ← RandomOverSampler(fold)
16: R1← GridSearch(Regressor(), params,mse)
17: R1.fit(fold)
18: R2← RegressorCV(params)
19: R2.fit(fold)
20: end for

classifiers, which was done for the Support Vector Machine
classifier [42].

Patient-wise cross-validation was performed and all
parameters tested in the grid search hyperparameter are listed
below.
• Support Vector Machine (SVM):

– Kernel = Radial basis function or linear kernel
– Kernel Coefficient = 0.1, 0.01, 0.001, 0.0001,

inverse of number of features, or inverse of number
of features times variance

– Regularization parameter C = 0.02, 0.04, 0.08,
0.16, 0.32, 0.64, 1.28, 2.56 or 5.12

• Decision Tree (Tree):
– Measure quality of tree split = Mean square error,

Friedman mean square error, mean absolute error,
Poisson deviance

– Max depth of tree=Any, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10
– Max features in each split = All features, square

root of all features, or log2 of all features
• K-Nearest Neighbours (KNN):

– Number of neighbours= 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10
– Weight function = Uniform or inverse of the

distance
– Algorithm to compute nearest neighbours =

Brute-force search, BallTree or KDTree
– Definition of distance=Manhattan distance (l1) or

euclidean distance (l2)

• Logistic Model with All or Immediate Threshold:

– Alpha = 0, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000
– Max iterations = 10,000

• Ordinal Ridge:

– Alpha = 0, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000

D. DEEP LEARNING-BASED QUALITY ASSESSMENT
MODEL
Deep learning models, which have already been used in
several problems such as neonatal bowel sound classifica-
tion [43], offer the potential to remove the need for hand-
crafted features. However, successfully training such a model
typically requires labelled audio examples in the order of
100,000s to millions, equating to thousands of hours of
recordings [44]. Chakraborty et al. [16] created a deep learn-
ing convolutional neural network for binary heart signal qual-
ity classification. The model took as input the time-frequency
representation of the heart sound recording, as calculated
using the STFT. The dataset used in that study included
3,240 recordings ranging from 5 s to over 120 s in duration.
As this large dataset does not include neonatal recordings
like ours, it may not be able to extract appropriate features
from our dataset. Given this, direct training of a deep learning
model is not feasible for heart and lung quality classification.

To address this issue of inadequate data, transfer learning
is applied. Transfer learning utilises a deep neural network
that has already been pre-trained on a related task. This pre-
training enables useful weights and relevant abstract features
in the early layers of the neural network that are relevant to our
task to be obtained. The final layers of the pre-trained neural
network are then modified to suit the new task of heart and
lung signal quality classification. Then, the modified neural
network is trained on the relatively small dataset of neonatal
heart and lung signal quality labels.

1) TRANSFER LEARNING
YAMNet, a pre-trained deep convolutional neural network
model, is considered in this study [44]. YAMNet predicts
521 audio event classes based on the AudioSet-YouTube
corpus [45], [46]. These classes classify a large variety of
sound events, including heart and respiratory sounds, and
relevant noise sources such as human sounds and generic
background noises [45], [46]. Given heart and lung sound
quality is relevant to identifying heart, lung and noise sounds,
this is a very applicable model for transfer learning.

YAMNet is based on the MobileNet architecture, whereby
depth-wise separable convolutions instead of standard convo-
lutions are used [44], [47]. This method of convolutions dras-
tically decreases the computational cost of the model, making
it suitable for real-time processing on a mobile phone [47].
As an input, YAMNet initially takes a 0.98 s audio segment
sampled at 16 kHz. Mel spectrogram is then calculated with
a window length of 25ms, an overlap of length 15ms, and
64 frequency bands in the range of 125-7500Hz. Mel spec-
trogram is a 96× 64 image that is inputted into the YAMNet
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model [44]. As our audio recordings are of 10 s length and
sampling frequency of 4 kHz, these recordings were upsam-
pled to 16 kHz and segmented with a window length of 0.98 s
and 50% overlap. Overall, this generates 19 segments per 10 s
recording.

For transfer learning of YAMNet, the final three layers are
removed, namely, the fully connected, softmax and classifica-
tion layers. A new fully connected layer and regression layer
are then added to the model. The new fully connected layer
input is a 1 × 1 × 1024 image, and the output of the new
final regression layer is a single value representing the signal
quality of the recording segment.

2) CLASSIFICATION
Due to the high computational cost of training the model,
patient-wise hyperparameter optimisation was not possible.
Instead, patient-wise 5-fold cross-validation was performed
to identify the optimal parameters for training the model.
In each fold, class balancing was performed with the minority
class being randomly upsampled with replacement. Then, the
modified YAMNet model was trained with Adam stochastic
optimizer with a mini-batch size of 128 audio segments and
shuffling of the training set every epoch [48]. The two hyper-
parameters that were optimised are the max epochs (10, 20
or 30) and the number of early layers that have their weights
frozen (0,5,10,. . . ,80). The rationale of optimising these two
parameters is to avoid overfitting the dataset and maintain the
early-layer features based on the sound classification that are
relevant to signal quality classification.

It was found that max epochs of 10 with 40 layers and
60 layers’ having their weights frozen, produced the best
results, for heart and lung signal quality classification respec-
tively. Using these fixed parameters, patient-wise cross-
validation was then performed.

III. HEART RATE AND BREATHING RATE ERROR
The purpose of this section is to analyse the relationship
between heart signal quality and heart rate estimation error,
and similarly for lung signal quality and breathing rate esti-
mation error.

Using the 30 audio recordings with synchronous elec-
trocardiogram, heart rate and breathing rate were auto-
matically calculated every second with the inbuilt Dräger
Infinity R© M540 system algorithm [49]. The electrocardio-
gram is considered the gold standardmethod for estimation of
heart and breathing rate and is used as a reference [4]. These
recordings were not involved in training the regression model
for quality assessment and were held out for testing.

For the heart audio recordings, heart rate in beats per
minute was estimated every second with a sliding window
of 3 s. A sliding window of 3 s was chosen as this is a
sufficient length to obtain a minimum of three heartbeats,
necessary for accurate heart rate estimation. Two methods
were used to estimate heart rate. Firstly, using the method
proposed by Schmidt et al. [28], where the autocorrelation of
the Hilbert Envelope is calculated. Themaximum peak is then

detected in the autocorrelation signal between the bounds
of 70-220 beats per minute. The range of 70-220 beats per
minute is chosen as this is the typical heart rate range for
newborns [6], [50], [51]. The second method proposed by
Springer et al. [27], uses the initial estimate of heart rate from
the Schmidt et al. method as input into a duration-dependent
hidden Markov model, to segment the heartbeats into four
states, namely S1, S2, systolic and diastolic.

For lung audio recordings, breathing rate in breaths per
minute was estimated every second with a sliding window of
6 s. Similarly as before, a sliding window of 6 s was chosen
as this is a sufficient length to obtain a minimum of three
breathing periods, which is necessary for accurate breathing
rate estimation. For breathing rate estimation, power spectral
envelope is calculated for the frequency range 300-450Hz,
and then peak detection is performed [6].

Using the feature-based quality assessment model pro-
posed in Section II-C, this was trained using the heart and
lung recordings that did not have synchronous electrocar-
diogram recordings. Heart and lung signal quality for the
30 synchronous recordings was then estimated using this
trained model.

IV. REAL-TIME PROCESSING
The top 20 features based on the mRMR algorithm are shown
in Figure 2. The median time for feature extraction was
calculated using MATLAB 2021a with MacBook Pro CPU
2.3GHz 8-Core Intel i9. For extracting all 20 features, 1.46 s
and 2.16 s is required for heart and lung, respectively. The best
performing classifiers used 15 and 19 features for heart and
lung, which corresponded to 1.12 s and 2.16 s, respectively.

Time-consuming features to calculate were:

• Sample entropy of autocorrelation signal which takes
850ms and 210ms for full and 5 s truncated autocorre-
lation signal.

• Heart segmentation based features as Schmidt et al. and
Springer et al. segmentation take 120ms and 80ms,
respectively [27], [28]

• Heart and lung-based singular value decomposition,
which take between 50-250ms per feature

• STFT envelope-based features, as STFT envelope takes
120ms to calculate

• Mean rate average energy at 1000Hz and 2000Hz sam-
pling frequency, that take 640ms and 1.28 s to calculate

All features above were removed, except for Springer et al.
segmentation, as many of the top features in both heart
and lung utilised segmentation based features. Figure 3
shows the new top 20 features, which take 160ms and
200ms to extract for heart and lung, respectively. The
best performing classifiers used 13 and 14 features for
heart and lung, which corresponded to 130ms and 120ms,
respectively.

For the deep learning model, both heart and lung sound
classification take the same time. To represent the 10 s audio
in the Mel time-frequency domain takes less than 10ms. For

10940 VOLUME 10, 2022



E. Grooby et al.: Real-Time Multi-Level Neonatal Heart and Lung Sound Quality Assessment for Telehealth Applications

TABLE 2. Heart rate and breathing rate errors.

FIGURE 2. The top 20 features based on the mRMR algorithm with the MID method [39].

FIGURE 3. The top 20 fast features were calculated based on the mRMR algorithm with the MID method [39]. The slow features have been removed as
detailed in Section IV. New features not seen in Figure 2 are labelled (N).

the classification stage, it takes 20ms for the YAMNet-based
model. As expected, YAMNet is computationally efficient
due to its MobileNet architecture [44], [47].

V. RESULTS
Figures 2 and 3 show the top 20 features with all 400 features
and slow features removed, respectively. Corresponding clas-
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FIGURE 4. Confusion matrix of signal quality estimation. The x-axis represents the predicted signal quality score and the y-axis represents the
actual signal quality score for each chest sound recording. Green and red squares show the number of recordings that have been correctly or
incorrectly predicted for that signal quality score. Additionally, the total percentage of recordings in each square is shown. Grey squares at the end
of each row show sensitivity results ( True Positive

True Positive + False Negative ) for each actual signal quality score. Grey squares at the end of each row show

precision results ( True Positive
True Positive + False Positive ) for each predicted signal quality score. Dark grey square summarises the information with total

recordings and overall accuracy.

TABLE 3. Summary of classifier results. Heart and Lung Classifiers are trained with all features (Section II-C), whereas Heart Fast and Lung Fast Classifiers
have slow features removed (Section IV). Heart and Lung YAMNet Classifiers are trained with the YAMNet deep learning model (Section II-D).

sifier results based on these top features are shown in Table 3.
Heart with and without slow features perform comparably
with balanced accuracy across the 5 classes being 56.8% and
56.7%, respectively. On the other hand, the removal of slow
lung features results in a noticeable decrease in performance
in all categories (mean squared error, accuracy and balanced
accuracy). Using the deep learning YAMNet model, heart and
lung signal quality classification balanced accuracy was infe-
rior compared to both feature-based models. Heart YAMNet
accuracy and mean squared error were notably better com-
pared to feature-based models. This result can be attributed to
the model tending to predict signal qualities of 2 to 4, which
are more predominant in the test set.

Patient-wise cross-validation results using top 5-15 heart
and 5-20 lung features are shown in Figures 4 and 6. The
distinct separation of classes can be observed in the Violin
plots, however, there is a large overlap between classes due
to the 25-75th percentile generally varying +/−0.5 from the
median. This overlap between classes is further supported in
the confusion matrix results, with estimated signal quality
concentrated +/−1 from the actual class and the observed
accuracy of 54.7% and 54.4% for heart and lung, respectively.
Top features utilised vs mean square error are shown in

FIGURE 5. Top features utilised vs mean squared error. The top features
are based on the mRMR algorithm with the MID method [39]. Classifiers
are grouped as either regression based (circle) or ordinal regression
based (dashed line) with results shown for heart (blue) and lung (red).
Solid lines show the best performing classifier result for each feature
value.

Figure 2. The best performing standard regression models
outperform ordinal regression models at all number of fea-
tures based on both mean squared error and accuracy.

Figure 5 shows regression classifiers outperform ordi-
nal regression for both heart and lung signal quality
classification. For patient-wise cross-validation, SVM
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FIGURE 6. Violin plot of signal quality estimation.

(65.5%) and KNN (34.5%) regression classifiers were the
most commonly chosen for heart sound classification. Simi-
larly, for lung sound classification, KNN (54.4%) and SVM
(36.0%), Elastic-Net (6.4%) and ridge (2.4%) regression
classifiers and logistic model with all thresholds (0.8%) for
ordinal regression were most commonly chosen.

The regression quality assessment model used for heart
and breathing rate estimation had a mean squared error of
0.505 and 0.742, and accuracy of 56.3% and 43.8% for heart
and lung signal quality estimation.

Table 2 shows the mean absolute error and percentage
of recordings with error less than 5 bpm for signal qualities
1 to 5. As can be seen in all cases, improvement in signal
quality leads to a reduction in heart and breathing rate error,
and an increase in the percentage of recordings with less
than 5 bpm error. For clinical use, a mean absolute error of
less than 5 bpm is typically required [52], [53]. Based on
this requirement, only high-quality recordings with signal
quality 5 for heart recordings and signal qualities 4 and
5 for lung recordings meet this requirement. Whereas, low-
quality recordings are not appropriate for accurate vital sign
estimation.

VI. DISCUSSION
In terms of modelling signal quality data, three options were
available: multi-class classification, ordinal regression, and
regression. As ordinal regression is a multi-class classifi-
cation model that treats the classes as an ordered set that
is consistent with signal quality labels, it was chosen over
multi-class classification. However, knowing whether ordinal
regression or standard regression is more appropriate is a
more difficult task. The rationale for standard regression is
signal quality makes sense as a continuous scale from 1-5
as noise volume and contamination can vary continuously.
Furthermore, standard regression aids in addressing annotator
disagreement shown in Figure 1. Consider 2 recordings, both
with a median signal quality score of 5, but for one all 5 anno-
tators scored the recording 5, whereas only 3 did for the other.
This annotator disagreement suggests the former recording
is of higher quality even though both are represented by the

same score. While ordinal regression could only model in
discrete classes, the benefit of standard regression of these
two recordings can be scored differently more appropriately
representing the actual signal quality.

However, two issues arise from using standard regres-
sion. Firstly, a signal quality estimation can go outside the
range 1-5. This issue is partially addressed with signal qual-
ity being restricted to 1-5 after classification, however, this
does not change the inherent method used for training the
classifier itself. Secondly, whilst signal qualitymakes sense to
be represented as a continuous value, this does not mean the
discrete classes used for annotating are equally spaced. For
instance, lung signal quality classes 4 and 5 sound closer to
each other than signal quality classes 1 and 2 as demonstrated
in Figure 6. This makes sense, as no or next to no lung sound
(class 1) vs hearing partially lung sound (class 2) is an easier
task than to differentiate easy to hear lung sound that both
have minimal noise, typically in the form of heart sound
(class 4 and 5). As shown in Figure 6, this issue is addressed,
but it means that signal quality between 1-5 is not completely
evenly distributed.

Based on Figure 5 standard regression outperformed ordi-
nal regression based onmean squared error. This suggests that
standard regression more appropriately represented signal
quality, which fits the earlier discussion. Other contributing
factors to superior performance are that continuous-valued
estimation is easier to minimize mean squared error, and
a larger set of regression models in comparison to ordinal
regression were available. With regards to a larger set of
regression models, in both python and MATLAB, regres-
sion libraries are more established, optimised and available,
whereas fewer ordinal regression models are available. There
is a simple method of converting several multi-class classifi-
cation classifiers into an ordinal classifier, however, this is not
ideal as training multiple classifiers independently is an inef-
ficient process, and the potential for specialized algorithms
that can train with a single classifier may produce superior
results [42].

As shown in Table 2, high-quality (signal quality of 4 or 5)
can enable accurate vital sign estimation of heart and
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breathing rate for clinical usage. Whereas, low-quality
recordings can provide inaccurate vital sign estimation, hin-
dering clinical diagnosis. It can also be seen that mean
absolute error increases using the Springer et al. heart rate
method in comparison to the Schmidt et al. method. As the
Schmidt et al. method is used as an initial vital sign esti-
mation for the Springer et al. method’s heart segmentation,
the increased error suggests that poor heart rate estimation
amplifies the error in the more detailed analysis of heart
segmentation. Overall, improvement in signal quality can
enable more accurate vital sign estimation which is necessary
for clinical use and more detailed analysis.

For real-time processing, slow features namely sample
entropy to autocorrelation signal, mean rate average energy
and features based on Schmidt et al. heart segmentation,
STFT envelope, singular value decomposition features were
removed. The removal of features meant feature extraction
times were markedly reduced from 1.12 s to 130ms, and
2.16 s to 120ms for heart and lung respectively. Real-time
processing is less than 400ms processing time, which is satis-
fied with both feature-based classifiers and the deep learning
model; however, these processing times were achieved with
a MacBook Pro [10]. Similar results would be expected if a
desktop computer in a hospital setting or phone connected to
cloud computing, whereas using phone onboard processing
would be slower. Future research in investigating processing
time on phones would be required to determine appropriate-
ness. Reducing the processing times of heart and lung feature-
based classifiers of 130ms and 120ms even further is pos-
sible. The most promising methods for reducing processing
time is converting MATLAB code into optimised C code in
MEX function and the other is vectorising for loops. Whereas
for the deep learning model, the calculation of the Mel spec-
trogram and signal quality are already optimised by using in-
built MATLAB functions, so minimal improvements would
be expected for optimising the code. However, YAMNet did
require the upsampling of the recordings to 16 kHz and the
calculation of the Mel spectrogram in the 125-7500Hz fre-
quency range. It would be more efficient for the pre-trained
YAMNet model to work for the 4 kHz sampling frequency
and the calculation of the Mel spectrogram at 20-2000Hz
frequency range.

For heart sound quality classification, the removal of slow
features resulted in only minor changes in results (Table 3).
As only a maximum of 15 features was used, only the auto-
correlation sample entropy feature was removed, which had
a comparable feature selection score to other features in
the top 20, meaning the removal of that feature was minor.
Furthermore, the removed features important for heart classi-
fication had analogous faster features, namely, downsampled
sample entropy instead of autocorrelation sample entropy,
Springer et al.method instead of Schmidt et al. heart segmen-
tation and numerous other envelope representations instead
of STFT envelope. Finally, as heart results improvement
plateaued after 5 features (Figure 5) the removal of features
ranked 7, 17, 19, 20 would be expected to be minor.

It is noted that in Table 3 heart results with removed
features perform slightly better with regards to accuracy and
mean squared error, which may appear counter-initiative.
Firstly, these differences are minor and secondly, as the clas-
sifiers were trained with balanced classes, hence, comparison
based on balanced classes would be more appropriate. When
comparing heart results with removed features with regards to
balanced accuracy, it performed slightly worse as expected.

For breath sound quality classification, the removal of
slow features produced a marked decrease in performance as
shown in Table 3. This can be explained by the combination
of higher-ranked features 2, 12, 17 being removed and up
to a maximum of 20 features being used for the classifier
as opposed to the heart classifier where lower-ranked fea-
tures were removed and only the top 15 were features used.
Additionally, there are not any features that closely resemble
the mean rate average energy features that were removed.
Future works in optimising mean rate average energy for
real-time processing can potentially address this decrease in
performance.

Heart and lung quality classifier performance achieved an
accuracy of 54.7% and 54.4% and mean squared error of
0.487 and 0.612, respectively. One reason for the relatively
low accuracy can be attributed to the annotator disagree-
ment with median annotated quality differing from typically
by +/−1 by some annotators. This annotator disagreement
can be seen in Figure 1, where accuracy was 71.2% and
71.9% for heart and lung, respectively. Whilst removal of
poor agreement recordings was done which improved annota-
tor accuracy, this still suggests there is difficulty in accurately
defining signal quality. In particular, annotator disagreement
is high for the middle classes 2-4, which is also observed
in the classifier results in Figure 6. This suggests that while
annotators can generally agree on what is clearly low and
high-quality, middle values are a lot harder to determine.

Potential solutions to address annotator disagreement to
improve classification accuracy are the generation of an arti-
ficial dataset of heart and lung sounds with varying levels
of noise. More precisely, clean heart, lung, and a variety
of sources of noise such as stethoscope movement, alarms,
crying and background talking can be fused together in differ-
ent combinations. The signal quality label for these artificial
recordings would then be the signal to noise ratio. The key
benefit of the artificial dataset is a clear definition of sig-
nal quality and the generation of a balanced large number
of examples of varying signal quality for the training of
classifiers. However, a key question of this method is how
closely these artificial recordings resemble real low and high-
quality heart and lung sounds, and is there a strong correlation
between signal to noise ratio and perceived signal quality by
clinicians. An additional issue for the construction of an arti-
ficial dataset is obtaining enough clean heart and lung sounds,
in particular lung sounds, as a majority are contaminated
with heart noise. Regardless, there has been a large amount
of research in artificial heart/lung recording datasets mixed
either instantaneously or via convolution [13], [54]–[58].
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Another contributing factor to relatively low accuracy for
estimating signal quality is the small imbalanced training
set. In particular, classification accuracy was only 33.3% for
class 5 in the lung classifier, which contained only 8.9% of
the training data. As discussed previously, given that signal
quality classes 4 and 5 in the lung appear to be difficult
to differentiate (Figure 6) and are underrepresented in the
dataset, a larger number of recordings for training would
be of benefit. A larger number of recordings would also
enable a larger feature set to be utilized before over-fitting
becomes a major concern. Imbalanced classes were partially
addressed with data up-sampling with replacement, however,
this only replicates existing recordings which can lead to an
over-fitting problem. SyntheticMinority Oversampling Tech-
nique (SMOTE) may address this by generating new samples
from the underrepresented class based on interpolation from
the existing recordings [59]. As this is typically achieved with
k=5 for k-nearest neighbours in the underrepresented class in
the features space, this is not viable with the current dataset.
As 5-fold cross-validation is performed, there are some folds
with fewer than 5 recordings. Furthermore, with only a small
number of recordings, very few new interpolated recordings
could be generated.

Future collection of high-quality heart and lung sounds
may address the class imbalance and improve classifier per-
formance. However, obtaining such recordings is difficult in
a noisy neonatal intensive care unit environment. One option
to address this issue is the usage of more advanced denois-
ing and sound separation techniques as opposed to standard
frequency filtering. These methods can enable high-quality
heart and lung sounds to be generated from noisy chest sound
recordings. Non-negative matrix co-factorisation is one such
method developed in previous work [15].

Similar to past work, heart classifier performance was
superior to lung classifier performance as shown in
Table 3 [6]. Annotator agreement both before and after
removal of recordings was consistent for heart and lung,
suggesting a classification of signal quality is of similar
difficulty. As the majority of the features are either heart-
based or have been adapted from heart features, this resulted
in more suitable features for the classification of heart sound
quality. Currently, there are fewer works in lung sound quality
estimation, but as shown in Figures 2 and 3, tailored features
of agreement in breath sound segmentation, breath sound
envelope andmean rate average energy are important for lung
signal quality estimation. Therefore, future work in creating
further lung-based features may improve results.

With top features for signal quality classification, features
with frequency ranges of 20-267Hz and 200-467Hz were
observed for heart and lung sounds quality classifiers, respec-
tively. This makes sense as their frequency ranges correspond
closely with frequency ranges for heart and lung sounds [6].
Additionally, many heart segmentation-based features such as
HSMM quality and percentage abnormal segmentation fea-
tures were important for lung sound classification. As heart
sounds are normally present in all lung recordings and act

as noise, reducing signal quality, these heart segmentation-
based features aid in determining the amount of heart noise
contamination.

Results for the deep learning model for heart and lung
classification were promising. Heart and lung signal quality
classification balanced accuracy were 5.1% and 6.6% lower
than the best feature-basedmodels as seen in Table 3. Overall,
changing the required input in two ways for YAMNet, would
enable improved results. Firstly, Mel spectrogram should be
calculated at 4 kHz sampling frequency and the 20-2000Hz
range. Heart sounds are still prominent in the 20-125Hz
range, hence the exclusion of this frequency band in the
current YAMNet model leads to inferior results for both
heart and lung signal quality classification. This is further
supported in Figures 2 and 3, where various power ratios from
20-200Hz are highly ranked features. Secondly, the input
length of 0.98 s should be modified to 10 s. Whilst 0.98 s can
typically obtain a couple of heartbeats consistently, this is not
the case for breath sounds. With a short window length, some
segments contain no breath sounds, or only partial inspiration
or expiration. This means segment-based classification can
vary a lot from the overall 10 s recording signal quality.
In particular, faster breathing would artificially inflate the
signal quality estimation for lung sounds. Additionally, the
requirement of averaging out the signal quality estimation
based on the 19 segments of the 10 s long recording is prob-
lematic. As signal quality is estimated in the range 1 to 5, the
averaging of the 19 segments results in the tendency to predict
the central signal quality values 2 to 4, as opposed to the end
values of 1 and 5. To change the YAMNet model to work for
a sampling frequency of 4 kHz, frequency range 20-2000Hz
and segment 10 s requires the complete retraining of the
model on sound classification before transfer learning.

Another issue with the deep learning model was overfit-
ting, as can be seen with the high train set balanced accuracy
of 96.9% and 99.1% for heart and lung sound quality clas-
sification. This issue was attempted to be addressed in two
ways. Firstly, themaximum epochs were restricted to 30, with
the best performance occurring with 10 epochs. Additionally,
instead of all layers in the deep learningmodel being updated,
the first 40 and 60 layers of themodel had their weights frozen
for heart and lung signal quality classification. In future,
patient-wise hyperparameter optimisation on a larger set of
hyperparameters values for max epochs and number of layers
with frozen weights, and additional hyperparameters such as
learning rate and learning rate drop-off, may enable improved
results. However, similar to the complete retraining of the
YAMNet model before transfer learning, these are highly
computationally expensive processes. Additionally, a larger
dataset would aid in preventing overfitting.

VII. CONCLUSION
Stethoscope-recorded chest sounds provide affluent
information about neonatal health status, in particular for
cardio-respiratory health assessment. In combination with
telehealth, digital stethoscopes can increase the availability
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of quality healthcare for the early diagnosis and prognosis of
newborns. However, as shown in this paper, the acquisition
of high-quality recordings is necessary to obtain accurate
vital signs for clinical use. In order to achieve this, accurate
signal quality assessment is required for both heart and
lung sounds recorded from the digital stethoscope. Signal
quality assessment enables feedback to non-expert users on
the quality of recordings and aids the clinical decision support
system for automated analysis of those recordings. This paper
presented a newborn-focused automatic heart and lung sound
quality assessment on a five-level quality scale using a variety
of regression methods and a deep learning YAMNet model.
Overall, for the best-performing classifiers, heart and lung
quality were estimatedwith amean squared error of 0.487 and
0.612, taking 1.12 s and 2.16 s to compute per recording,
respectively. For real-time application, heart and lung quality
were estimated in under 130ms with the mean square error
of 0.459 and 0.673, respectively. The removal of the need
for hand-crafted features and utilising deep learning showed
promising results, with future work in improved pre-training
for transfer learning required.
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