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ABSTRACT This paper identifies vulnerabilities to recently proposed countermeasures to leakage power
analysis attacks in FDSOI systems based on the application of a random body bias. The vulnerabilities are
analyzed and the relative difficulty to obtain the secret key, once the vulnerabilities are taken into account,
are compared to the original proposals. A new countermeasure, based on a new body bias scheme, is then
proposed. The new countermeasure is based on the equalization of asymmetries in static power consumption
dependent on data being stored in registers implemented in FDSOI technology. The countermeasure’s
effectiveness is theoretically established through the development of a power model based on technological
parameters, and further reinforced through numerical simulations of a dummy cryptosystem implementing
part of an AES encrypting round.

INDEX TERMS Body bias, correlation power analysis, countermeasures, cryptography, FDSOI, leakage

power analysis, side-channel.

I. INTRODUCTION

The exploitation of power consumption of cryptographic
circuits as a source of information and a means to retrieve
the secret key has been extensively studied in the last two
decades [1]. These so called Power Analysis Attacks (PAA)
rely on asymmetries in power consumption that arise from
differing circuit states subjected to the data being processed
in intermediate stages of encrypting algorithms.

Traditionally, PAA have mainly focused on the dynamic
power consumption of cryptographic circuits to derive statis-
tical models of power consumption based on the data being
processed. These models of power consumption allow the
testing of secret key hypothesis with a minimum setting and
quick computation.

PAA traditionally rely on statistical metrics, namely, the
Difference of Means or the Pearson Correlation Coefficient
(PCC) [2], to test secret key hypothesis given a correct power
model. Since power consumption is dependent on processed
data which is, in turn, dependent on the secret key, the power
consumed by a cryptographic circuit is highly correlated with
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its correct secret key. Countermeasures to PAA attempt to
decorrelate this relation.

As a rule of thumb, countermeasures to PAA can be sep-
arated in two categories: those that introduce uncorrelated
noise during the execution of the encrypting algorithm, thus
obfuscating meaningful correlation between the power con-
sumption model and the measurements taken [3], [4]; and
those that attempt to reduce the asymmetries in power con-
sumption that arise from differing circuit states [5], [6]. Both
types of countermeasures effectively reduce the Signal to
Noise Ratio (SNR) utilizing different principles.

Nonetheless, as transistor nodes progress further into the
nanometer scale, the contribution of leakage power to over-
all power consumption becomes more significant. With the
reduction of operating voltages and standard-cell area that
accompanies shorter transistors’ channel length, dynamic
power consumption is scaled down, while traditional bulk
technologies experience an increase in leakage current from
various physical phenomena [7]. As a result, the last decade
has seen an emergence of PAA based on the static power
consumption of cryptographic circuits [8], [9], along studies
of their feasibility as well as potential countermeasures.
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Fully depleted silicon-on-insulator (FDSOI) technologies
address some of the short channel effects that contribute to the
increase of leakage current in shorter nodes [7]. At the same
time, their structure allows the application of a wide dynamic
range of body bias. Recent studies [10], [11] have proposed
taking advantage of this wide body bias dynamic range as
a means to introduce static power noise, thus hindering the
acquisition of the secret key.

On the other hand, the authors in [12] have recently devel-
oped and simulated standard cells that equalize the static
power consumption of combinational and sequential logic in
nanometer bulk technology.

In this paper, we explore and analyze the feasibility of
utilizing a body bias scheme that can effectively act as a
current equalizer between register states. Section II presents
a summary of the findings and analyses performed in [10]
and [11]. Section III describes how these findings can be
undone through a bivariate power model, while Section IV
presents a numerical analysis of the effect of this new power
model on symmetric random body bias. Sections V and VI
describe the new proposed countermeasure and its rationale,
as well as how the analyses are performed. The results of
these analyses are presented in Section VII. Lastly, conclu-
sions follow.

Il. BACKGROUND
An analysis of the different leakage currents in which a
register can incur depending on the data that it stores was
formalized in [8]. In the article, the authors identify 3 magni-
tudes of interest; namely, I, o and € which are, respectively,
the leakage current of a register that stores a 1, a 0, and their
difference (¢ = I1 — Ip).

With these, the authors of [8] established a power model
of the leakage current of an n-bit register array that stores an
intermediate result on an encryption process.

Lieak (HW) = n - Iy + € - HW (1)

where HW, the Hamming Weight, is the number of ones
stored in the register slice of interest. In a block cryptosystem,
the HW is a function of the plaintext, the secret key, and the
non-linear subtitution performed by an S-box.

Given the linear dependence between the leakage current
consumed by the register array and the Hamming Weight of
the word stored, this power model can be used to perform
Correlation Power Analysis Attacks (CPAA) [2].

In [10] and [11], the authors explore the potential of uti-
lizing cryptosystems implemented in FDSOI technology to
dynamically modify the leakage currents of the register arrays
by changing the body bias so as to introduce uncorrelated
noise that decreases the correlation between the Hamming
Weight and the leakage consumption.

The countermeasure presented in [10] and [11] relies on the
application of a symmetrical random body bias level at the
beginning of the encryption process. The body bias level is
symmetrical in the sense that its absolute value is the same for
NMOS and PMOS transistors: that is, Vppy = —Vppp. This
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body bias level is maintained throughout the whole process.
At the beginning of a new encryption process, a new body
bias level is set, following a random sequence.

Explorations on the leakage consumption of registers under
a varying body bias are presented in [11], where it is shown
that, for the technology and libraries studied in the article, the
different leakage currents of interest (when a register stores
a 1, a 0, and their difference) are exponentially dependent
on the absolute value of the body bias under the symmetric
conditions above described.

Under these conditions, the leakage current of an n-bit
register slice can be shown to be:

Lieak ([Vopl, HW) = n - Io(|Vpp|) + HW - €(|Vipl)  (2)

where both Io(|Vpp|) and €(|Vpp|) are exponential functions of
the form:

F(Vipl) = a- e&1VeeD A3)

With a and b being technological parameters.

Differing values of body bias decorrelate the leakage cur-
rent values from the Hamming Weight for successive encryp-
tion processes.

In fact, it can be shown that, assuming that the distribution
of the random variable | V| establishes a well-defined distri-
bution of Io(|Vpp|), the Pearson Correlation Coefficient (PCC)
between the leakage current and the Hamming Weight of the
register array becomes:

€ - Ogw
Plieai HW = 4

where 0120 is the variance of Io(|Vpp|), UIZJW is the variance of
the Hamming Weight, and we have assumed that the variance
of €(|Vpp|) is comparatively negligible so it can be considered
a constant.

The effectiveness of the countermeasure is demonstrated
both in [10] and [11]. In [10], the authors provide empirical
testing on the countermeasure under a variety of conditions.
In [11], an analytical model is developed and contrasted
against electrical and Monte Carlo simulations of a dummy
cryptosystem.

However, this countermeasure has some limitations. First,
as already analyzed in [11], trace averaging can undermine
the countermeasure at the expense of an increased number
of required measurements. Secondly, once a state of the
cryptosystem is identified, the countermeasure can be fully
undermined.

In the next section, we present and analyze this problem.
The rest of the article is devoted to the development of a new
body bias scheme that can address these vulnerabilities.

Ill. BIVARIATE POWER MODEL

Consider a block cryptosystem that comprises several rounds
of encryption. Consider a state register, where intermediate
values of the encryption process are stored. In the AES cryp-
tosystem, this state register is represented by the state matrix.
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Consider an attack where the n bits of interest are evaluated
at time 7.

Assume that, at a previous time, at time ¢1, the same state
register stores some bits that are known to the attacker.

Assume, also, that the attacker is able to track the pro-
gression from the value stored at time #; to the value stored
at time #,. In the AES cryptosystem, #; can represent the
initialization phase, when the plaintext is loaded onto the state
register, and #, the evaluation after the first round of encryp-
tion. Or, alternatively, #; can represent the time of evaluation
of an encryption round for which all previous roundkeys are
already known, and #, represents the evaluation time of the
following round of encryption.

Regardless of how the attack is conceptualized, we assume
that the state value and therefore the HW at time #; is known to
the attacker for every possible plaintext, and the progression
from the values stored at 7; to the values stored at 1, is a
function of an unknown secret key under attack.

Thus, the leakage currents of this particular register slice
at times 1 and , can be expressed as:

Tieak (|[Vopl, HWi1) = n- Io(1Vppl) + HWi1 - €([Vipl) ()
Lieai (| Vppl, HWi2) = n - Io(|Vippl) + HWio - €(|Vip) — (6)

While HW;, is an unknown value, given that both rounds
belong to the same encryption process, the value of |Vpp|
remains constant between equations (5) and (6). As such,
it can be seen that in the above equations, only the Hamming
Weights are different. It is then possible to obtain a new power
model of the leakage current by subtracting equation (6) from
equation (5).

Tieak (1Vpp |, HWr1 12) = €(|Vipl) - (HWiy — HW;)  (7)

Since the main source of decorrelated noise introduced by
this countermeasure is provided by the factor n - Ip(|Vppl),
which varies between encryption processes, but remains con-
stant during the same encryption process, much of the effec-
tiveness of the countermeasure proposed in [10] and [11] is
eliminated by performing this subtraction.

While HW;; and HW;, might be uncorrelated, given the
effect of an S-Box, they are not independent. As such, per-
forming an accurate analysis of the probability distribution
that accompanies these variables can be hard to generalize.

Nonetheless, we can perform some simplified analysis by
considering that, together, they form a new random variable:

Z = HW;; — HW;y ®
With expected value and variance equal to:

pnz =0 ©))

07 =2 0hy, =n/2 (10)

where we have considered that the variance of HW;; is %,
following from a plaintext of n bits, independent from
each other, with a uniform probability distribution. These
assumptions are reinforced by numerical simulations that are
addressed in later sections.
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Thus, equation 7 can be expressed as:

Lieak (| Vepl, Z) = €(|Vipl) - Z (1D

With these considerations, the PCC between equation (11)
and the variable of interest, Z, in the presence of the coun-
termeasure introduced in [11] can be shown to be, without
algorithmic or non-algorithmic noise, and with a correct key:

e

'Olletzk z=
’ 2 2
Voi+ ug

where . and 062 are, respectively, the expected value and
variance of €(|Vpp|).

By performing inter-trace averaging, the noise introduced
by the countermeasure (062), already significantly smaller
once the subtraction has been performed, can be reduced.
That is, if for every input plaintext of interest that evalu-
ates to z, the encryption process is repeated N times, the
resulting, avg:raged traces would see their sources of noise

12)

reduced to %
In the following section we evaluate the effect that this
post-processing has on the countermeasure proposed in [10]

and in [11].

IV. SYMMETRIC BODY BIAS BIVARIATE POWER MODEL
In order to compare the effectiveness of the countermeasure
against a bivariate leakage model we utilize the same body
biasing scheme as in [11]:

[Venl(S) = Vipy + AVpp - S (13)

where V0 is the quiescent point of the body bias, AV,
the step increase of the body bias and S a discrete uniform
random variable that can adopt any integer value between
[—Smax> Smax] With probability P[S = i] = m for every
i such that —s,,0r <1 < Siax
This way, €(|Vpp|) can be expressed as:
eS)=a- &P (Vobo+AVpp-S) (14)

Utilizing the same registers from the same technological
library as in [11] (a D flip-flop implemented with 28 nm,
Low Threshold Voltage (LVT), Flipped Well transistors), the
parameters a and b can be extracted and the variance and
expected value of €(§) calculated.

We perform the comparison by solving equation (12) for
different numbers of s,,,, and plotting it against the univari-
ate leakage considered in [11] under equal countermeasure
conditions: Vypg = 0.5V, AVi, = 55—, with DR being the
maximum allowable dynamic range of the body bias for the
technology; in this case, 1V, and with n = 8 bits under attack.
The results can be seen in Fig. 1.

It can be seen that, under the same countermeasure condi-
tions, the PCC of the bivariate case is much higher than that
of the univariate leakage.

Furthermore, the rate of increase of the PCC under trace
averaging conditions is much higher for the bivariate case.

Under trace averaging conditions, with N traces per plain-
text, the different variances are scaled by a factor of le
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FIGURE 1. PCC between the Hamming Weight and leakage current of a
register array in the presence of symmetric random body bias with an
univariate (Equation (2)) and a bivariate power model (Equation (11)).

Table 1 shows the value of the PCC for the univariate and
bivariate cases when s,,,, = 25, with the maximum body
bias Dynamic Range allowed by the technology, for different
number of traces N.

TABLE 1. PCC for maximum dynamic range of the body bias for different
number of averaging encryption processes smax = 25.

PCC
N [ Univariate [ Bivariate
T 00476 0.875
10 [ 0.1489 0.085
100 | 0.4300 0.9985
1000 0.8331 0.9998

It can be seen that, for the bivariate case, very few traces
are required to achieve almost maximum correlation, thus
significantly facilitating the acquisition of the secret key even
in the presence of the countermeasure.

The following sections are devoted to the development of
a body bias scheme that can offer protection against these
considerations.

V. CURRENT BALANCING BODY BIAS

In order to address these vulnerabilities we begin by noting
that the signal of interest that conveys information regarding
the secret key is the variable €. Specifically, the expected
value of €, which appears in the numerator of equation (12).
Thus, the PCC between the leakage current consumption
and the Hamming Weight of the bits of interest are directly
proportional to fic.

The definition of ¢, stated above, is the difference between
the leakage current consumed by a flip-flop that stores a 1
and a flip-flop that stores a 0. Since the body bias allows us
to modify the leakage current profile of the registers, we wish
to explore if a body bias scheme exists that would arbitrarily
reduce this difference, essentially reducing the SNR, not by
introducing uncorrelated noise, but by reducing the magni-
tude of the signal of interest.
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In order to do so, sufficient simulations are performed to
extract the curves of € as a function of both Vjp, and Vipp
for the registers under study. Figure 2 shows a collection
of curves resulting from a double parametric sweep. The
different curves represent the value of € as a function of vy,
for varying values of vpp,,, With vy, values ranging from 0 V
to 1 Vin 0.1 V increments for a total of 11 curves.

=10

8

Epsilon (A)

!

4 09 08 07 06 05 04 03 02 01 0
Vbbp (V)

-4

FIGURE 2. Collection of curves of ¢(vpp, Vppp) for D flip-flop from a
double parametric sweep. The different curves represent the value of ¢ as
a function of Vjp, for different values of Vpp,,. The Vjp,, sweep ranges
fromoto1V witﬁ 0.1 V increments. The horizontal red line is placed at
the zero crossing point.

Observing the set of curves for €(Vpp,, Vipp) it can be seen
that there exists a subset of values of the xy-plane defined by
(Vo) % (Vppp) where € ~ 0. This can be seen by noting
the zero-point crossings for different curves in the body bias
sweep represented by the horizontal red curve of Fig. 2.

The different curves of €(Vipy, Vipp) are then extracted and
with the help of Matlab’s fitting tools, expressed as a bivariate
polynomial of degree n of the following form:

n n
€(Vibn, Vibp) = ajj Z Z Vibn V;/,bp (15)
i=0 j=0
i+j=<n

With a;; as the different polynomial coefficients. A poly-
nomial of degree n = 4 is sufficient to fit the data with an R>
value of 1.

An algorithm is then implemented to solve for all the pairs
of values of Vpp, and Vppp, such that |€(Vippn, Vipp)l < ¢,
where c is a constant that can be set arbitrarily small.

We set ¢ < 1 nA and solve for the pair of body bias
values of Vpp, and Vpp, that make the register under study
present leakage currents such that [I;] — Iy| = |e] < 1 nA.
We obtain two contour lines, whose encased area represents
the possible pairs of Vpp, and Vpp, values that solve for the
above conditions (Fig. 3).

The pair of contour lines seen in Fig. 3 can be expressed as
an affine function of the form:

Vioop(Vobn) = b1 — b2 - Vippn (16)

where b and b, are constants.
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FIGURE 3. Contour map of €(vpp,, Vppp) at 27 C for the registers under
study implemented with low thresholcf voltage, flipped well transistors.
The lines represent the limits where |e(vpp,, Vppp)| < 1 NA, encasing an
area where every possible combination of Vp, and Vpp, meet the
imposed criterion.

The bivariate polyomial obtained for € (Vpp, Vipp) can now
be reduced to an univariate polynomial, of the form:

4 4
€Vhbn) = ajj Z Z Vipn - (b1 — b2 - Vipp)
i=0 j=0
i+j<4 (17)

Thus, the polynomial can be solved for values of € consis-
tently kept at 1 nA.

VI. PROPOSED COUNTERMEASURE

With these considerations we can establish a body bias
scheme that serves as a countermeasure protecting against
attacks with a bivariate power model described in previous
sections.

Consider a countermeasure that fixes the body bias value
Vipn of registers at the beginning of a encryption process.
Once Vippy, is fixed, Vppp is adjusted until the value of € reaches
a certain threshold.

These values are maintained during the encryption process.
At the beginning of a new encryption process, a new value of
Vipn 1s chosen independently and at random, and the process
begins anew.

We consider the positive body bias, Vpp,, a random variable
of the form:

Viobn(S) = Viby + AVpp - S (18)

where the different terms are defined as:
Vbbmin + Vbbmux

Vi = —tanF Zbhuas (19)

DR = Vip,o — Vibin (20)
DR

AVpp = 2n
2Smax

With DR as the Dynamic Range of the body bias, limited to
the domain of the positive body bias Vj,;, where there exist a
value of negative body bias that meets the imposed criterion.
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The value of the negative body bias is set accordingly
following equation (16).

With these considerations we now have a model with
which to determine the effectiveness of this proposed
countermeasure.

To do so, we solve equation for the PCC between the
Hamming Weight of the bits of interest and the bivariate
leakage (Equation (12)) under noiseless assumption and in
the presence of algorithmic and non-algorithmic noise. It is
necessary to determine the expected value and variance of
€ under these conditions. Given the model above derived,
these can be determined numerically utilizing the following
definitions.

Var(e(S)) = E[e(S)*] — E[(S)]

l Smax
Ele@®) = 53— 3 eWVopn(D: b1 = b2 Vo)

1=—Smax

Smax
57 2 € Wi by = b2 Vi (@)
max .

1=—Smax

E[e(S)’] =

VII. RESULTS

In order to establish the effectiveness of the proposed coun-
termeasure, Equation (12), the PCC between the Hamming
Weight of the bits under attack and the bivariate leakage
current model defined in Equation (7) is solved for the body
bias scheme presented in [11] (symmetrical body bias) along
the results provided by the Current Balancing (CB) body bias
derived in the above sections.

We consider a noiseless system under correct key assump-
tions, utilizing the conditions shown in Table 2. Equation (12)
is solved for a variety of s,,,4, values. The results can be seen
in Fig.4.

TABLE 2. Countermeasure parameters.

Symmetric CB
Vbbn,maz v v
Vobn,min oV 03V
DR 1V 0.7V
Vobn@ 05V 0.65V
n 8 bits

It might seem at first that current balancing body bias con-
templated in previous sections presents significantly worse
values (a higher PCC that can facilitate the acquisition of
the secret key). This can be explained by noting that, under
noiseless assumptions, the only source of noise is determined
by the variance of ¢ and the variances of the Hamming
Weights. Since in the Current Balancing body bias scheme
the Dynamic Range of the body bias is limited, the variance
of € is smaller.

However, consider the case of a noisy system. That is,
Equations (5) and (6) now present a superposed Gaussian
White Noise (GWN) with variance obz. By performing the
aforementioned subtraction, Equation (7) would now present,
by considering additive noise, a GWN of variance 20bz.

13455



IEEE Access

K. Palma, F. Moll: Current Balancing Random Body Bias in FDSOI Cryptosystems as Countermeasure

0.96

0.94 |

Symmetric
CB

0.92

0.9

PCC

0.88 [

0.86 [

0.84 |

0.82

0.8
0 5 10 15 20 25 30 35

Steps (smax)

FIGURE 4. PCC between the Hamming Weight and the bivariate leakage
power model (Equation (11)) under noiseless conditions in the presence
of a symmetrical (blue) and a Current Balancing (orange) random body
bias scheme, where ¢ is systematically kept at 1 nA.
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FIGURE 5. PCC between the Hamming Weight and the bivariate leakage
power model (Equation 11) with non-algorithmic noise in the presence of
a symmetrical (blue) and a Current Balancing (orange) random body bias
scheme, in the presence of non-algorithmic GW noise.

Figure 5 plots the results of the PCC for the Current
Balancing and Symmetrical body bias schemes with a noise
power of sz = —134 dBW, the thermal noise produced by
a 1 ohm shunt resistor connected to a 1 V power supply, with
measurements of up to a bandwidth of 10 MHz. This noise
represents the pre-amplifications and pre-filtering measure-
ments obtained in settings such as those described in [13].
Even though it is still somewhat arbitrary, it suffices, without
loss of generality, for illustration purposes. It can be seen
that the PCC for the Current Balancing case is approximately
one order of magnitude smaller than the symmetric body
bias.

At the same time, if the value of s,,,, is fixed to 32 and we
plot the PCC against the number of averaged traces for the
same noise conditions, it can be seen (Fig. 6) that the Pearson
Correlation Coefficient increases much more slowly when the
Current Balancing body bias scheme is applied. That is, non-
algorithmic noise severely dominates.
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FIGURE 6. PCC between the Hamming Weight and the bivariate leakage
power model (Equation 11) as a function of averaged number of traces in
the presence of non-algorithmic GW noise with a symmetrical (Blue) and
a Current Balancing (Orange) random body bias scheme.

A. ALGORITHMIC AND NON-ALGORITHMIC NOISE

The results so far consider an n-bit register array, with
n = 8 bits, subjected to some source of non-algorithmic,
white gaussian noise.

A more realistic scenario considers a cryptosystem that
processes n + m bits, with n being the bits of interest under
attack, and m the rest of bits not pertinent to the attack that
introduce algorithmic noise.

The bivariate power model under these conditions (Equa-
tion (11)) becomes:

Lieakt1,2 = €(S) - (Zy +Zy) + B (22)

where Z, is defined in Equation (8) as the difference between
the Hamming Weight of the bits of interest n after a round
of encryption and before the round of encryption. Similarly,
Z, is defined as the difference between the Hamming Weight
of the remaining m bits not pertinent to the attack after and
before the same round of encryption.

Zn = HWyy0 — HWyypy (23)

As in previous discussions, HW,,;» and HW,,;; might be
uncorrelated but are not independent. In order to be able to
treat them analytically, we make some assumptions regarding
the distribution of Z,,,.

wzm =0 (24
oz, =m/2 (25)
The magnitude B represents a gaussian white noise term
with zero mean and variance equal to 20'b2 considering
additivity.
With this, it can be shown that the PCC between the
bivariate power model and Z,, is:

MeOZ,
J©@2 + 02 ) +02) + 207

Figure 7 plots Equation (26) for a n 4+ m = 128-bit system
with n = 8 bits under attack, considering the presence of

Plioak Zy = (26)
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additive GWN as a function of noise power for different
number of averaged traces.
We are assuming exclusively inter-trace averaging, and

thus all sources of noise (062, UZZ and sz) are scaled by a

m

factor of zlv’ with N being the number of traces measured and
averaged per plaintext.
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FIGURE 7. PCC between Z, and the bivariate leakage power model with
algorithmic and non-algorithmic noise (Equation 26) as a function of
noise power under a current balancing boby bias, for different number of
N averaged traces.

Figure 7 shows that for small noise powers (below —160
or —170 dBW depending on the number of averages) algo-
rithmic noise dominates as a factor. In fact, it can be shown
that for small magnitudes of gaussian noise power the coun-
termeasure, under a bivariate attack, barely introduces noise.
As such, the PCC between Z, and the leakage current can be
approximated as:

0z, n
Plioak Zy = = (27)

m
o2 n+y
(@3, + )

4

Thus, only when non-algorithmic noise becomes com-
paratively high is current balancing body bias significantly
effective.

On the other hand, Fig. 8 presents a comparison between
the PCC (Equation (26)) obtained through current balancing
and symmetric body bias under the conditions presented in
Table 2 as a function of noise power for a number of averaged
traces N = 1000. It can be seen that the current balancing
case is much more susceptible to noise power, as expected by
the reduction of the signals of interest.

B. NUMERICAL SIMULATIONS
We mount a numerically simulated CPA attack on a
dummy cryptosystem that reflects the bivariate power model
described above and summarized in Equation (22), under the
countermeasure conditions established in Table 2.

In order to do so, we set an 128-bit secret key that rep-
resents a round key. The dummy cryptosystem comprises
a round of encryption of the AES from the MixColumns,
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FIGURE 8. PCC between the Hamming Weight and the bivariate leakage
power model with algorithmic and non-algorithmic noise (Equation 26),
as a function of noise power under a a symmetrical (blue) and a Current
Balancing (orange) random body bias scheme for N = 1000 averaged
traces.

up to the SubBytes routine, without including the former [14].
That is, we consider that the whole state matrix after the
MixColumns routine is known to the attacker and directly
consider this state the input plaintext. Each of the 16 bytes of
the plaintext are then XORed with their corresponding byte
of the secret key. Each XORed byte is then fed to the AES
S-Box and the result is again considered to be stored in the
state matrix.

The attack is performed on n = 8 bits (1 byte). For
each input plaintext i of interest (with 0 < i < 255), N
realizations of Equation (22) are numerically simulated. For
each realization, the 15 remaining bytes of the plaintext are
generated at random, each bit following a uniform probability
distribution. The random variable S is also realized randomly
following the distribution described in Section IV under the
constraints described in Section V, thus generating a random
body bias value that keeps € =~ 1 nA. Finally, for each of
the N realizations, a white gaussian noise value following the
distribution described above, for a noise power of —134 dBW
is also produced.

The N realizations are then averaged:

N
A Aoa 1
Lieak(Zniy Zin, S) = ﬁ 2]: G(Sj)(Zm‘ + ij) + Bj (28)
j=

Thus, a vector comprising 256 I}, values, one for each
possible plaintext is obtained. The PCC between this vector
and the vector Z, solved for each possible 8-bit secret key is
calculated.

TABLE 3. PCC - theoretical and numerical simulations of a 128 bit system
in the absence of non-algorithmic noise.

[ CB - No Gaussian noise |

PCC
N Theo CPA Success Rate
11 0.239 | 0.196 0.6
10 | 0.630 | 0.645 1
100 | 0.932 | 0.933 1
1000 | 0.993 | 0.993 1
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TABLE 4. PCC - theoretical and numerical simulations of a 128 bit system
in the presence of non-algorithmic noise.

[ CB - GWN -134 dBW ]

PCC
N | Theo CPA Success Rate
1 | 0.010 | -0.060 0
10 | 0.032 | 0.0325 0
100 | 0.100 | 0.0945 0
1000 | 0.302 0.305 0.7

Tables 3 and 4 present the results of the PCC obtained for
the secret key under attack for the simulated CPA and the
theoretical value obtained through Equation (26) for different
number N of averaged traces. It can be seen that, in both
cases, as the number of averaged traces increase, the values
of the PCC obtained through numerical simulations becomes
closer to the theoretical values. The tables also include the
success rate of secret key identification for 10 independent
experiments.

TABLE 5. First and second moments of Z,.

[ Z.m Distribution |
N | pz, o%m

10 4.400 25.82
100 | -0.640 | 66.43
1000 0.250 62.20
5000 | -0.018 | 59.16
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FIGURE 9. Contour map of ¢(vpp,, Vppp) at 75 C for the registers under
study implemented with low thresholcf’ voltage, flipped well transistors.
The lines represent the limits where |¢(vpp,, Vppp)| < 1 DA, encasing an
area where every possible combination of Vpp, and Vpp, meet the
imposed criterion.

At the same time, Table 5 presents the values of the
expected value and variance of Z,, for increasing number of
averaged traces. As N increases, the first and second moment
of Z,, more closely resemble the theoretical values that had
been previously assumed; namely, that nz, = 0 and that
O'sz = 5 = 60, with m being the number of bits not under
attack, 120 in this particular simulation.
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FIGURE 10. Contour map of €(vppp, Vppp) at 27 C for the registers under
study implemented with regular threshold voltage, reverse body bias
transistors. The lines represent the limits where |e(Vpp, Vppp)| < 1 NA,
encasing an area where every possible combination of Vpp, and Vppp
meet the imposed criterion.

VIil. TEMPERATURE CONSIDERATIONS

So far, temperature effects have been omitted. However,
an important temperature effect worth discussing is the mod-
ification of the contour lines of € as a function of tempera-
ture. Figure 3 shows the contour lines that met the imposed
conditions for the registers under study at 27 C. However,
as temperature increases, the contour maps of € vary. Figure 9
shows the contour map €(Vppn, Vopp) at 75 C for the registers
under study. It can be seen that, while presenting similar
behaviour as the one at 27 C, the area that meets the criterion
is reduced.

Vbbn (V)

09 . L L L . . .
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vbbp (V)

FIGURE 11. Contour map of €(vppp, Vppp) at 80 C for the registers under
study implemented with regular threshold voltage, reverse body bias
transistors. The lines represent the limits where |e(Vpp,, Vppp)| < 1 DA,
encasing an area where every possible combination of Vpp,, and Vppp
meet the imposed criterion.

At the same time, registers with higher threshold volt-
age, implemented with non-flipped wells transistors driven
through Reverse Body Bias (RBB), present much wider
areas in their contour maps even at higher temperatures
(Fig. 10 and 11).
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IX. CONCLUSION

In this paper, a vulnerability to the countermeasures presented
in [10] and [11] is identified and analyzed following the
derivations made in [11], showing that the countermeasure’s
effectiveness resulting from the application of a random
body bias at the beginning of the encryption process can be
highly undermined once a known state of the cryptosystem is
obtained.

A new countermeasure against leakage power analysis
attacks is presented in response to these findings. The coun-
termeasure exploits the backgate of FDSOI transistors to
modify the leakage current profile of registers, diminishing
the asymmetries that arise from stored data.

Results show that the countermeasure effectiveness is
dependent on the magnitude of noise power present in the
circuit or measuring system. While no such analysis is
presented, the magnitude of ¢ clearly determines, as well,
the effectiveness of the proposed scheme. In this paper the
authors have restricted themselves to a value of € ~ 1 nA,
adopting a conservative stance before a system implementa-
tion is made.

The results presented are obtained for registers imple-
mented with Low Threshold Voltage (LVT), flipped-well
transistors. However, the same simulations and analysis have
also been performed for registers implemented with higher
VT, reverse body bias transistors. These results have been
omitted for simplicity, as they did not differ significantly
from the ones presented. That is, accounting for the necessary
modifications of the DR of the countermeasure, they yield
similar distributions and results given that the variance of € is
negligible compared to other sources of noise. Nonetheless,
it is worth noting that higher threshold transistors with RBB
present much wider regions of the (Vpp,) X (Vppp) plane where
the conditions are met.

An important observation that stems from the results
obtained is that the variance of € is negligible as compared to
the other sources of noise in the circuit (be them algorithmic
or non-algorithmic), and has little impact on the effectiveness
of the countermeasure. In a perfect implementation in which
the value of € were to remain exactly the same at all times,
the variance of € would actually be 0. Because of this, it is
not necessary to choose the value of the body bias at random.
This would free the system implementation of a True or
Pseudo Random Number Generator, and design efforts could
be devoted to a system that maintains € as small as possible
for differing operating temperatures.

Further studies should focus on circuit design of the pro-
posed countermeasure to study the practical limitations of its
implementation.
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