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ABSTRACT There has been an exponential growth over the years in the number of users connected to
social networks. This has spurred research interest in social networks to ensure the privacy of users. From
a theoretical standpoint, a social network is modeled as a directed graph network and interactions among
agents in the directed graph network can be analyzed with non-Bayesian learning and online learning
strategies. The goal of the agents is to learn the underlying time-varying true state of the network through
repeated cooperative interaction among themselves. To overcome privacy challenges in social networks,
recent research works include differential privacy in the social network analysis to guarantee the privacy
of shared information among the agents. However, the common online learning strategy adopted in most
existing work is the stochastic multi-armed bandit approach which assumes that the loss distribution is
independent and identically distributed. This does not account for the arbitrariness of the time-varying true
state in the social network. Therefore, this paper proposes a tougher but realistic setting that removes the
restriction on the loss distribution. Two non-stochastic multi-armed bandit algorithms are proposed. The
first algorithm uses the Laplace mechanism to guarantee differential privacy against a third-party intruder.
The second algorithm uses the Laplace mechanism to guarantee differential privacy against both a third-party
intruder and any spying agent in the network. The simulation results show that the agents’ beliefs converge to
the most dominant true state among the sequence of arbitrarily time-varying true states over the time horizon.
The speed of convergence comes as a trade-off with privacy. Regret bounds are obtained for the proposed
algorithms and compared to the non-private algorithm in the literature.

INDEX TERMS Non-Bayesian learning, diffusion learning, differential privacy, Laplace mechanism, multi-
armed bandit, regret, online learning.

I. INTRODUCTION
The social network has played an important role in our
daily lives by providing a platform for social interactions.
Social interactions are often among users having a common
interest, i.e., friendship, colleagues at work, peer groups, etc.
Social network users often collaborate to learn the truth about
an event over time, through social interactions within their
social connections. However, during such collaborations,
it is important to protect shared vital information from
third-party intruders, who are not members of the social
connections. Also, it is pertinent for each user to share only
information that is needed for social cooperation within its
social connections, and protect sensitive information from
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other members of its social connections. For instance, it is
common among young people to share insensitive photos on
Flickr or other popular social media applications, to attract
comments from friends and family members within their
social connections. However, sensitive photos are stored in
local photo applications on their mobile phones, with the hope
that nobody can access and view them. Unfortunately, there
are lots of privacy breaches in social networks [1].

A technique adopted in the past to provide privacy is to
anonymize the datasets. However, research has shown that
public information that is anonymized can be easily de-
anonymized leading to sensitive information being exposed.
For instance, in 2007, Netflix released anonymized datasets
to researchers in the field of information retrieval for
research purposes. After a year, the datasets were de-
anonymized using public information from the Internet
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Movie Database (IMDb) which led to the re-identification
of anonymized Netflix subscribers. This became a legal
case of privacy breach with one of Netflix subscribers who
claimed to have been adversely affected by the breach of
privacy [2], [3]. Similarly, themedical records of the governor
of Massachusetts were exposed by matching anonymized
medical data with publicly available voter registration
records [2]. The failure of anonymizing the datasets and the
pressing need for researchers to provide a better technique to
protect sensitive information led to differential privacy.

To address the issue of privacy in data analysis,
Dwork et al. [2], [4], [5] proposed differential privacy which
is a rigorous theoretical guarantee for privacy regardless of an
intruder’s prior knowledge about the databases. In particular,
differential privacy guarantees that two databases that differ
in only one record will output randomized results with
identical probability distributions. Thus, the intruder cannot
detect this difference in the databases whether it possesses
some auxiliary information about the databases or analyzes
the results. It is to be noted that the definition of privacy
in [4], [5] is sufficient to guarantee the privacy of each agent’s
information against a third-party intruder, but it is insufficient
to guarantee privacy when there is a curious spy within the
social circle. Thus, the notion of local differential privacy was
conceived and proposed byDuchi et al. [6]. Local differential
privacy guarantees the privacy of information in a distributed
system, where agents must cooperate, but do not trust each
other.

Theoretical analyses of the social network are done by
modeling the social network as a graph network [7], [8].
Social network users, referred to as agents, collaborate among
themselves by a set of directed edges in the graph network.
The graph network is strongly connected and each agent
can communicate with every other agents. Non-Bayesian
diffusion learning approaches are commonly used to analyze
the interactions among these agents [9]. In these learning
approaches, the agents share information among themselves
periodically and converge to an underlying fixed true state
of the network over time [10]–[13]. However, there are
many practical situations where the underlying true state is
time-varying. An example is the prediction of a fluctuating
stock price among a finite set of possible discrete stock
prices. Also, information is arbitrarily released and updated
in social networks. Recent studies show that incorporating
non-stochastic multi-armed bandit techniques - rather than
stochastic multi-armed bandit techniques - into non-Bayesian
learning approaches can effectively track this time-varying
true state [14]–[16]. Non-stochastic multi-armed bandit is
a variant of the online learning strategies that work well
in sequential decision-making. These recent studies do not
include privacy considerations.

There are some existing literature that studied how privacy
can be guaranteed in social networks using differential
privacy. Most of these existing literature incorporate online
learning strategies where all the agents receive full feedback
over all possible actions [17]–[19]. This means that when

an agent chooses a state as the likely true state from a set
of states at any round of play, the agent incurs the loss of
its action - the chosen state, and also observes the losses of
all unchosen states at the end of that round. This is a simple
setting that does not account for partial, noisy or incomplete
feedback. A tougher setting is the multi-armed bandit where
an agent can observe only the loss value of the state it chooses
at each round, and no agent knows the loss incurred by
other agents. Although no agent can observe the losses of
other agents, there is still the possibility of privacy leakage
to a spying agent during cooperation. Also, a third-party
intruder is not restricted from observing the loss values of
any agent if not protected. Hence, differential privacy must be
included to guarantee privacy. Few works incorporate multi-
armed bandit technique with differential privacy in social
networks [20], [21]. However, these few works used the
stochastic multi-armed bandit where the true state follows
a given distribution and the loss distribution is assumed to
be independent and identically distributed. Such assumption
is impractical in social networks because the true state in
social networks varies arbitrarily. Hence, this paper applies
non-stochastic multi-armed bandit together with differential
privacy to effectively track the time-varying true state in the
social network modeled as a graph network. A benefit of
non-stochastic multi-armed bandit is that it does not impose
any restriction on its loss distribution. The simulation results
in this paper show that after a series of iterations using the
proposed algorithms, the agents learn from the history of their
past choices and make better decisions in tracking the time-
varying true state with a privacy guarantee.

A. RESEARCH CONTRIBUTIONS
The contributions of this paper are as follows:

1) It models the social network as a graph network
consisting of a set of strongly connected agents and
a set of edges. The goal of the agents is to learn an
arbitrarily time-varying true state of the network, with
a privacy guarantee, against a third-party intruder and
any spying agent.

2) It applies non-Bayesian learning, differential privacy,
and non-stochastic multi-armed bandit seamlessly for
the first time to achieve this goal.

3) Two non-stochastic multi-armed bandit algorithms
are proposed. The first algorithm uses the Laplace
mechanism to protect the incurred loss values of
the agents from a third-party intruder, regardless of
the computational power of this intruder. The second
algorithm applies the Laplace mechanism to protect the
incurred loss values of each agent from a third-party
intruder, and also to protect the shared information
of each agent when there is a spying agent in the
neighborhood.

4) Simulation results are obtained to show that through
cooperation over time, the agents’ beliefs converge
to the most dominant true state among the sequence
of arbitrarily time-varying true states over the time
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horizon. The speed of convergence and the regret
bounds of the proposed algorithms are compared with
that of the non-private algorithm in the literature.

II. RELATED WORKS
There is some existing work in the literature that has
addressed privacy concerns in graph networks. [22] intro-
duced the concept of node-differential privacy and edge-
differential privacy in graph networks. Node-differential
privacy infers the removal or addition of one node and
its incident edges in a graph network to generate another
differentially private graph network. Node-differential pri-
vacy is a strong privacy guarantee difficult to achieve.
On the other hand, edge-differential privacy infers the
removal of an edge in the graph network to generate another
differentially private graph. Edge-differential privacy is a
weak differential privacy guarantee that is easily achievable.
A variant of the edge-differential privacy is the k-edge
differential privacy, where two nodes can differ by at most
k number of edges. There have been various attempts by
researchers to enforce differential privacy in graph networks
through the intrinsic properties of the graph, such as its
degree distribution [22], clustering coefficients [23], [24],
eigenvalues and eigenvectors [25] and so on. Also, there have
been attempts to enforce edge-differential privacy in graph
generation, such as the Kronecker graph model [26], the
dK-graph model [27], and the 2K-graph model [28].

In Bayesian inference, noise is added directly to the
Bayesian updates to keep it differentially private. This
means that noise is either added to the posterior parameters
or their Fourier transform coefficients. This is based on
the posterior sampling mechanism proposed in [29], [30].
The authors in [29] achieved differential privacy in non-
parametric posterior without additional noise. There are other
refinements of this mechanism such as in [31]. Also, the
authors in [32] exploredMonte-Carlo approaches to Bayesian
inference based on posterior sampling mechanism. The
authors in [33] applied probabilistic inference, by computing
the posteriors in a noisy measurement model, to improve the
utility of differentially private releases. Although differential
privacy has been applied in Bayesian learning, it is yet to be
extended to non-Bayesian learning.

In the online learning setting where data arrives sequen-
tially, differentially private algorithms have been proposed
with provable privacy guarantee as well as good regret
bounds [34]. Recent work can be found in [19], [35]. In the
multi-armed bandit, which is an online learning strategy,
extensive work has been done to formulate ε-differentially
private stochastic bandit algorithms from the classic non-
private UCB algorithm [36]–[39]. These differentially private
algorithms have nearly optimal regret bounds with prov-
able privacy guarantees. In the non-stochastic multi-armed
bandit, the authors in [40] and [41] have both proposed
ε-differentially private algorithms with good regret bounds
for non-private EXP3 and EXP2 algorithms respectively.
The authors in [42] and [43] introduced the notion of local

TABLE 1. List of notations.

differential privacy both in stochastic and non-stochastic
multi-armed bandit.

III. PRELIMINARIES
A. NETWORK MODEL
A graph network is denoted as G = (V, E), where V =
{1, · · · ,N } represents a set of agents in the network with
|V| = N and E represents the set of edges. A pair of non-
negative scalar weights {ajk , akj} ∈ E can be assigned to
the edge joining agents k ∈ V and j ∈ V . The network is
defined as strongly connected if there exists a directed path in
both ways connecting any two agents and at least a self-loop
is present, i.e., akk > 0. There is the possibility of having
ajk > 0 and akj = 0. The neighborhood Nk of the agent k
is the set of agents connected to k . Agent k is a member of
its neighborhood. Also, the adjacency matrix of the graph can
be defined as a square matrix whose elements represent the
weights of the edges linking any two agents. The adjacency
matrix is denoted asA. The adjacencymatrix is left-stochastic
when the sum of elements in each column is one i.e.,

ajk ≥ 0,
∑
j

ajk = 1. (1)
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Strongly connected networks are left-stochastic and they
have a spectral radius of one, i.e., their eigenvalues are always
positive and bounded by one. They also obey the Perron-
Frobenius theorem, and have a single eigenvalue at one, while
other eigenvalues are strictly inside a unit disc [44].

B. DIFFUSION LEARNING
Diffusion learning starts by assigning a uniform prior belief
to all agents in the network over each state. To illustrate
mathematically, assume 2 = {θ1, . . . , θM } represents the
set of all possible states that is detectable by a network, and
assume θ∗t ∈ 2 represents the time-varying true state of the
network that is unknown at time t . The prior belief of any
agent k is given as µk,0(θ ) = 1

M at time t = 0 over the
state θ , where M is the cardinality of 2. Each of the agents
will update its belief at each time t ≥ 1 by first observing a
random observable signal. For agent k , its random observable
signal can be denoted as Sk,t , and drawn from some known
likelihood function Lk (·|θ∗t ) that is dependent on the true state
θ∗t . The set of random observable signals {Sk,t }t=Tt=1 belongs
to a finite state space {Zk,t }

t=T
t=1 , and it is independent over

time and agents. These signals are not fully informed about
the time-varying true state, thus, necessitating cooperation
among the agents, i.e.,

Sk,t = θ∗t + n, ∀k ∈ V, t ≤ T (2)

where n ∼ N (0, 1). The random observable signal is a noisy
version of the underlying time-varying true state. Agent k
computes the likelihood Lk (Sk,t |θ ) over each state θ ∈ 2

using this random observable signal as shown below:

Lk (Sk,t |θ ) =
1√

2πσ 2
k,t

exp {−(Sk,t − θ )2/2σ 2
k,t } (3)

where σ 2
k,t represents the variance of agent k at time t . Then,

the agent generates an intermediate belief using the Bayesian
rule as follows:

ψk,t (θ ) =
µk,t−1(θ )Lk

(
Sk,t |θ

)∑
θ ′∈2 µk,t−1 (θ

′)Lk
(
Sk,t |θ ′

) (4)

where ψk,t (θ ) is the intermediate belief of the agent k at
time t . Each agents can combine the weighted version of
its intermediate belief with the weighted version of the
intermediate beliefs of its neighbors over each state at each
time t in a non-Bayesian fashion as shown below:

µk,t (θ ) =
∑
j∈Nk

ajkψj,t (θ ) (5)

C. MULTI-ARMED BANDIT PROBLEM
The multi-armed bandit is a game set between an agent and
an adversary. The game setting is as follows: There is a set of
states denoted by2 = {θ1, · · · , θM }. An oblivious adversary
fixes the loss lt (θ ) ∈ [0, 1] for all states before the start of
the game. At the start of the game, an agent selects a state θt
at each time t , and incur the loss lt (θt ) ∈ [0, 1]. The agent

only observes its incurred loss lt (θt ) at every time t , but the
agent is unaware of the losses of states not chosen at such
time. For instance, for a binary loss game setting, when the
chosen state of the agent at time t is the same as the true state
at that time i.e., θt = θ∗t , then the loss lt (θt ) = 0, and if
θt 6= θ

∗
t , then lt (θt ) = 1. The goal of the agent is to minimize

its total incurred losses from time t = 1 to time t = T given
as
∑T

t=1 lt (θt ). The performance of the agent is compared
against an oracle that sticks to the best state θ• over the entire
duration of the game. This performance metric is known as
regret, which is defined as the difference between the total
loss incurred by the agent and the total loss incurred by the
oracle over the time horizon T .

RegT :=
T∑
t=1

lt (θt )−
T∑
t=1

lt (θ•) (6)

The above regret definition is deterministic. It is sometimes
difficult to obtain deterministic regret. Thus, it is important to
consider the expected regret. Expected regret necessitates the
use of a randomized bandit algorithm. The expected regret is
defined as

E[RegT ] := E
[ T∑
t=1

lt (θt )−
T∑
t=1

lt (θ•)
]

(7)

where the expectation is taken over the randomness of the
choice of the agent’s actions and its incurred losses.

D. DIFFERENTIAL PRIVACY
In differential privacy, the goal is to ensure that no third party
intruder can extract sensitive information from the output
of a private mechanism (i.e., a randomized private bandit
algorithm), even if there is a distortion of a loss value among
the sequence of loss values incurred by an agent. It is formally
defined in the non-stochastic multi-armed bandit setting as
follows [40]–[42]:
Definition 1: A randomized bandit algorithm A is (ε, δ)

differentially private at around t , if for all loss sequence
l1:t−1 and l ′1:t−1 that differs in at most one round for any
subset ζ ⊆ 2

P(θt ∈ ζ |l1:t−1) ≤ δ + P(θt ∈ ζ |l ′1:t−1)exp(ε) (8)

where l1:t−1 = l1(θ1), · · · , li(θi), · · · lt−1(θt−1); l ′1:t−1 =
l1(θ1), · · · , li(θ ′i ), · · · , lt−1(θt−1), θ

′, θ ∈ 2, and i < t − 1;
P is the probability distribution specified by the randomized
private algorithm; ε and δ are parameters that define the
privacy loss. When δ = 0, then, the randomized algorithm
is said to be ε-differentially private. Generally lower (ε, δ)
indicates higher privacy and vice-versa. The intuition in
Definition 1 is that even if there is a change in an incurred
loss in just one round among the loss sequence from round
1 to round t − 1, the agent will still choose the same
state at round t . This means that no third-party intruder can
infer any information about the loss value either by simply
observing the chosen state incurred or by distorting a loss
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value, no matter the computational power of this third-party
intruder. Hence, the agent’s loss value at time t is kept private.

The privacy guarantee in Definition 1 is for one round,
hence, it is said that the algorithm has instantaneous privacy
parameters. To ensure privacy for all rounds, such that the
algorithm has a cumulative privacy parameter, Definition 1
will be redefined as follows:
Definition 2: A randomized bandit algorithm A is (ε, δ)

differentially private up to round t , if for the loss sequences
l1:t−1 and l ′1:t−1 that differ in at most one round, and for a
subset ζ ⊆ 2, we have

P(θ1:t ∈ ζ |l1:t−1) ≤ δ + P(θ1:t ∈ ζ |l ′1:t−1) exp(ε) (9)

where θ1:t = θ1, . . . , θt . The goal of the private bandit
algorithm is to ensure that the cumulative privacy loss is
low as possible, while still maintaining a low regret or high
utility. This causes a trade-off challenge between privacy and
utility. We refer readers to [42] for elaborate discussion on
cumulative privacy parameter.

IV. DIFFERENTIALLY PRIVATE MULTI-ARMED BANDIT
The expected regret definition in equation (7) is for a single
agent. In a social network, there are many agents. Thus,
the game setting is reformulated as follows: An oblivious
adversary fixes the loss lk,t (θ ) ∈ [0, 1] for each agent k at
each time t and overall states θ ∈ 2 before the start of the
game. At each time t , each agent k chooses a state θt and
observes the loss lk,t (θt ) ∈ [0, 1]. Each agent does not know
the loss value of the states it does not choose at each time, and
also, it does not know the loss value of the states chosen by
other agents. The goal of each agent is to minimize its regret
over the time horizon of the game by incurring the possible
minimum number of losses. The expected weighted regret for
each agent is defined as the difference between the expected
cumulative loss of the agent and the expected cumulative loss
incurred by the oracle. The expected weighted regret for the
agent k is given as:

E[RegT ] := EFT

[
T∑
t=1

∑
θ∈2

µk,t (θ )lk,t (θ )−
T∑
t=1

lk,t
(
θ•
)]
,

(10)

where µk,t (θ ) is the belief of the agent k over the state
θ ∈ 2; FT = σ (Sk,1, . . . , Sk,T , lk,1, . . . , lk,T , θ1, ., θT ) is
the filtration that represents the history of the agent over all
observed random signals, states chosen, and incurred losses.

Although, each agent cannot observe the incurred loss
values of other agents in the network; a third-party intruder
will observe the exact incurred loss values of any agent if the
loss values are not private. Hence, each agent uses a private
randomized bandit algorithm to secure its loss values. Thus,
Definition 2 is restated as follows:
Definition 3: A randomized bandit algorithm Ak for the

agent k is (ε, δ)-differentially private up to round t , if for the
loss sequences lk,1:t−1 and l ′k,1:t−1 that differs in at most one

round, and for a subset ζ ⊆ 2, we have

P(θ1:t ∈ ζ |lk,1:t−1) ≤ δ + P(θ1:t ∈ ζ |l ′k,1:t−1) exp(ε) (11)

If δ = 0, the private bandit algorithm is said to be
ε-differentially private for the agent k .

To learn the time-varying true state, the agents are expected
to cooperate. Such cooperation may leak vital information
about each agent. For instance, from equation (5), each
agent observes the intermediate beliefs of other agents in its
neighborhood. Such observation may breach the privacy of
the neighbors. Thus, the notion of local differential privacy,
where each agent protects its vital information before sharing
it with its neighbors is important. Local differential privacy is
defined in Definition 4.
Definition 4 [42]: A randomized bandit algorithm Ak

for the agent k is locally differentially private, if its
input are generated through an (ε, δ)-differentially private
mechanismM.
Definition 4 infers that the input to the algorithm Ak

undergoes pre-processing by a private mechanismM. Using
equation (5) for illustration only, the intermediate belief from
each neighbor j ∈ Nk will first be pre-processed by a private
mechanism, where it will undergo (ε, δ)-differential privacy
before it is sent as input to the randomized private bandit
algorithm Ak of the agent k for consensus, i.e.,

PM(ψj,1:t ∈ β|lk,1:t−1) ≤ δ

+PM(ψj,1:t ∈ β|l ′k,1:t−1) exp(ε) (12)

where β ⊆ R and PM is the probability distribution specified
by the private mechanism M. Then, the algorithm Ak is
differentially private with respect to lk,1:t−1 through post-
processing as shown below:

P(θ1:t ∈ ζ |ψj,1:t ) ≤ δ + P(θ1:t ∈ ζ |ψ ′j,1:t ) exp(ε). (13)

A variant of equation (5) discussed in detail in Section V
involves the transfer of intermediate probabilities, instead of
intermediate beliefs. Definition 3 protects the information
of each agent from a third-party intruder, while Definition
4 protects the information of each agent from other spying
agents, to avoid privacy breaches.
Definition 5: For any lk,1:t and l ′k,1:t that differs in only one

round, the L1 sensitivity at the t − th round is given as

1l = max||lk,1:t − l ′k,1:t ||1 = 1 (14)

where ‖·‖1 is theManhattan norm. Themaximum change that
can occur in the loss sequence in any round is bounded by 1,
because the loss values themselves are bounded by 1.

V. PROPOSED ALGORITHMS
The proposed algorithms are non-stochastic multi-armed
bandit algorithms that involve a trade-off between exploration
and exploitation. Algorithm 1 is proposed to secure the loss
values of the agents against a third-party intruder outside
the network. However, the agents in the network can share
information among themselves with trust and do not need
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Algorithm 1 Private Multi-Armed Bandit Algorithm With Non-Spying Agents
Parameters: Feedback graph, learning rate η > 0.
V is the set of strongly connected agents and E is the set of edges.
Exploration parameter γ ∈ (0, 12 ]
Initialize µk,0(θ ) = 1

M
Output: µk,t (θ ) ∀θ ∈ 2
For each round t ∈ {1, · · · ,T }
Step 1: Compute pk,t (θ ) = (1− γ )µk,t−1(θ )+ γψk,t (θ ) ∀ θ ∈ 2
Step 2: Compute Pk,t (θ ) =

∑
j∈Nk

ajkpj,t (θ ), Pk,t = (Pk,t (θ1), . . . ,Pk,t (θM ))
Step 3: Draw state θt ∼ Pk,t and incur loss lk,t (θt) ∈ [0, 1]
Step 4: Draw Laplace noise Nk,t ∼ Lap(1/ε)

If Nk,t ∈ [−b, b] for some fixed number b ∈ R then
Use the exact value of Nk,t

Else Use Nk,t = b
2

Step 5: Compute lNk,t (θt ) = lk,t (θt )+ Nk,t ; lNk,t (θt ) ∈ [−b, b+ 1]

Step 6: Scale lNk,t (θt ) to [0, 1] using l
N
k,t (θt ) =

lNk,t (θt )+b
2b+1

Step 7: Compute l̂Nk,t (θ ) =
lNk,t (θ )
Pk,t (θ )

I {θ = θt } ∀θ ∈ 2

Step 8: Update

µk,t (θ ) =
µk,t−1(θ ) exp

(
−ηl̂Nk,t (θ )

)
∑
θ ′∈2 µk,t−1(θ ′) exp

(
−ηl̂Nk,t (θ

′)
) ∀θ ∈ 2

End

to protect shared information. This means that algorithm 1
is useful when all agents are cooperative, and there is no

spy among the agents. Algorithm 2 is proposed to secure all
information of an agent against both a third-party intruder

Algorithm 2 Private Multi-Armed Bandit Algorithm With Spying Agents
Parameters: Feedback graph, learning rate η > 0.
V is the set of strongly connected agents and E is the set of edges.
Exploration parameter γ ∈ (0, 12 ]
Output: µk,t (θ ) ∀θ ∈ 2
Initialize µk,0(θ ) = 1

M
For each round t ∈ {1, · · · ,T }
Step 1: Compute pk,t (θ ) = (1− γ )µk,t−1(θ )+ γψk,t (θ ) ∀ θ ∈ 2
Step 2: Draw Laplace Nk,t ∼ Lap(1/ε) and add to pk,t (θ ) ∀θ ∈ 2

If Nk,t ∈ [−b′, b′] for some fixed number b′ ∈ R then
Use the exact value of Nk,t

Else Nk,t = b′
2 .

Step 3: Scale pk,t (θ ) to [0, 1] using pk,t (θ ) =
pk,t (θ )+b′

2b′+1 .
Step 4: Compute pNk,t (θ ) = pk,t (θ )+ Nk,t ; pNk,t (θ ) ∈ [−b′, b′ + 1]
Step 5: Compute Pk,t (θ ) =

∑
j∈Nk

ajkpNj,t (θ ), Pk,t = (Pk,t (θ1), . . . ,Pk,t (θM ))
Step 6: Draw state θt ∼ Pk,t and incur loss lk,t (θt) ∈ [0, 1]
Step 7: Draw Laplace noise Nk,t ∼ Lap( 1

ε
)

If Nk,t ∈ [−b, b] for some fixed number b ∈ R then
Use the exact value of Nk,t

Else Nk,t = b
2

Step 8: Compute lNk,t (θt ) = lk,t (θt )+ Nk,t ; lNk,t (θt ) ∈ [−b, b+ 1]

Step 9: Scale lNk,t (θt ) to [0, 1] using l
N
k,t (θt ) =

lNk,t (θt )+b
2b+1

Step 10: Compute l̂Nk,t (θ ) =
lNk,t (θ )
Pk,t (θ )

I {θ = θt } ∀θ ∈ 2

Step 11: Update

µk,t (θ ) =
µk,t−1(θ ) exp

(
−ηl̂Nk,t (θ )

)
∑
θ ′∈2 µk,t−1(θ ′) exp

(
−ηl̂Nk,t (θ

′)
) ∀θ ∈ 2

End
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and any spying neighboring agents seeking to know more
information about the agent than what is necessary. The
non-private algorithm of these proposed algorithms is found
in [16]. The non-private version leaks information to a third-
party intruder and a spying agent. For convenience, the non-
private algorithm is shown in the Appendix as Algorithm 3.
The input parameters of the proposed algorithms are the
feedback graph, the exploration parameter γ , and the
learning rate η. Each agent runs the proposed algorithms
independently. At time t = 0, the belief µk,t (θ ) of the agent
k is initialized over the states θ ∈ 2. Let us focus on how
the algorithms work starting with Algorithm 1. At each round
t ∈ {1, · · · ,T }, the following steps are executed:

In Step 1, an intermediate probability pk,t (θ ) is computed.
The intermediate probability is necessary to provide a trade-
off between exploitation and exploration as commonly done
in multi-armed bandits. The algorithm finds a balance for the
agent k to either stick to its previous belief about the time-
varying true state or explores its generated intermediate belief
at time t . This balance is controlled by γ . In algorithm 1,
pk,t (θ ) does not undergo differential privacy.
Step 2 involves the computation of the consensus proba-

bility Pk,t (θ ). The consensus probability sums the weighted
intermediate probabilities of the agent k and that of the other
agents in the neighborhood of k . The consensus probability
is computed because the agent k cannot accurately learn
about the true state on its own and needs to cooperate with
other agents in its neighborhood. This can be understood
from the fact that the consensus probability Pk,t (θ ) depends
on the intermediate probability pk,t (θ ) according to Step 2.
Similarly, to compute pk,t (θ ) in Step 1, the intermediate
belief ψk,t (θ ) of the agent k must have been computed using
equation (4). Also, this intermediate belief depends on the
likelihood Lk (Sk,t |θ ). However, the signal Sk,t in Lk (Sk,t |θ ) is
not fully informative about the true state as shown in equation
(2), which necessitates cooperation among the agents.

In step 3, a state θt is drawn according to the consensus
probability distribution Pk,t and the loss lk,t (θt ) ∈ [0, 1]
is incurred. Step 3 is common to all multi-armed bandit
algorithms. If the chosen state θt matches the exact true state
θ∗t , then the incurred loss at that round is 0, but if otherwise,
the incurred loss is 1.

In step 4, Laplace noise is drawn from a Laplace
distribution Lap(1/ε) (See Definition 6 and Corollary 1) is
added to the incurred loss lk,t (θt ), to randomize it and make
it noisy. The essence of adding random Laplace noise to the
incurred loss is to prevent a third-party spy from knowing
the exact loss value of the agent k . For the sake of analogy
only, let us assume that the loss value is not randomized with
Laplace noise, then a third-party spy will know if agent k
predicts the true state correctly or not, by simply observing
the loss value whether it is 0 or 1. However, after the addition
of Laplace noise to the loss value, it becomes difficult for
the third-party spy to know if agent k correctly predicted
the true state or not. Practically, using stock predictions as
an example, a third-party spy can accurately tell if an agent

correctly predicts the stock price or not, if it sees the exact loss
(or profit) of the agent. By randomizing this loss, it becomes
difficult for the third-party spy to infer correct information
about the stock trading of the agent. Thus, privacy is not
breached. We can bound the amount of Laplace noise added
to the incurred loss. The bounding is important to ensure that
we do not lose the information we are trying to protect due
to added unbounded noise. This will be explained further in
step 5.

In step 5, the noisy incurred loss lNk,t (θt ) is computed. This
is the sum of the incurred loss over the chosen state lk,t (θt ) and
the Laplace noise Nk,t for the agent k at the time t . The added
Laplace noise is bounded between [−b, b] where b ∈ R as
shown in Step 4. This bounding is necessary to regulate the
amount of noise added to the loss value. Adding unbounded
noise will slow down convergence to the most dominant true
state. For instance, adding a Laplace noise value of 100 will
be considered too large since the loss value is bounded
between 0 and 1. Recall that there is a trade-off between
privacy and utility. For rounds where the Laplace noise drawn
from the Laplace distribution is outside the range [−b, b], the
algorithm uses Nk,t = b

2 . Still, the third-party spy does not
know the exact value of the true loss incurred even when the
Laplace noise is deterministic (i.e., when we use Nk,t = b

2 ).
This is because the number of rounds where Laplace noise is
drawn from the Laplace distribution would exceed the range
[−b, b] is random and likely few for a carefully chosen value
of b. This means that the third-party spy cannot accurately
predict the rounds where a deterministic Laplace noise is
used. Bounding the Laplace noise is common in algorithms
that apply differential privacy [40], [43], [45].

In step 6, the noisy incurred loss is bounded to keep it
within [0, 1]. This is necessary becausewewant the algorithm
to behave like traditional multi-armed bandit algorithms
where the loss value is within [0, 1]. For the sake of analogy,
assume that lk,t (θt ) at round t is 1 and Nk,t = 0.2, then
lNk,t (θt ) = 1.2. If we assume that the added Laplace noise is
within the range [−b, b], the noisy loss value still exceeds 1.
Bounding at this stage is used specifically in multi-armed
bandit algorithms where we desire that the loss is kept
within [0, 1] (refer to Algorithm 1 and Theorem 3.1 in [40]).
Since 2b + 1 ≥ lNk,t (θt ) + b, the noisy loss value is kept
within [0, 1]. Despite this bounding, the expected value of
the noisy incurred loss gives the true incurred loss (i.e.,
E[lNk,t (θ )] = lk,t (θ )). A third-party intruder cannot infer any
vital information from the noisy incurred loss because it is
differentially private as shown in Lemma 1.

In Step 7, an estimated noisy loss l̂Nk,t (θ ) is computed over
all the states θ ∈ 2 in order to update the belief µk,t (θ ) in
Step 8. This computation is necessary because the agent k
knows the true loss value of the state it chooses at a given
round (i.e., lk,t (θt )) but it does not know the true loss value
of the other unchosen states at that round. For instance, if at
time t , the agent k chooses θ1 as its true state from the
set 2 = {θ1, · · · , θM } based on its computed consensus
probability, then it observes the loss value of θ1 as explained
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in Step 3. However, it does not know the true loss values
of other unchosen states. This is a well-known characteristic
of adversarial multi-armed bandit algorithms [40], [46]. This
becomes a challenge because the algorithm needs to update
the belief µk,t (θ ) over all the states using the loss values.
A common technique used to overcome this challenge in
multi-armed bandit will be to compute an unbiased estimate
of the noisy loss l̂Nk,t (θ ) over all the states. It is to be noted that
computing such an estimated noisy loss still preserves privacy
since the value of the true loss for each of the unchosen
states remains unknown. This means that no third-party spy
can know the true loss values of the unchosen states. The
expectation over this estimated noisy loss gives the true noisy
loss as shown below:

EFt |Ft−1 [l̂
N
k,t (θ )|Ft−1] =

∑
2

lNk,t (θ )

Pk,t (θ )
Pk,t (θt )I{θt = θ}.

=
lNk,t (θ )

Pk,t (θ )
Pk,t (θ ) = lNk,t (θ ). (15)

In Step 8, the updated belief is computed using exponential
weighting. The normalization in Step 8 is to ensure that the
sum of the beliefs over all states θ ∈ 2 is equal to 1. A round
of iteration is complete and the algorithm starts all over from
step 1 until it reaches the time horizon.

Algorithm 2 is slightly different from Algorithm 1 due to
the addition of Laplace noise to the intermediate probability
pk,t (θ ) before computing the consensus probability as shown
from Steps 2 to 5. The explanation for bounding the Laplace
noise is the same as discussed in Algorithm 1. Step 5 shows
that agent k receives noisy intermediate probabilities from
its neighbors (i.e., pNj,t (θ ) ∀j ∈ Nk ), which it uses to
compute its consensus probability. Each neighboring agent
privatizes its intermediate probability over all the states
before it is sent to the agent k for consensus. The essence
of adding Laplace noise to the intermediate probability is to
ensure that agent k does not infer any information from the
noisy intermediate probabilities it receives from its neighbors.
This mitigates the risk of agent k breaching the privacy
of its neighbors. Laplace noise added to the intermediate
probability is independent of all the states and overall the
agents. Thus, the consensus probability computes the sum
of the weighted noisy intermediate probabilities of all agents
in the neighborhood at time t over all the states. Since the
algorithm is run independently by each agent in the network,
it means that no spying agent can access the information of
its neighbors.

VI. THEORETICAL RESULTS
This section gives the theoretical results.
Definition 6:The Laplace distribution centered at zero with

scale c has the probability distribution

Lap(x|c) =
1
2c
exp
(
−|x − 0|

c

)
(16)

where x is a random variable. This is the standard definition
of Laplace distribution. Laplace distribution centered at zero

is known to be the symmetric version of an exponential
function.
Corollary 1: For the Laplace mechanism used to generate

the noisy loss lNk,t (θ ) in Algorithms 1 and 2, the scale c is given
as 1l/ε. Hence,

Lap(lNk,1:t−1|1l/ε) =
1

21l/ε
exp
(
−||lNk,1:t−1 − 0||1

1l/ε

)
(17)

For ease of notation, Lap(lNk,1:t−1|1l/ε) will be simply
represented as Lap(1l/ε). By applying Definition 5, the
Laplace distribution for Algorithms 1 and 2 from which
Laplace noise is drawn and added to the true loss is given
as Lap(1/ε).
Lemma 1: The noisy loss sequence lNk,t−1 in Algorithm 1

and 2 preserves (ε, 0)-differential privacy.

Proof: Let lNk,1:t =
(
lNk,1(θ ) · · · l

N
k,τ (θ ) · · · l

N
k,t (θ )

)
and

lN
′

k,1:t =

(
lNk,1(θ ) · · · l

N
k,τ (β) · · · l

N
k,t (θ )

)
differ in one round

with θ and β ∈ 2. Let the Laplace distribution be centered
around an arbitrary loss sequence lN

′ ′

k,1:t−1, then

P(θ1:t ∈ ζ |lNk,1:t−1)

P(θ1:t ∈ ζ |lN
′

k,1:t−1)

=
(a)

exp(−ε||lNk,1:t−1 − l
N ′ ′
k,1:t−1||1)

exp(−ε||lN
′

k,1:t−1 − l
N ′ ′
k,1:t−1||1)

= exp(ε||lN
′

k,1:t−1 − l
N ′ ′
k,1:t−1||1 − ε||l

N
k,1:t−1 − l

N ′ ′
k,1:t−1||1)

≤
(b) exp(ε||lNk,1:t−1 − l

N ′
k,1:t−1||1)

≤
(c) exp(ε)

where in (a), we use the Laplace mechanism in Corollary 1,
with 1l = 1 and ‖·‖1 is the Manhattan norm; in (b),
we use triangle inequality; and in (c), we use the fact that
||lNk,1:t−1 − l

N ′
k,1:t−1||1 ≤ 1.

Remark 1: The goal of Lemma 1 is to show that adding
Laplace noise to the loss values preserves differential privacy.
The proof of the Lemma is similar to the proof for (ε, 0)-
differential privacy in Theorem 3.1 [2]. However, both proofs
differ in the sense that Lemma 1 applies to online learning
algorithms where the parameter of interest is time-varying,
while the proof in [2] is for offline learning where the
parameter of interest does not vary with time. Since the
noisy loss sequence is (ε, 0)-differentially private up to round
t as shown in Lemma 1, Algorithms 1 and 2 preserve
differential privacy for the incurred losses. By similar analog,
we can show that the noisy intermediate probabilities are
(ε, 0)-differentially private up to round t for Algorithm 2.
Thus, Algorithm 2 preserves differential privacy both for the
incurred losses and the intermediate probabilities.
Theorem 1 [Theorem 3.1 in [40]]: The expected

regret bound for any (ε, δ)-differentially private algorithm
wrapping a non-private base algorithm with scaled loss
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lNk,t (θ ) =
lNk,t (θ )+b
2b+1 is given as

E[RegT ] ≤
2b

max akk
E[RegbaseT ]+ 2TM exp(−εb)+

√
32T
ε

(18)

where E[RegbaseT ] is the expected regret of the non-private
algorithm and max akk is the largest self-loop weight in the
adjacent matrix.
Remark 2: Corollary 1 implies that if the non-private

version of any private algorithm is known, then the expected
regret for the private algorithm is bounded by (18).
Corollary 2: Given that E[RegbaseT ] ≤ O(

√
αT lnM ) with

α as the graph independence number, and b = lnT
ε
, the regret

bound for Algorithm 1 is given as

E[RegT ] ≤
2 lnT

√
αT lnM

εmax akk
+ 2M +

√
32T
ε

(19)

Remark 3: Substituting the values of the expected regret for
the non-private algorithm and the parameter b into Corollary
1 gives Corollary 2. The proof of the expected regret for the
non-private base algorithm is shown in the Appendix. The
proof is similar to the proof in [16] but with a slightly different
regret definition. Refer to the Appendix for more explanation.
The upper bound on the expected regret in Corollary 2 is
given as O(

√
αT lnM/ε) with T � M . This upper bound

determines the rate at which the regret for algorithm 1 grows.
Theorem 2: Given that E[RegbaseT ] ≤ O(

√
αT lnM ),

b = lnT
ε

and b′ = 1, the expected regret for Algorithm 2
is given as

E[RegT ] ≤
2 lnT

√
αT lnM
ε

+ 4M +
2
√
32T
ε

(20)

Remark 4: Since more Laplace noise is used in algo-
rithm 2, it can be seen that the expected regret is worse
than for algorithm 1. However, this comes with increased
privacy, thus obeying the privacy-utility trade-off. The regret
of Algorithm 2 grows at a rate of O(α1/2T 3/2 lnM/ε)
with T � M .

VII. SIMULATION RESULTS
For the simulation, we use the strongly connected network
in Fig. 1 consisting of three agents with column-stochastic
adjacency matrix as shown below:

A =

 0.2 0.2 0.8
0.5 0.4 0.1
0.3 0.4 0.1


The goal of the agents is to track the arbitrarily time-

varying true state θ∗t of the network from the set 2 =

{θ1, · · · , θ5} at each time t . To achieve this, the agents must
cooperate in a non-Bayesian fashion while still maintaining
privacy. Algorithms 1 and 2 are used to help the agents track
this time-varying true state. The parameters for algorithm 1
are γ = 0.1, η = 0.1, ε = 0.1, T = 400 and b =
ln(400)/0.1. The parameters for algorithm 2 are γ = 0.1,

FIGURE 1. A strongly connected network consisting of three agents.

FIGURE 2. Convergence of agents’ beliefs in the strongly connected
network to θ4 at η = 0.1 at the 1st iteration using Algorithm 1.

η = 0.1, ε = 0.1, T = 500, b = ln(400)/0.1 and b′ = 1.
The prior belief µk,0(θ ) of each agent k over each state
is 1

5 . To compute the intermediate belief ψk,t (θ ) in step 1
of both algorithms, the random observable signal of each
agent Sk,t (θ ) (which is a noisy version of the underlying time-
varying true state), is first drawn from N (θ∗t , 1) and used
to compute the likelihood Lk (Sk,t |θ ) according to equation
(3). Then, the intermediate probability can be computed as
a trade-off between the previous belief µk,t−1(θ ) and the
current intermediate beliefψk,t (θ ). Laplace noise is not added
to the intermediate probability in Algorithm 1, but Laplace
noise is added to the intermediate probability in Algorithm 2.
Also, Laplace noise is added to the incurred loss of each
agent at each time in both algorithms. The simulation is
repeated over 50 iterations. The simulation results for the
graph network in Fig. 1 are shown from Figs. 2 - 5. The regret
bounds comparison is shown in Fig. 6.

Fig. 2 shows the convergence of the agents’ beliefs to
the most dominant true state at the 1st iteration, when
Algorithm 1 is used. The most dominant true state appears
to be the most stable state among the sequence of arbitrarily
time-varying true states, i.e., the most frequently occurring
state from θ∗1 , · · · , θ

∗
T . Illustrating fluctuating stock prices,

stockbrokers are more likely to make predictions with a stock
price that is the most frequently occurring. The beliefs of the
agents are one at the most dominant true state and zero at
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FIGURE 3. Convergence of agents’ beliefs in the strongly connected
network to θ2 at η = 0.1 at the 50th iteration using Algorithm 1.

FIGURE 4. Convergence of agents’ beliefs in the strongly connected
network to θ4 at η = 0.1 at the 1st iteration using Algorithm 2.

every other state. Hence, from Fig. 2, the most dominant true
state is θ4, and the convergence time is t = 127.
Fig. 3 shows the convergence of the agents’ beliefs to

the most dominant true state at the 50th iteration when
Algorithm 1 is used. The most dominant true state is θ2, and
the convergence time is t = 132. The most dominant true
state in Fig. 3 is different from the most dominant true state
in Fig. 2, due to the randomness of the sequence θ∗1 , · · · , θ

∗
T

over the number of iterations.
Fig. 4 shows the convergence of the agents’ beliefs to

θ4 at time t = 251 at the 1st iteration. Here, Algorithm 2
is used. θ4 is the most dominant true state for this iteration.
Also, in Fig. 5, the agents beliefs’ converge to θ2 at time
t = 306 at the 50th iteration, when Algorithm 2 is used. θ2 is
the most dominant true state for this iteration. Again, the most
dominant true state varies with the number of iterations due
to the randomness of the sequence of time-varying true states.

The speed of convergence for the agents in Fig. 2 and
Fig. 3 tends to be faster than in Fig. 4 and Fig. 5. This is
due to the privacy-utility trade-off discussed in Section III.
Increasing privacy in Algorithm 2 led to much slower

FIGURE 5. Convergence of agents’ beliefs in the strongly connected
network to θ2 at η = 0.1 at the 50th iteration using Algorithm 2.

FIGURE 6. Regret bounds of the non-private algorithm, algorithm 1 and
algorithm 2 with ε = 0.1.

convergence compared to Algorithm 1. Careful analysis of
the convergence of Algorithm 2 shows that it is much slower
because much Laplace noise is added to the algorithm.
Intuitively, Laplace noise is added independently to each of
pk,t (θ1), · · · , pk,t (θ5) for the agent k . Then, Laplace noise
from the intermediate probabilities of its two neighbors
is added to the agent k , when computing the consensus
probability. Again, another Laplace noise is added to the
incurred loss. All these happen in a single round.

The speed of convergence for Algorithm 1 is nearly
23% slower on average when compared to the speed of
convergence of the non-private algorithm in [16]. However,
algorithm 2 is over 56% slower on average, than the non-
private algorithm. The speed of convergence can be improved
by increasing the learning rate η, or increasing the value of
privacy parameter ε.

The regret bound for the non-private algorithm in [16]
grows at a sublinear rate ofO(

√
t/t) with sublinearity defined

as limt→∞
E[Regt ]

t ; similarly, the regret bounds for Algo-
rithms 1 and 2 grow at the rate of O(

√
t/tε) and O(t3/2/tε)

respectively. Fig. 6 shows the regret bounds for the non-
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private algorithm, Algorithm 1 and Algorithm 2. It should be
noted that by letting ε = 1, which means privacy is lost com-
pletely, Algorithm 1 grows at the same rate as the non-private
algorithm. FromFig. 6, the non-private algorithm has the least
regret, while Algorithm 2 has the highest regret. However, the
cost of additional regret incurred by using both Algorithm 1
and Algorithm 2 is a worthy trade-off to the privacy gains,
especially in social networks where privacy is a challenge.

VIII. CONCLUSION
This paper addressed privacy concerns in the social network
from a theoretical standpoint. The social network is modeled
as a graph network consisting of a set of agents representing
the social network users, and a set of edges representing the
interactions among the agents. The goal of the agents is to
learn an arbitrarily time-varying true state of the network with
a privacy guarantee. To achieve this, this paper combined
non-Bayesian learning, differential privacy, and multi-armed
bandit seamlessly for the first time. Two algorithms were
proposed. The first algorithm guaranteed differential privacy
using the Laplace mechanism against a third-party intruder
when there is no spy among the agents. The second algorithm
also applied the Laplace mechanism to guarantee differential
privacy against both a third-party intruder and a spying agent.
The simulation results showed that continuous interactions
among the agents using the proposed algorithms help the
agents converge to this most dominant true state. The most
dominant true state appears to be the most stable state from
the sequence of arbitrarily time-varying true states over the
time horizon. The speed of convergence for Algorithms
1 and 2 are compared with the speed of convergence for
the non-private algorithm in the literature. The speed of
convergence for Algorithm 2 is much slower than the speed
of convergence for Algorithm 1, due to more Laplace noise
added to Algorithm 2. However, increasing the learning rate
or increasing the value of the privacy parameter will improve
its speed of convergence. The regret bounds of the proposed
algorithms are compared to the regret bound of the non-
private algorithm in the literature.

This work can be extended to a graph network with weakly
connected agents. The simulation results in this paper are
prototypes of a large massive graph network. Thus, the
simulation can be repeated for large graph networks, with
more number agents, to represent a practical social network.
Also, the simulation can be done with real datasets.

APPENDIX
PROOF OF THE NON-PRIVATE BASE ALGORITHM
The non-private algorithm in [16] is repeated here for
convenience as Algorithm 3.

The definition of regret in (10) is slightly different from the
definition of regret in [16]. The pk,t (θ ) in the definition of the
regret in [16] is replaced with µk,t (θ ) in (10). Hence, we will
compute the regret bound. However, the proof shows that the
upper bound on the regret remains unchanged. We start as
follows:

Let µk,t (θ ) =
wk,t (θ )
Wk,t

and

Wk,t =
∑
θ∈2 wk,t−1(θ ) exp

(
−ηl̂k,t (θ )

)
.

Wk,t

Wk,t−1
=

∑
θ∈2 wk,t−1(θ ) exp

(
−ηl̂k,t (θ )

)
Wk,t−1

=

∑
θ∈2

µk,t−1(θ ) exp
(
−ηl̂k,t (θ)

)
≤

∑
θ∈2

µk,t−1(θ )
(
1− ηl̂k,t (θ )+ η2 l̂2k,t

)
but ex ≤ 1+ x + x2 for all x ≤ 1 . Therefore,

≤ 1− η
∑
θ∈2

µk,t−1(θ )l̂k,t (θ )+ η2
∑
θ∈2

µk,t−1(θ )l̂2k,t (θ ) (21)

using
∑
θ∈2 µk,t−1(θ ) ≤ 1 in (21).

Using ln (1− x) ≤ −x,

ln
Wk,t

Wk,t−1
= ln

(
1− η

∑
θ∈2

µk,t−1(θ )l̂k,t (θ )

+ η2
∑
θ∈2

µk,t−1(θ )l̂2k,t (θ )
)

Algorithm 3 Non-Private Multi-Armed Algorithm for Strongly Connected Network
Parameters: Feedback graph, learning rate η > 0.
V is the set of strongly connected agents and E is the set of edges.
Exploration parameter γ ∈ (0, 12 ]
Initialize µk,0(θ ) = 1

M
For each round t ∈ {1, · · · ,T }
Compute pk,t (θ ) = (1− γ )µk,t−1(θ )+ γψk,t (θ ) ∀ θ ∈ 2
Compute Pk,t (θ ) =

∑
j∈Nk

ajkpj,t (θ ), Pk,t = (Pk,t (θ1), . . . ,Pk,t (θM ))
Draw state θt ∼ Pk,t and incur loss lk,t (θt) ∈ [0, 1]
Compute

l̂k,t (θ ) =
lk,t (θ )
Pk,t (θ )

I {θ = θt } ∀θ ∈ 2

Update

µk,t (θ ) =
µk,t−1(θ ) exp

(
−ηl̂k,t (θ )

)
∑
θ ′∈2 µk,t−1(θ ′) exp

(
−ηl̂k,t (θ ′)

) ∀θ ∈ 2

end
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≤ −η
∑
θ∈2

µk,t−1(θ )l̂k,t (θ )

+ η2
∑
θ∈2

µk,t−1(θ )l̂2k,t (θ ).

Sum over t = 1, · · · ,T

ln
Wk,T

W0
≤

T∑
t=1

∑
θ∈2

(
− ηµk,t−1(θ )l̂k,t (θ )

+ η2µk,t−1(θ )l̂2k,t (θ )
)
. (22)

Also, for any fixed θf ∈ 2,

ln
Wk,T

Wk,0
≥ ln

wk,T
(
θf
)

Wk,0
= −η

T∑
t=1

l̂k,t (θf )− lnWk,0. (23)

with Wk,0 = M , and equating (22) and (23),

T∑
t=1

∑
θ∈2

(
− ηµk,t−1(θ )l̂k,t (θ )+ η2µk,t−1(θ )l̂2k,t (θ )

)

≥ −η

T∑
t=1

l̂k,t (θf )− lnM .

Hence,

T∑
t=1

∑
θ∈2

(
− ηµk,t−1(θ )l̂k,t (θ )+ η2µk,t−1(θ )l̂2k,t (θ )

)

≥ −η min
θf ∈2

T∑
t=1

l̂k,t (θf )− lnM .

Therefore,

T∑
t=1

∑
θ∈2

ηµk,t−1(θ )l̂k,t (θ )− η min
θf ∈2

T∑
t=1

l̂k,t
(
θf
)

≤

T∑
t=1

∑
θ∈2

η2µk,t−1(θ )l̂2k,t (θ )+ lnM .

Take conditional expectation,

EFt/Ft−1

[ T∑
t=1

∑
θ∈2

µk,t−1(θ )l̂k,t (θ )

− min
θf ∈2

T∑
t=1

l̂k,t
(
θf
) ∣∣∣∣Ft−1

]

≤ EFt/Ft−1

[
T∑
t=1

∑
θ∈2

ηµk,t−1(θ )l̂2k,t (θ )

∣∣∣∣Ft−1

]

+
lnM
η
.

Therefore,

T∑
t=1

∑
θ∈2

µk,t−1(θ )EFt/Ft−1

[
l̂k,t (θ )

∣∣∣∣Ft−1

]

− min
θf ∈2

T∑
t=1

EFt/Ft−1

[
l̂k,t

(
θf |Ft−1

)]
≤

T∑
t=1

∑
θ∈2

ηµk,t−1(θ )EFt/Ft−1

[
l̂2k,t (θ )

∣∣∣∣Ft−1

]
+

lnM
η
.

Using the fact that the expectation of the estimated loss yields
the true loss similar to (15),
T∑
t=1

∑
θ∈2

µk,t−1(θ )lk,t (θ )−
T∑
t=1

lk,t
(
θ•
)

≤ η

T∑
t=1

∑
θ∈2

µk,t−1(θ )
l2k,t (θ )

Pk,t (θ )
+

lnM
η
.

Hence,
T∑
t=1

∑
θ∈2

µk,t−1(θ )lk,t (θ )−
T∑
t=1

lk,t
(
θ•
)

≤ η

T∑
t=1

∑
θ∈2

µk,t−1(θ )
1

Pk,t (θ )
+

lnM
η

(24)

using lk,t (θ ) ≤ 1 in (24). From algorithm 3

pk,t (θ ) ≥ (1− γ )µk,t−1(θ ) ≥
1
2
µk,t−1(θ ).

Hence,
T∑
t=1

∑
θ∈2

µk,t−1(θ )lk,t (θ )−
T∑
t=1

lk,t
(
θ•
)

≤ η

T∑
t=1

∑
θ∈2

pk,t (θ )
2

Pk,t (θ )
+

lnM
η
. (25)

Applying Lemma 2 in [16] with ε = γ
M

T∑
t=1

∑
θ∈2

µk,t−1(θ )lk,t (θ )−
T∑
t=1

lk,t
(
θ•
)

≤ 8αηT ln
4M2

αγ
+

lnM
η
. (26)

Then,

EFt

[
T∑
t=1

∑
θ∈2

µk,t (θ )lk,t (θ )−
T∑
t=1

lk,t
(
θ•
)]

≤ 8αηT ln
4M2

αγ
+

lnM
η
.

Choose

γ = min
{
8αη,

1
2

}
, η =

(
lnM
αT

)1/2

.

Then, the upper bound is obtained as

O
(√
αT lnM

)
.

The effect of the self-loop weight will reduce the regret as
each agent will assign more weight to its probability in the
computation of its consensus probability.
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