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ABSTRACT Image classification and action recognition are both active research topics in the field of
computer vision. However, the development of action recognition is rather slow compared with image
classification, due to the difficulties in spatial-temporal information modeling. In this paper, we present
TEFE, a deep structure combining temporal extraction with feature enhancement to explore the spatial
coherence across temporal dimension. The temporal extraction (TE) module is used to capture the short-term
and long-term temporal features. Considering the spatial and temporal cues are fine-grained, we believe such
cues (if encoded by well-designed bilinear models) could enhance the representation of actions in videos.
The feature enhancement (FE) module approximates bilinear pooling operations, which greatly reduce the
amount of parameters exist in original bilinear pooling. Extensive experiments have been conducted on
mainstream datasets of human action (Something - Something V1 & V2, and Jester). Experimental results
show that our model achieves competitive performances than some existing methods.

INDEX TERMS Action recognition, spatial-temporal information modelling, feature enhancement.

I. INTRODUCTION

Human action recognition from videos has attracted wide
attention in recent years, due to its potential applications
in video surveillance, behavior analysis and virtual reality
etc. [1]-[4]. Although astonishing improvement has been wit-
nessed in image classification [5], an equivalent achievement
has not been made in video action recognition. The reason
is that action recognition requires not only spatial features
(2D appearances), but also temporal features (3D motion).
However, it is a challenging task in developing an efficient
model to explore and represent these features.

Under such circumstances, several datasets [1], [6], [7]
have been released to cater for the ever-growing need for
action recognition in recent years. For instance, Fig. 1 shows
an example from the Something-Something dataset [7],
displaying the action of pushing something towards a certain
direction. Apparently, it is insufficient to determine the
direction of the pushing action merely based on a single
image, it has to be inferred from a sequence. Considering
the powerful feature extraction ability of CNNs, 3 types of
spatial-temporal modeling methods become prevailing:

(1) Two-stream architecture [2], [8]-[11]: One stream
processes original RGB input (spatial stream), and the other
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FIGURE 1. Example sequences from the Something-Something
dataset [13]. First row: Pushing something from the right to the left;
second row: Pushing something from the left to the right.

stream extracts temporal features from the optical flow.
However, optical flow is quite computational expensive;

(2) 2D CNNS [12]-[17]: 2D CNNs extract spatial cues
based on traditional 2D convolutional architectures, while
temporal modules are also developed and attached to the
2D backbone to capture temporal information. Moreover, 2D
CNN s require less computation than optical flow.

(3) 3D CNNs [18]-[25]: 3D CNNs expand the kernels
of 2D CNNs along the temporal dimension, which achieve
excellent performance by capturing the spatial and temporal
features simultaneously simply based on RGB frames.
As reported by [3], 3D CNNs exhibit strong temporal feature
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modelling abilities. However, it inevitably requires huge
training data to reach a good performance.

Partially inspired by (2) and (3), we develop an efficient
spatial-temporal modeling network (dubbed TEFE) using
ResNet-50 as the backbone. Our network consists of 2 core
modules: The temporal extraction (TE) module and the
feature enhancement (FE) module. Some existing meth-
ods [12], [16], [20], [21] acquired the long-term temporal
information via stacking local temporal windows. Since the
information needs to be propagated through long way through
multiple layers, repeating the stacking operations would
cause difficulty in optimization process [26]. To solve this
problem, we present a TE module.It has 2 branches: a short-
term branch and a long-term branch. The former one utilizes
temporal convolutions to capture short-term motion sensitive
information, while the latter one produces a kernel for
temporal aggregation. On the other hand, FE module adopts
an approximation of bilinear pooling operation to obtain more
fine-grained spatial and temporal cues to enhance the features
extracted by TE module. Although our FE module has 3D
convolution kernels, it does not need to be pre-trained on
the large scale action recognition datasets (e.g. Kinetics [1]).
Instead, we only pre-train our network on ImageNet [27].
As a result, the integration of the 2 modules makes powerful
representation ability in video action recognition tasks. The
main contributions of our method are summarized as follows:

(1) Temporal extraction (TE) module is developed to
capture both short-term and long-term temporal information
together with two corresponding branches.

(2) Feature enhancement (FE) module is presented to
obtain more fine-grained spatial and temporal cues through
an approximation of bilinear pooling operation. Meanwhile,
an initialization scheme is developed for FE module so as to
avoid heavy pre-training on a very large video dataset.

(3) Extensive experiment have been conducted on main-
stream datasets (Something - Something V1 & V2, Jester).
The results prove that our model exceeds other existing
models without pre-training on large video datasets.

The rest of the paper is organized as follows: related
works are described in Section II. Details of algorithm
implementation are depicted in Section III. The experimental
results with ablation studies are shown in Section IV with
thorough analysis. A final conclusion is drawn in Section V.

Il. RELATED WORKS

Spatial-temporal modeling. Human actions include simple
body movements,human-human interactions and human-
object interactions.Action recognition has attracted lots of
research attention in recent years,owing to its applications
in many areas such as smart surveillance, video retrieval
and audio-visual speech recognition system. For example,
viseme classification is widely used in audio-visual speech
recognition system [28].Using clustering method for viseme
classification has achieved good results [29]. However,this
method based on still images can not deal with the
coarticulation effects well. The action recognition model can
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make use of temporal clues in the video to get the context
information, which is helpful for viseme classification.

Motivated by the successful applications of deep convolu-
tional architectures in image recognition, a variety of deep
learning paradigms have pushed the limits of action recogni-
tion, leading to a surge of deep models. [22], [25], [30]-[32].
In early years, they were committed to 2D structures.
Among them, Karpathy et al. [32] elaborated a deep 2D
network, which was trained on a very large dataset (sports-
1M) using individual RGB frames as its input. Although
it integrated temporal information into its core modules,
it failed to capture instantaneous motion information as
short-term temporal features. In order to make up for this
shortcoming, Simonyan et al. [33] advocated a two-stream
ConvNet architecture, in which one stream captures the
static spatial features from RGB frames and the other
stream models the temporal information from optical flow
separately. Then a weighted average result is generated
from the 2 streams. Unfortunately, it did not gain a strong
spatiotemporal representation ability in action classification.
In this light, Feichtenhofer et al. [34], [35] placed a novel
fusion module in the two-stream network so as to boost the
spatiotemporal features. TSN [9] suggested a sparse sampling
scheme for two-stream architecture to capture the different
temporal scale features. However, it suffers two inherent
deficiencies: Firstly, it relies heavily on pre-computed optical
flow, which leads to additional computational cost and
memory footprint; secondly, it may not work properly under
complicated scenarios based on its simple fusion strategy.

In order to solve the aforementioned problems, powerful
models are required to integrate the spatiotemporal features
without the dependence on pre-computed optical flow.
Du et al. [25] laid a solid foundation for 3D CNNs by
outlining a 3D architecture for end-to-end action recognition,
which inspired more efficient 3D models [3], [18], [19], [22]
in the next few years. T3D [21] aimed to obtain different scale
temporal information with 3D convolutions. In Slowfast [3],
a slow path is created to capture spatial semantics while a fast
path is used to distill motion information at a finer resolution.
However, Slowfast has huge number of parameters, which
requires extensive pre-training. Besides, it also has a slow
rate of convergence in training. In recent years,some novel
work has explored using skeleton data as input for action
recognition [36], [37], [38]. These methods are robust to
illumination and complex background.But due to the lack of
appearance information, these methods can not effectively
capture some dependencies that can be easily obtained from
RGB images, such as some actions of human interaction with
objects.

(2 + 1) d method [19], [30] simplifies the 3D convolution
structure by decoupling the 3D convolution kernel into 2D
convolution kernel and 1D convolution kernel for extracting
spatial and temporal features Respectively. Motion Feature
Network [39] presented a motion block which using a shift
operation for imitating optical flow to obtain the temporal
features. TSM [15] built a temporal shift module, which

13927



IEEE Access

J. Jiang, Y. Zhang: Improved Action Recognition Network With Temporal Extraction and Feature Enhancement

achieved a satisfactory performance with relatively small
network scales. STM [16] extracted spatiotemporal features
by 1D convolution structure and 2D convolution structure,
and used feature differencing operation to encode motion
features. The extracted motion features can supplement
the spatiotemporal features and improve the accuracy of
recognition. TRN [17] attempted to combine multiple MLPs
to reason temporal information.

Although various strategies have been presented to capture
short-term temporal information in different ways, they lack
aggregation abilities. To remedy this drawback, our TE
module aims at instantaneous temporal extraction, which
aggregates temporal features through long-term branch.
Besides, the FE module is used to boost the fine-grained
spatiotemporal information.

Bilinear models. Feature fusion includes max, sum
and average pooling etc. Tsung et al. [40] introduced
bilinear pooling to fuse fine-grained features in image
classification task for the first time with satisfactory results.
However, bilinear pooling is an operation of outer product,
which involves high dimensional features and expensive
computations. To address the problem, different solutions
were proposed [41]-[43]. Among them, compact bilinear
pooling [43] leveraged a tensor sketch algorithm to project
the features from high-dimensional space to low dimensional
space to reduce computations. Row rank bilinear pooling [42]
utilized eigenvalue decomposition to avoid the original
bilinear pooling. Multimodal compact linear pooling [41]
used Hadamard product to approximate bilinear pooling.
Diba et al. [14] developed a temporal linear encoder
method (TLE) which applied compact bilinear pooling to
action recognition tasks. Considering that TSN [9] lacks the
aggregation of temporal information across frames, TLE [14]
published a scheme to integrate temporal features from
multiple dimensions, which performed feature fusion before
the classification layers. In contrast, we implant FE module
into multiple convolutional layers in the middle of the
network to facilitate feature aggregation process. Moreover,
Girdhar et al. [44] proposed an attention mechanism with
bilinear pooling, forcing the network to focus on the fine-
grained action interactions. Wang ef al. al. [46] used compact
bilinear pooling to fuse motion and spatial information from
optical flow, which undoubtedly increased the complexity
of the model. As can be seen, an efficient and powerful
model is required for the fusion of spatial-temporal features
to enhance feature representation. Through a thorough
investigation of both bilinear models and spatial-temporal
models, we find that they could be complementary to each
other. Considering this, our TE module extracts both short-
term and long-term temporal features, while the FE module
reasons the fine-grained temporal cues (captured by TE)
via an approximation of bilinear pooling. Finally, TEFE
realizes motion modeling based on RGB frames as input
(without calculation of optical flow), and obtains a power-
ful spatial-temporal feature representation through feature
fusion.
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We name our network TEFE by combination of TE and FE.
The details of our algorithm are described in section 3 below.

Ill. ALGORITHM OVERVIEW

The overall architecture of TEFE is illustrated in Fig. 2 above.
The input videos with different lengths are sampled using a
sparse temporal sampling method [9]. First, the videos are
divided into 7' segments with equal length. Then we randomly
sample 1 frame from each segment to form the input sequence
with T frames in total. Finally, we use TE module to explore
motion cues and a FE module to reason the spatial-temporal
features respectively.

A. TEMPORAL EXTRACTION MODULE (TE MODULE)
The TE module is designed for efficient temporal modeling,
the architecture of TE module is illustrated in Fig.3.

Assume the shape of input feature X is characterized as:
[N, C, T, H, W], where N is the batch number, C is the feature
channels and T is the temporal dimension, H and W are the
spatial resolution. We employ a global spatial average pooling
to highlight the motion-sensitive information, while ignoring
some of the spatial layouts:

XS — POOI(X),XS c RNXCXTX]X] (])

Recall that TE embodies 2 branches. The feature X5 from (1)
is then fed to both the short-term branch and the long-term
branch individually.

1) SHORT-TERM BRANCH

The short-term branch aims to capture sensitive informa-
tion of local motion. To restrain the computational load,
we employ a 1D convolutional layer to reduce the channel
dimensions by a factor of r (r = 4):

X" = Conv % X5, X" € RVXFxTx1x1 )

The size of the 1D convolution kernel is set as 3, so as to learn
the adjacent temporal information. Another 1D convolutional
layer (called Conveyp) is appended to expand the dimension
of motion features to C, then motion-attentive weights M is
defined in the form of a Sigmoid function:

M = Sigmoid(Convexp * X"), M € RVXCXTxIx1 (3

To explore the motion-sensitive information, a channel-
wise multiplication of the input feature and motion-attentive
weights is implemented as follows:

X'=MoXx “4)

Where X is the output of the short-term branch. Operator
©® denotes a channel-wise multiplication. Through the above
steps, the motion pattern has been fully explored and
highlighted.
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FIGURE 2. The overall architecture of TEFE network. We adopt Resnet-50 as the backbone, and implant TE and FE modules into residual
blocks.
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FIGURE 3. The architecture of TE module.

2) LONG-TERM BRANCH

Compared with the short-term branch, the long-term branch
leverages a convolution kernel to integrate temporal informa-
tion, without calculating the correlation among channels.

As shown in Fig. 3, we reap the benefits of stacked two
fully connected (FC) layers to learn the temporal relations.
After the 2™ FC layer, we add a softmax function to
normalize aggregation weights, which is written as:

qc = softmax(F(Wa, F(Wy, X2)) 5)

Where g, € RV*Kx1x1x1 5 a calculated weight for the ¢
channel, and K = 3 is the kernel size.
The learned weights g = {q1, g2, . .., g} is employed to

aggregate the short-term temporal information. Formally,
Y =g®X° (6)
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B. FEATURE ENHANCEMENT MODULE (FE MODULE)
Some similar actions will increase the difficulty of recogni-
tion, which requires more powerful feature representation.
Modhej et al. [47] studied how to separate similar features
and achieved good results.Fine-grained recognition refers to
the differentiation of inter-class features, which belong to the
objects of the same category. As mentioned by [40], bilinear
CNN models represent an image as a pooled outer product of
CNN features in fine-grained recognition tasks. For temporal
modeling in action recognition tasks, we find that those
popular temporal feature extraction methods (e.g. optical
flow or dense trajectory based methods) are easily affected
by subtle local changes. In view of this, we believe that
bilinear method could improve the action recognition results.
Hence, our FE module adopts an approximation of bilinear
operation to advance feature representation (extracted by TE).
The bilinear models are discussed below, followed by the
implementation details of FE module.

1) BILINEAR MODELS

Without loss of generality, consider two input features
x € RM and x’ € RV, a bilinear pooling is performed as
an outer product of x and x’:

RM XN

@)
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extra branch

FIGURE 4. An approximation of bilinear pooling based on a 2-layer MLP
with an extra branch. = indicates element-wise multiplication.
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FIGURE 5. Architecture of FE module. % indicates element-wise
multiplication.

Where z is a feature fusion result. Unfortunately, as an input to
the next layer, z would bring in a large number of parameters:

y = Wvec(z), yeRP ®)

Where W € RP*MXN "yec() transforms a Mx N matrix into
an one dimensional vector with length MN. As discussed
in [41], a hadamard low-rank bilinear pooling reduces the
amount of parameters significantly. Therefore, we devise
an approximation of bilinear pooling to replace the original
operation. Firstly, we use 3 matrices w; € REXM '\, ¢ RRXN
and u € RP*R to approximate W € RP*M>*N The output y
in (8) is computed as:

Yy = u(wix * wox) ®

Where * denotes element-wise product. The matrices wy, wy
and u in (9) all have much smaller size than W, hence reduces
the computational load.

Secondly, when we fix wyx’ = 1, the structure of the (9)
can be regarded as a 2-layer MLP, which approximates a
bilinear pooling. As shown in Fig. 4 below:

The structure can be built upon the basis of a 2-layer MLP
by adding an extra branch, where the input is x” and the output
is 1. This design endows a traditional 2-layer MLP more
discrimination ability, which is also the basis for constructing
FE module with pre-trained weights.
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FIGURE 6. lllustration of pre-training process.

2) IMPLEMENTATION DETAILS OF FE MODULE
Suppose feature X is fed to the FE module, the corresponding
output is calculated as:

Y = U(Convl(X) % Conv2(X)) (10)

We replace the original FC layers (shown in Fig. 4) with 3D
convolution modules, considering their efficiencies in spatial-
temporal feature extraction. Then a FE module is constructed
inFig. 5. As shown in Fig. 5 above, our FE module has two 3D
convolution kernels. Conv1 is a 3D convolution kernel, which
is stacked by three 2D convolution kernels along the temporal
dimensions. To initialize Conv1, we load pre-training weights
of the 2D convolution kernel stacked in the middle (yellow),
and set the weights of the other 2D kernels (blue) as 0 (as
shown in Fig. 6 below).

Conv2 is constructed in a similar way as Convl. We ini-
tialize all the weights of Conv2 to 0, and bias to 1. In that
case, the output of Conv2 would always be 1, regardless of
the input. Then we have:

Conv1(X) * Conv2(X) = Convl(X) (1

Through the above steps, we well preserve the pre-trained
parameters on ImageNet with learned spatial features.

C. THE OVERALL STRUCTURE OF TEFE

Since TE and FE modules are compatible to ResNet
architecture, we implant them into ResNet-50 in a flexible
way and replace them with existing residual blocks to form
the final structure. The overall architecture is illustrated in
Fig. 2 in Section 3. In both TE and FE blocks, the first
1 x 1.2 D convolutional layer is used to reduce channel
dimensions, and the second 3 x 3.2 D convolutional layer
in TE block is used for extraction of spatial information.
Then the feature maps are then propagated through TE and
FE modules to gather temporal and fine-grained features,
respectively. To ensure the effectiveness of the proposed
structure, we have also tried different ways of placing the
2 blocks in different stages (from the 24 to the 5 stage) of
ResNet-50 to search for the optimal structure (as discussed in
ablation study).

IV. EXPERIMENT
In this section, we firstly describe the open datasets
(Something - Something V1 and V2, and Jester) we use
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TABLE 1. Comparison with state-of-the-art methods on something-something V1. *-" indicates this parameter is not provided.

Method Backbone Frames GFlops pre-trained top-1(%)  top-5(%)
TSNI[9] Resnet-50 8 33 Kinetics-400 19.7 46.6
TSNI[9] Resnet-50 16 66 Kinetics-400 19.9 47.3
I3D[18] Resnet-50 918 ImageNet 41.6 72.2
NL I3D[18] Resnet-50 32X6 1008 + 44.4 76.0
NL I3D+GCN[18] Resnet-50+GCN 1818 Kinetics-400 46.1 76.8
ECO[22] BNInception+Resnet-18 16 64 Kinetics-400 41.4 -
ECO&gq[22] BNInception+Resnet-18 92 267 Kinetics-400 46.4 -
SAST[48] BNInception+Resnet-18 16 - Kinetics-400 443 -
SAST[48] BNInception+Resnet-18 32 - Kinetics-400 45.6 -
TPN[2] Resnet-50 8X 10 330 ImageNet 40.6 -
TRN[17] BNInception 8 16 ImageNet 344 -
TRN(RGB+Flow)[17] BNInception 8+8 - ImageNet 42.0 -
TSM[15] Resnet-50 8 33 ImageNet 45.6 74.2
TSM[15] Resnet-50 16 65 ImageNet 47.2 77.1
TSMEa[15] Resnet-50 8+16 98 ImageNet 49.7 78.5
MTD?P[49] Inception-V1 64 - ImageNet 48.2 78.4
MTD?P[49] Resnet-50 16 - ImageNet 494 78.1
CorrNet[12] Resnet-50 32X 10 1150 ImageNet 49.3 -
CorrNet[12] Resnet-101 32X 10 1870 ImageNet 50.9 -
TEFE(Ours) Resnet-50 8 90 ImageNet 46.7 75.3
TEFE(Ours) Resnet-50 16 181 ImageNet 50.4 78.9
TEFE(Ours) Resnet-50 8+16 271 ImageNet 51.4 79.6

to testify the general performance of our network followed
by the implementation details of TEFE. Then we conducted
experiments on them to compare the performances with
other state-of-the-art methods. Meanwhile, ablation studies
are carried out to verify the effectiveness of each module as
well as different possible combinations in our architecture.

A. DATASETS
We evaluate our method on 3 action recognition datasets.
Something-Something v1& v2: Something V1 and V2 [6]
are 2 large scale challenging video datasets with daily actions
and interactions between people and common objects (e.g.
bottles, fruits, spoons etc.). Totally, there are 110k videos in
V1 and 220k videos in V2, which consists of 174 fine-grained
categories, different backgrounds and viewpoints. We place
special emphasis on these two datasets, since the fine-grained
categories need to be distinguished via temporal reasoning.
Jester. Jester [5] is a third-person view gesture dataset
for generic human hand gestures recognition, which has
27 different categories with 118k videos for training, 14k
videos for validation and 14k videos for testing.

B. IMPLEMENTATION DETAILS

Training. Our method doesn’t use all the frames of video.
According to the sparse sampling strategy proposed by
TSN [9],we evenly divide frames of video into 7' segments
with the same length. Next, 1 frame is randomly selected from
each of the segment to form a sequence of T frames in total
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as the input of the network, where the short side of the frame
is set in [256, 320].

Besides, we randomly crop the frame into patches of
224224 for augmentation purpose, and use them for
training. The final input size of our network is expressed
as: NxTx3x224x224, where N and T represent batch
size and frame numbers, respectively. And we compare the
performances by setting 7" as 8 or 16. Our hardware platform
is NVIDIA 2080Ti GPU with a mini-batch of 20 (when
T = 8) or 10 (when T = 16). For Something - Something V1
& V2, we set an initial learning rate as 0.001, decays by 10 at
30/40/45 epochs, and stops at 50 epochs.mini-batch SGD is
used as an optimizer, and the momentum and weight decay
are set as 0.9 and Se~*. And we only use the ImageNet to
pre-trained model.

Inference. To obtain a comprehensive assessment of our
model, we report Topl & Top5 accuracy (%) and GFlops on
validation sets. We resize video frames to 224 x 256 to cover
the spatial dimensions and then randomly sample T frames
for temporal dimension from a full-length video. And we only
infer with single clip without other cropping strategies.

C. IMPLEMENTATION DETAILS RESULTS ON
SOMETHING-SOMETHING DATASETS

In this section,we compare our network with other popular
methods on Something-Something and Jester datasets.
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TABLE 2. Comparison with the state-of-the-arts methods on something-something v2. ‘-’ indicates this parameter is not provided.

Method Backbone Frames GFlops top-1(%) top-5(%)
TSNI[9] Resnet-50 8 33 27.8 57.6
TSN[9] Resnet-50 16 66 30.0 60.5
TRNJ[17] BNInception 8 16 48.8 77.6
TRN(RGB+Flow)[17] BNInception 8+8 - 55.5 -
TSN+TPNJ2] Resnet-50 8X10 330 59.1 -
CPNet[50] Resnet-18 16 X6 - 54.1 82.1
CPNet[50] Resnet-34 16 X6 - 57.7 84.0
STIN[51] - - - 60.2 84.4
TSM[15] Resnet-50 8X6 198 59.1 85.6
TSM[15] Resnet-50 16 X6 390 63.4 88.5
SlowFast-R50[4] Resnet-50 64 132 61.7 -
TEFE(Ours) Resnet-50 8 90 59.6 85.7
TEFE(Ours) Resnet-50 16 181 61.8 87.4
TEFE(Ours) Resnet-50 8+16 271 63.5 88.7

Something-Something V1. The results are shown in
Table 1 above, including names, accuracies, frames sampled,
backbones and GFlops for a fair comparison.

The listed methods can roughly be classified into 2 types.
TSN [9] is the baseline, followed by some 3D CNN based
methods, including 13D [18], ECO [22] and SAST [48] in
the middle, and some 2D CNN based methods, including
TRN [17], TPN [2], TSM [15] MTD? P [49] and CorrNet [12]
and the lower part.Compare the results of 8 frames,our
network exceeds other 3D based methods on V1. As for the
results of 24 frames, we surpass ECOEn [22] and SAST [48]
by 5% and 5.8%, respectively. In the meantime, those 3D
based methods are pre-trained on the very large dataset (e.g.
Kinetics [1]) with much higher computational cost. Although
our network also has some 3D convolution modules, it is
only pre-trained on the ImageNet dataset (like other 2D based
methods).

Obviously, the baseline method TSN [9] gets rather
poor results due to the lack of temporal modeling ability.
In comparison, our accuracy is 26.8% higher than TSN with
only 8 frames sampled. With the same backbone (ResNet-50),
we outperform CorrNet [12] 2.1% in accuracy. When using
ResNet-101 as the backbone, CorrNet [12] obtains a decent
accuracy, but its GFlops is too high (1180G). We achieve
the highest accuracy (51.4% on Top 1%, and 79.6% on Top
5% respectively) among all the methods, while maintaining a
relatively low GFlops.

Something-Something V2. The results on Something-
Something V2 are shown in Table 2 below. Generally, our
network gains a huge improvement over TSN [9] baseline
again, which also surpasses other popular methods.

D. RESULTS ON JESTER DATASET

Jester [6] is a dataset created for subtle gesture recogni-
tion.Comparative results are shown in Table 3.We achieve the
highest Top-1 accuracy over other methods.
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TABLE 3. Comparison with the state-of-the-art methods on jester.

Method Backbone Frame  Top-1(%) Top-5(%)
TSN[9] Resnet-50 ; 81.0 99.0
TRNJ[16] BNInception 8 95.3 -
MFNet[39] Resnet-50 7 96.1 99.7
MFF[31] BNInception 8 96.3 99.9
STM[16] Resnet-50 8X30 96.6 99.9
TEFE(Ours) Resnet-50 8 96.7 99.9

TABLE 4. Impact of te and fe module: the table shows the contributions
of each module to tefe:.

Model top-1 Atop-1
TSN 19.9

only TE 43.8 +23.9

only FE 46.1 +26.2
TEFE 50.4 +30.5

Compared with the baseline TSN [9], we improve the
Top-1 accuracy by 15.7%.

E. ABLATION STUDIES

Ablation studies have been conducted on Something -
Something V1 to testify the efficiency of the network with
different combinations of TE and FE modules. We sample
16 frames as input and use TSN [8] as the baseline. The results
are shown in Table 4 and Table 5.

1) INVESTIGATE THE IMPACT OF TWO MODULES
The two modules can be attached to a standard ResNet
architecture independently. To validate the contributions of
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TABLE 5. we place different number of te and fe modules in different
stages of resnet-50.

stage2 stage3 stage4 stageS Top-1 (%)
TE=3, TE=4, TE=6, TE=3, 46.7
FE=0 FE=0, FE=0 FE=0

TE=0, TE=0, TE=0, TE=0, 46.3
FE=0, FE=4, FE=6 FE=3

TE=3, TE=3, TE=3, TE=3, 47.8
FE=0 FE=1, FE=3 FE=0

TE=2, TE=2, TE=2, TE=2 48.7
FE=0 FE=2 FE=4 FE=1

TE=1, TE=1, TE=1, TE=1, 50.4
FE=0 FE=3 FE=5 FE=2

each module in TEFE, we investigate the results of placing vs
not placing the two modules (listed in Table 4). Recall that the
TE module learns motion features efficiently, which improves
Top-1 accuracy by 23.9% on the basis of TSN, while FE
module learns fine-grained spatial-temporal information and
further improves Top-1 accuracy by 26.2% accordingly.
The combination of TE and FE allows us to learn richer
motion and spatial-temporal features, and achieve higher
accuracy.

2) INVESTIGATION OF DIFFERENT LOCATIONS AND
NUMBER OF TE AND FE MODULES

An original ResNet-50 architecture has 5 stages, which
consists of 3, 4, 6, 3 blocks in stage 2~5, respectively. We try
to place different number of TE and FE modules in different
stages, and compare their Top-1 accuracies (as shown in
Table 5). First of all, we do not place any FE modules in
stage 2 in order to reduce computation. We find that either TE
or FE modules alone can improve the performance to some
extent compared with baseline. We also confirm our initial
hypothesis that TE and FE are indeed complementary to each
other. When we insert both of them, we gain an even higher
accuracy. Table 5 shows the accuracy by placing different
number of TE and FE modules in different stages. Especially,
the last combination achieves the best results.

F. COMPARATIVE ANALYSIS

In this section, we compare the effectiveness of TEFE
in classifying different actions (from Something-Something
V1) with our baseline TSN [9]. Fig. 7 and Fig. 8 show
2 sequences of similar actions. Fig. 9 compared the accuracies
of similar action recognition achieved by our method and
TSN, and Fig. 10 compared the accuracies for some strong
temporal related actions.As can be seen in Fig.9, due to
our fine-grained classification ability, we can improve the
accuracy of similar actions.As shown in Fig. 10, TSN does not
perform well for actions with strong temporal dependences,
while we significantly improve the performances over TSN.
The reason behind this phenomenon is that our method
explores temporal relations in video sequences.
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FIGURE 7. Two similar actions in Something-Something V1 dataset. Top:
Tearing something just a little bit;Bottom:Tearing something into two
pieces.

FIGURE 8. Two strong temporal-related actions in Something-Something
V1 dataset. Top: Pulling something from left to right;;Bottom:Pulling
something from right to left.
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FIGURE 9. Comparison of recognition accuracy between our method and
baseline method TSN on some similar actions.
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FIGURE 10. Comparison of recognition accuracy between our method
and baseline method TSN on some strong temporal-related actions.

G. VISUALIZATION OF ACTIMATION MAPS
We use Grad-Cam [52] to visualize activation maps. We sam-
ple 16 frames as the input and only visualize the activation
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FIGURE 11. Visualization results on Something-Something V1. Left: Input
video frames; Middle: baseline; Right: TEFE.

map of the middle frame (Fig. 11). As shown in Fig. 7.The left
column display the original video frames, the middle column
show the results of the baseline, and the right column exhibit
our results. Apparently, TEFE is more concentrated on the
hand motion and interaction with objects, while the baseline
obviously lose focuses for most of the cases. The activation
maps reflect the fact that TEFE is able to capture the motion
regions due to its strong temporal modeling ability.

V. CONCLUSION

We present TEFE, an action recognition network with tem-
poral extraction and feature enhancement modules to reach a
balance between recognition accuracy and computation load.
In particular, our TE module captures both short-term and
long-term temporal features, while FE module obtains rich
fine-grained spatial and temporal cues which are extracted by
TE. Furthermore, TEFE is also appealing in the sense that it
is pluggable to any ResNet architecture.

Extensive experiments have been conducted on 3 main-
stream datasets to verify the efficacy of our network. The
experimental results prove that TEFE achieves superior
performances than other popular methods. Finally, ablation
studies are carried out to demonstrate the efficiency of each
module in the entire architecture.
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