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ABSTRACT The paper presents research on the approximation of variable-order fractional operators
by recurrent neural networks. The research focuses on two basic variable-order fractional operators,
i.e., integrator and differentiator. The study includes variations of the order of each fractional operator. The
recurrent neural network architecture based on GRU (Gated Recurrent Unit) cells functioned as a neural
approximation for selected fractional operators. The paper investigates the impact of the number of neurons
in the hidden layer, treated as a hyperparameter, on the quality of modeling error. Training of the established
recurrent neural network was performed on synthetic data sets. Data for training was prepared based on
the modified Grünwald-Letnikov definition of variable-order fractional operators suitable for convenient
numerical computing without memory effects. The research presented in this paper showed that recurrent
network architecture based on GRU-type cells can satisfactorily approximate targeted simple yet functional
variable-order fractional operators with minor modeling errors. In addition, the research also compares
the presented solution with basic and recurrent neural networks that utilize Tapped Delay Lines (TDL)
in their structure. The presented solution is a novel approach to the approximation of VO-FC operators.
It has the advantage of automatic selection of neural approximator parameters by optimization based on data
customized for specific requirements.

INDEX TERMS Approximation methods, fractional calculus, modeling, neural networks, recurrent neural
networks.

I. INTRODUCTION
Fractional order calculus [1] has been known since the
17th century. This field of science concerns various methods
that lead to a generalization of integration and differentiation
operators to real or complex orders. In the last few decades,
the interest in fractional-order calculus has grown in a very
significant way in both the research and engineering fields,
with special attention in modeling and simulation of phys-
ical phenomena as reported in [2] and [3]. Applications of
the fractional order calculus can be found in areas such as
astronomy [4], finances [5], time delay systems studies [6],
fuzzy inference systems [7], nonlinear chaotic systems [8],
unmanned aerial and ground vehicles [9], modeling of elec-
trochemical capacitors [10], modeling and control of nuclear
reactors [11], [12], and many others. Fractional operators
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used in the above exemplary research and engineering areas
provide a specific way to generalize mathematical models by
introducing an arbitrary order, for instance, denoted as α into
the integro-differential fractional operator Dα , where α ∈ R
or in general case α ∈ C. In this paper, cases for which α ∈ R
will be considered.

By introducing an operator with such properties, in gen-
eral, additional degrees of freedom are available, affecting
the overall quality of models or algorithms that utilize them.
The operator Dα described above can be formalized in the
following form [13]

t0D
α
t f (t) =


dαf (t)/dtα, if α > 0,

f (t), if α = 0,∫ t

t0
f (τ )dτ−α if α < 0.

(1)

A further extension of the capabilities of fractional order
operators is to change their order α according to some
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dependent or independent variable, e.g. time t . In the case of
the independent variable represented as a function of time, the
order of the fractional operator is expressed as some known
or unknown function, i.e. α = g(t) where t ∈ R. Thus, in the
context of (1), the variable order fractional calculus operator
(VO-FC) expressed as t0D

α(t)
t will be obtained.

There is no doubt that the introduction of variable order
α(t) to the fractional operators extends their usefulness.
In [3], the authors gave a comprehensive review related to
applications of fractional order operators. The authors state
that the most significant publications related to fractional
operators of variable order belong to the following techni-
cal areas and real-world applications: transport processes in
complex media [14], [15], control [16], [17], mechanics [18],
elasticity, viscoelasticity [19], [20], model-order reduction
of lumped parameter systems [21] and biomedical engineer-
ing [22]. Outside these application areas, most publications
are in the purely scientific area of mathematics [23]–[25].
These publications are mainly in the fields of solution meth-
ods, along with definitions and properties.

An important issue related to the research on fractional-
order operators is their practical implementation, i.e. through
electric circuits or on modern digital platforms like PLC [26],
industrial computers or FPGAs [27]. The synthesis of math-
ematical models or systems which include fractional-order
operators is not problematic. At present, it boils down to
the selection and application of appropriate definitions and
numerical methods. Nowadays, there are many different soft-
ware tools available like FOMCON [28], FOTF Toolbox [29],
or CRONE [30] which support simulation studies in a bene-
ficial and complex way.

When dealing with fractional systems that operate in
on-line mode with unknown signals, for instance, in the
broad control systems field, it is impossible to use classi-
cal definitions of fractional order operators. The unknown
signal behavior in the field of control systems is mainly
because these systems operate in tracking or disturbance
rejection mode. The main reason and at the same time the
fundamental disadvantage is that definition based fractional
operators need an infinite history of signal samples based on
which the output signals from, i.e. fractional controllers [12]
or fractional observers [31], [32], etc. are evaluated. This
requires the impossible requirement of using infinite mem-
ory in digital platforms which are currently acting as car-
riers of algorithms within many control loops. Therefore,
there is a need for techniques and models that allow for
approximations of fractional-order operators and systems that
will reproduce required fractional operators characteristics
with sufficient precision based on a finite history of sam-
ples. A typical approach uses continuous or discrete integer
order linear dynamical systems that utilize a finite amount of
samples for approximation purposes. Typical approximation
solutions include: standard and refined Oustaloup filters, fre-
quency response fitting approach, continued fraction-based
approximations and many others described, for instance,
in [13]. These solutions are typically applied for fixed order

operators, and they are impractical for straight introduction
of order variation. The disadvantage of these solutions is
that it is necessary to recalculate all the parameters that are
involved in the approximation model with respect to varia-
tions in the order α(t). Another way to introduce variable
order while using integer operators is to utilize fuzzy mod-
eling as presented in [25]. However, the latter approach also
has some disadvantages in terms of the high complexity of
the approximating model since it requires incorporation of
multiple linear models and multiple fuzzy rules to ensure
decent quality of the approximation.

Therefore, this paper proposes an original approach in
the form of a neural network model of the VO-FC oper-
ator. The following properties characterize this approach:
firstly it does not need infinite memory for sample storage,
secondly, it is not computationally demanding, and finally
neural networks can automatically learn VO-FC operators’
characteristics from data through optimization. The data-
driven approach to modeling the approximator, in this case,
is very flexible because through the definition of appropriate
training data and selecting an appropriate neural network
architecture, it is possible to design approximation mod-
els with relatively small modeling errors and characteristics
suited to the given requirements. Also, the following allow for
the implementation of such neural approximated operators
on digital platforms operating in real-time conditions, which
do not have significant computing power, for instance, PLC,
PAC, microcontrollers or FPGA boards.

Recurrent neural networks belong to a class of artificial
neural networks that are characterized by the utilization
of feedbacks embedded into their architecture. Feedbacks,
depending on the chosen architecture, can take different
forms. Nevertheless, the introduction of feedback into a neu-
ral network turns it into a dynamic model that represents an
input-output mapping that considers the temporal sequences
present in the data rather than just static ones. The combi-
nation of the main advantages of recurrent neural networks,
i.e.: scalability and flexibility while modeling almost any
dynamic system, automatic and optimal adaptability of the
network to the presented data during supervised learning task
and relatively low computational complexity of the trained
network is the main reason for which they were used in this
study to approximate VO-FC operators.

Previous research related to the usage of recurrent neural
networks for modeling fractional dynamical systems of con-
stant order presented in the paper [33] showed that recur-
rent neural networks could at the same time approximate
the behavior of simple and complex fractional systems in
a promising way. This paper extends the previous research
towards modeling approximations of VO-FC operators based
on recurrent neural networks.

The main contribution of the paper is represented by orig-
inal research results that address:
• complex problem of approximation of VO-FC operators,
• utilization of recurrent neural network architectures to
implement the approximator,
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• comparison of results for basic neural networks using
Tapped Delay Lines (TDL) and networks using modern
GRU cells,

• propositions of supervised training of neural networks
and their verification utilizing training and test data sets
based on randomized sequences,

• modification of the Grünwald-Letnikov definition of
the VO-FC operator, leading to less complex numerical
implementation by introducing recursive evaluation of
weights.

The paper is organized as follows. In section II the consid-
ered problem is described. In section III the problem state-
ment and the methodology used in the study is presented.
Section IV includes and discusses the quantitative and quali-
tative results that were obtained from the simulation studies.
Finally, section V concludes the paper.

II. PROBLEM STATEMENT
A. VARIABLE ORDER FRACTIONAL OPERATORS
State-of-the-art summary of various VO-FC operators defi-
nitions can be found in [34]. It includes, among others, pro-
posed definitions approaches such as: 1) Ross-Samko [35],
[36], 2) Lorenzo-Hartley [37], 3) Coimbra and Valério-Sá da
Costa [38], 4) Grünwald-Letnikov type A, B, C, and D
formulations [25], [39]. The main factors characterizing the
definitions of VO-FC are the variations in the appearance
of the memory effects and the variations in the approach
regarding changes of the order α(t) as reported in [40], [41].
Such diversity in definitions is most desirable. It allows for
more flexibility in choosing an appropriate definition for
the modeled physical phenomenon in which memory effects
and specific phenomena with a change of order α(t) occur.
Despite the wide range of definitions to choose from, accord-
ing to [34], many of the novel VO-FC definitions do not
satisfy the properties indicating that they can be considered
as a fractional derivative. That being said, most definitions
do not satisfy the criterion of existence of left inverse, which
directly implies that the operators do not meet the following
condition [34]

Dα(t)D−α(t)f (t) = f (t) (2)

Although, as previously mentioned, there are many defini-
tions of VO-FC operators, it was decided in this research to
use the definition based on the Grünwald-Letnikov approach
proposed by [34] and given as

Dα(t)
f f (t) = lim

h→0+
h−α(t)

∞∑
k=0

(−α(t))k
k!

f (t − kh) (3)

where (a)k = a(a + 1)(a + 2) . . . (a + k − 1) denotes
Pochhammer symbol.

Due to usage of a factorial operation in the denomina-
tor (k!), the above definition may cause computational prob-
lems. Therefore, the definition (3) has been modified and
replaced by formula (4) in which the weights expressed
via the (−α(t))k/k!) expression are determined recursively.

The factor associated with the weights was first expanded by
the expression (−1)2k yielding

Dα(t)
f f (t) = lim

h→0+
h−α(t)

·

∞∑
k=0

(−1)k
(−1)k (−α(t))k

k!
f (t − kh) (4)

knowing that (
α

k

)
=
(−1)k (−α)k

k!
(5)

and substituting (5) to (4) we get

Dα(t)
f f (t) = lim

h→0+
h−α(t)

∞∑
k=0

(−1)k
(
α(t)
k

)
f (t − kh) (6)

Then, following [13], subsequent relationship was introduced
to (6)

(1− z)α(t) =
∞∑
k=0

(−1)k
(
α(t)
k

)
zk =

∞∑
k=0

wk (t)zk (7)

finally resulting in

Dα(t)
f f (t) ≈ h−α(t)

∞∑
k=0

wk (t)f (t − kh) (8)

where wk (t) are the coefficients of (1− z)α(t) that can be
expressed recursively as

w0(t) = 1,

wj(t) =
(
1−

α(t)+ 1
j

)
wj−1, for j = 1, 2, . . . (9)

For the sake of clarity, in the rest of the paper, the relationships
described by (8)-(9) will be abbreviated as operator O1.
It should also be mentioned that definition (3) transformed

to the form (8)-(9) was chosen because 1) it satisfies
condition (2), that is, it can be used for both integration and
differentiation operations merely by changing the sign of the
order of α(t) so that it is not necessary to use two sepa-
rate definitions for fractional integration and differentiation,
2) does not have memory effects when changing the order
of α(t) making it more challenging for a recurrent neural
network to learn the approximation of a given VO-FC opera-
tor, 3) it is by itself a numerical procedure that can directly
be used for the determination of variable-order fractional
integrals and derivatives, and last but not least 4) it is straight-
forward in numerical implementation which improves the
generation of training and testing data for the training process
of recurrent neural network.

In order to verify the correctness of the calculations per-
formed using the O1 operator, it was implemented and
tested in the Python 3.9 programming language with NumPy
library [42], [43]. The implemented operator was tested
according to an example taken from [34] in which unit step
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and ramp response of the system given by the following
transfer function

F(s) =
1

0.1+ sα(t)
(10)

was to be determined. During the verification, the
FOMCON [28] toolbox dedicated for Matlab [44] software
allowing for the calculation of responses of dynamic systems
of fractional order was also used for comparison purposes.
Figure 1 shows the results of the verification experiment of
the O1 operator. The upper and middle part of the figure
shows the responses of the system for different variants of
fractional order α, while the lower part of the figure shows
the time variation of α(t) assumed in this experiment. The
O1 operator in this experiment was used to determine the unit
step and ramp responses of the system (10) for both fixed
and variable orders of α. As can be seen in the figure, the
O1 operator correctly computes system responses for both
variable and fixed orders of fractional order α. This fact is
also confirmed by the data obtained from the simulation with
the FOMCON toolbox.

B. NEURAL NETWORK ARCHITECTURE
Artificial neural networks are known as universal structures
that can model complex relationships using a large set of
simple mathematical operations processed through a large
number of computational cells called neurons. Whether a
neural network will be able to model the relationships that
exist in the data depends mainly on the architecture of the
network.

After expanding the relation (3), it can be seen that it rep-
resents a weighted sum that essentially is a moving average
with an infinitely growing window. Since the definition of
the Grünwald-Letnikov integro-differential operator utilizes
previous samples of the signal on which it operates, it is
reasonable to use a recurrent neural network architecture
for approximation purposes. These type of network utilize
feedbacks from inputs, hidden layers and outputs embedded
in their structure to generate output. An essential element sup-
porting the use of recurrent neural networks in this research
is the universal approximation theorem expressed in the fol-
lowing form [45], [46]
Theorem 1: Any nonlinear dynamic system may be

approximated by a recurrent neural network to any desired
degree of accuracy and with no restrictions imposed on the
compactness of the state space, provided that the network is
equipped with an adequate number of hidden neurons.

This theorem was formalized in the work [47] where con-
ditions for its applicability can also be found. The above-
stated considerations lead to the formulation of assumptions
considering a neural-based model of the VO-FC operator as
follows:
• themodel should be based on a recurrent neural network,
• themodel should aim tominimize the number of neurons
in the network and thus the feedbacks from inputs or
outputs that are used to determine the resulting output

signal from the network with a trade-off between mod-
elling accuracy and the size of the neural network,

• although the Grünwald-Letnikov or O1 definition is lin-
ear in terms of the used input signal samples, the model
should leverage the nonlinear activation functions of the
neurons to compensate for modeling errors,

• the model should have at least two inputs responsible
for supplying the input signal and the signal associated
with order variations denoted asα(t), and at least a single
output on which the operator subjected signal appears.

Considering the assumptions mentioned above, the general
aim of this study is to approximate the O1 operator by a
recurrent neural network to eliminate the fundamental disad-
vantages of definition driven fractional operators mentioned
in section I. In order to simplify the training process, it was
decided to divide the process according to integration and dif-
ferentiation operations. Thus, in the presented research, two
neural models were developed that approximate the fractional
integral and differential operators concerning variations in the
order α(t) of these operators.

III. RESEARCH METHOD
In this part of the paper, aspects related to: (A) the selection
of the neural network architecture for approximating the
VO-FC operator, (B) the procedure for generating the data
necessary for the training and validation process of the neural
network, (C) the selection of the hyperparameters and the
training of the neural network, will be discussed.

A. NEURAL NETWORK
The preliminary research to investigate whether recurrent
neural networks are suitable for approximation of fractional
order systems was presented in [33]. In the mentioned paper
recurrent neural networks based on neuron cells such as
LSTM and GRU and the classical Elman recurrent network
were examined. The mentioned networks were supposed to
approximate the responses of both less and more complex
fractional-order dynamic systems such as:
• first-order LTI system,
• second-order LTI system,
• nuclear reactor model,
• strongly nonlinear model.
The research presented in [33] showed that the studied

recurrent neural networks with LSTM, GRU, and Elman
cells were up-and-coming approximations of the selected
dynamical fractional-order systems. In the research men-
tioned above, the best average performance was achieved
by GRU cell type neural networks. For this reason, in the
research presented in this paper, a GRU cell type recurrent
network was used to approximate the VO-FC operators. The
general architecture of the neural network with GRU cells
is shown in Figure 2. The structure of a single GRU cell is
defined as follows [48]:

r(t) = σ (Wirx(t)+ bir +Whrh(t − 1)+ bhr )

z(t) = σ (Wizx(t)+ biz +Whzh(t − 1)+ bhz)
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FIGURE 1. Verification of the behavior of the O1 operator with constant and varying orders α(t) for step and
ramp response of the transfer function (10).

FIGURE 2. The general architecture of the utilized recurrent neural
network with GRU cells. The parameters being changed during the study
are indicated with blue text: n# - neuron number.

n(t) = tanh(Winx(t)+ bin + r(t) ∗

∗ (Whhh(t − 1)+ bhn))

h(t) = (1− z(t)) ∗ n(t)+ z(t) ∗ h(t − 1) (11)

where h(t) is the hidden state at time t , x(t) is the input at
time t , h(t − 1) is the hidden state at time t − 1 or the
initial hidden state at time 0, r(t), z(t), n(t) are the reset,
update and new gates at time t , respectively, σ is the sigmoid

function, ∗ is the Hadamard product,Wir ,Wiz,Win are learn-
able input-reset, input-update and input-new weights matri-
ces, Whr , Whz are hidden-reset, and hidden-update weights
matrices, bir , biz, bin are learnable input-reset, input-update
and input-new biases, bhr , bhz, bhn are learnable hidden-reset,
hidden-update, and hidden-new biases.

In general, the neural network consisted of a single hidden
layer, which is in agreement with the previously presented
Theorem 1, and a single output layer that applies a linear
transformation to the incoming data described as

y(t) = h(t)AT + b (12)

where y(t) is the output vector at time t , A is the linear
transformation matrix, and b is the bias vector.
The network has two inputs, of which the first is the

fractional-order α(t) of the neural operator, and the second
is the input signal x(t) subjected to fractional differentiation
or integration operation. Both inputs depend on time t . The
network also has a single output y(t), which is the result of a
fractional differentiation or integration operation of the input
signal x(t) depending on the varying order of α(t). In the case
of mentioned network, the number of GRU cells in the hidden
layer was analysed. More complex neural networks with two
hidden layers, e.g., 20 neurons each in two hidden layers,
were tested in initial experiments, but satisfactory modeling
error was not achieved in these cases.
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FIGURE 3. Simplified diagrams of the basic neural networks architectures with Tapped Delay Lines. The parameters that
were changed during the study are marked with blue text. Bold line indicates the vector of signals from all neurons in the
hidden layer.

Additionally, due to the nature of input signal samples pro-
cessing by the Grünwald-Letnikov definition as mentioned in
subsection II-B i.e., computation of a weighted average with
an infinitely increasing window on the input signal samples,
other basic neural network architectures that utilize Tapped
Delay Lines (TDL) were also investigated. During conducted
tests four basic neural network architectures were examined,
namely:

1) ADALINE network,
2) Time delay neural network,
3) Layer recurrent network,
4) NARX network.

Simplified diagrams of the architectures of the examined
basic neural networks are shown in Figure 3.

B. DATA
The recurrent neural networks used in this study was trained
in a supervised manner from synthetically generated data.
The data used in the training process reflected the operations
performed by the VO-FC operators for a particular class of
input signals with varying orders of the differentiation or
integration operator. Data were divided into two categories
that were directly related to the type of operator, which was

to be approximated by a neural network, i.e. data reflecting
integration and differentiation with a variable order. The plots
of training data are shown in the Appendix in Figures 6 and 7.
The training data were generated using an Amplitude Modu-
lated Pseudo-Random Binary Sequence (APRBS) [49]. The
input and order signals for the integration operation and the
order signal for differentiation operation were not subjected
to further transformations. In contrast, the input signal for
the differentiation operation is an integrated version of the
APRBS sequence. This change is because the differentiation
of step functions will result in very high amplitude spikes,
which is undesirable in training signals for recurrent neural
networks. Parameters for training data are listed in Table 1.

In addition to the training data, test data were also gen-
erated. Test data was used to check if the trained neural
network can generalize the integration and differentiation
operations to signals that were not present in the training
process. Plots of testing data are also shown in Appendix on
Figures 8 and 9. The test data are also divided into integration
and differentiation signals taking into account changes in the
order of these operators. The main difference in the test data
compared to the signals contained in the training data is that,
in addition to APRBS sequences, they also contain sinusoidal
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TABLE 1. Training data signals parameters.

TABLE 2. Testing data signals parameters. Entries in parentheses apply for the differentiation operator.

TABLE 3. Parameters set during the basic neural operators training process. Hyperparameters marked with (*).

and sawtooth signal sequences. The parameters of the test
signals are summarized in the Table 2. Output signals for both
training and test data were generated from the O1 definition
of VO-FC operator described by the relationships (8)-(9).

C. TRAINING
Once a suitable neural network architecture is selected, and
the appropriate training and testing data have been chosen, the
next step is to train the neural VO-FC operators. In the first
part of the study, the basic neural networks shown in Figure 3
were trained to approximate the neural operators. These net-
works were implemented and trained using the Deep Learn-
ing Toolbox package of Matlab R2021a software [50]. In this
part, the behavior of four basic neural networks with embed-
ded TDL was studied concerning changes in the number of:
• input delays [iL],
• neurons in the hidden layer [n#],
• delays from neurons of the hidden layer [lD].

The mentioned hyperparameters were changed depending on
the network structure. A detailed list of the parameters and
hyperparameters for the learning process of basic networks
are given in Table 3.

Further research concerned training of the GRU cell-based
neural network shown in Figure 2 to approximate the neural

operators. The implementation and training of the GRU neu-
ral operators were carried out using Python 3.9 [42] with the
aid of the PyTorch [48] and PyTorch Lightning [51] libraries.
The parameters that were set during the GRU network train-
ing process are provided in Table 4. Parameters not listed
in Tables 3 and 4 were set to default values according to
the Matlab Deep Learning Toolbox, PyTorch and PyTorch
Lightning libraries.

Previous research presented in the paper [33], studied the
architectures of recurrent neural networks based on LSTM,
GRU and Elman cells for approximation of fractional models
with constant order. In the mentioned studies, the number
of neurons in the hidden layer varied from 1 to 5. It was
observed that greater number of neurons caused the com-
mon phenomenon of overfitting of the neural network, which
decreased the ability to generalize the performance of neural
operators on signals which did not occur in the training data
set. In the current research, it was analyzed and determined
that the proper range of the number of neurons in the hidden
layer vary from 7 to 9. It should be recalled here that the
choice of the number of neurons in the hidden layer was
dictated by the assumptions presented in section II-B and in
particular to minimize the complexity of the network, which
directly reflects the number of neurons involved. It was also
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TABLE 4. GRU neural operators training process parameters.
Hyperparameters marked with (*).

TABLE 5. Results of training sessions for basic neural networks. The
results refer to the lowest recorded values of the loss function for the
integration operator data set.

observed that the modeling error is the lowest in this range of
the number of neurons.

In order to achieve better generalization ability by the neu-
ral operators and reduce the risk of overfitting, the validation
data were separated from the training data. Data division for
basic neural networks using Matlab Deep Learning Toolbox
was done randomly using the dividerand function with
the default settings. When training neural networks with

GRU cells, 35 samples were randomly selected for training
data and 15 random samples for verification data. Addi-
tionally, in each training trial, data were reshuffled at each
training epoch.

The optimal parameters of the neural networks, both basic
and with GRU cells, were selected at the training epoch in
which the lowest value of the loss function for validation data
was achieved, the so-called sweet spot. The MSE function
(squared L2 norm) given as (13) was used in the optimization
process [48]

l (xI , yT ) = mean {l1, . . . , lN }T ,

ln = (xI ,n − yT ,n)2 for n = 1, . . . ,N (13)

where xI is the input sequence, yT is the target sequence, and
N is the batch size. This function was also used as a loss
function in the results presented in Section IV.

IV. RESULTS
This section includes the results of training sessions that
were carried out to determine the best neural models rep-
resenting VO-FC operators. Table 5 shows results obtained
during the training sessions for the basic neural networks.
Table gathers the minimum values of the loss function for
each of the tested networks, evaluated based on five inde-
pendent runs. This minimum values were calculated for the
test data set and for the hyperparameters reported in the table.
Because the best results from the Table 5 were not satisfying
(in contrast to the neural networks with GRU cells, these
results were two orders of magnitude larger), no further stud-
ies with differentiation data were performed. Furthermore,
the data set related to the differentiation operator is not well
suited for comparing network performance. It contains spikes
that can be misleading for quantitative interpretation due to

TABLE 6. Results of training sessions with statistics for neural models of variable order fractional integration operators.

TABLE 7. Results of training sessions with statistics for neural models of variable order fractional differentiation operators.
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FIGURE 4. Responses to test signals for the best neural network for the integration operator. For each sample, the input signals are given in smaller plots.

the MSE objective function used in the study, which tends to
amplify significant errors possibly caused by spikes.

Tables 6 and 7 contain results related to the loss func-
tions for the training sessions for the GRU neural VO-FC
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FIGURE 5. Responses to test signals for the best neural network for the differentiation operator. For each sample, the input signals are given in smaller
plots.

integration and differentiation operators, respectively. In the
tables, the best performance of the neural models for the

test data (blue rows) in terms of the average loss function
and the best training session loss function is highlighted
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FIGURE 6. Training data for integral operation.

with bold and underline text. It can be seen that the best
result for the integration operation in terms of mean and

standard deviation was achieved for the network containing
7 GRU cells. For differentiation operation, the network

VOLUME 10, 2022 7999



B. Puchalski: Neural Approximators for VO-FC

FIGURE 7. Training data for differentiation operation.

with 8 GRU cells achieved the best result for the mean.
It should be noted here that the results were very similar

for the differentiation operator in the mean testing loss cat-
egory for each number of considered neurons. In general, the
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FIGURE 8. Testing data for integral operation.

network with 8 GRU cells for the integration operator
and 9GRU cells for the differentiation operator performed the
best out of all trials. In this cases, the smallest recorded test
loss values in all trials performed was observed as indicated
with bold and underlined entries in Tables 6 and 7. In the
context of the presented results, it should be noted that the
overall goal of the paper was not to perform a detailed sta-
tistical analysis of the selected search region of the chosen
hyperparameter (number of neurons in hidden layer). The
goal was to find the overall best result in the context of
the loss function, which resulted in the smallest modeling
error of the corresponding neural operator with respect to the
assumptions formulated in subsection II-B.

Qualitative results in the form of plots comparing the test
data obtained using the O1 operator labelled ‘‘Data’’ and
the neural model responses labelled as ‘‘Model’’ are shown
in Figures 4 and 5 for the integration and differentiation
operators, respectively. In the figures related to each sample,
the top plots compare the behavior of the neural operator
versus the O1 operator. In contrast the bottom plots include
waveforms of the operators’ inputs signals.

After examining all the samples in both Figures 4 and 5,
it can be concluded that the modeling error between the
data obtained with the O1 operator and the best trained
neural networks is satisfactory. In addition, based on the
presented plots, it can be concluded that the neural networks
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FIGURE 9. Testing data for differentiation operation.

approximate the function of the O1 operator without mem-
ory effects. Thus, the embedded recurrence in the network
architecture positively affects the approximation properties
while at the same time not causing additional memory effects
during the transient of the input signal that is associated with
the order of neural operator.

There are two cases where the neural operators do not
fully approximate the behavior of the O1 operator. The first
one occurs for sample no. 16 in Figure 4 for the integra-
tion operator. In this case, it can be seen that the neural
approximation does not fully capture the amplitude of the
reference signal obtained from the O1 operator. This sample

is characterized by a very small amplitude of the sawtooth
signal that appears at the input x(t) of the neural operator.
Although the signal amplitude is not fully approximated the
overall dynamic character of the signal is in consistent with
the data obtained from the O1 operator. This could be a con-
sequence of inappropriate selection of training data, however,
it requires further extended research.

The second one is related to spikes that occur mainly in
the responses from the O1 operator in differentiation data
presented in Figure 5. High amplitude spikes caused by differ-
entiation of rapid changes in the input signal can be seen for
samples 8 through 21. By analyzing the response of the neural
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operator for the mentioned samples, it can be clearly seen
that the trained neural network has problems reproducing
those spikes. This can be considered a modeling error but
nevertheless it is desirable. This effect can be thought of as
the natural filtering tendency of a recurrent neural network
model. Spike filtering positively impacts the implementation
of neural operators on modern digital platforms, especially
when considering numerical problems that may occur when
the range of variables used for computation is exceeded due
to occurring spikes. Also the lack of mapping of the spikes
effects for the neural differentiation operator is noticeable in
the context of the quantitative results, which are close to each
other in both the mean andminimum loss function categories.
The loss metric used in the paper in the form of theMSE func-
tion tends to miss minor errors and, in contrast, emphasize big
ones, which in this case take the form of spikes. Asmentioned
earlier this tendency is strictly desirable, when transferring
trained and ready-to-use neural operators to modern digital
control platforms, to avoid computational issues.

Based on the results presented in this section, it can be
concluded that the proposed GRU cell-based recurrent neural
network architectures approximate VO-FC operators based
on Grünwald-Letnikov definition without memory effects
with excellent overall performance.

V. CONCLUSION
This paper discusses the process of modeling VO-FC inte-
gration and differentiation operators using modern recurrent
neural networks architecture based on GRU cells. Neural
networks were trained on synthetic data based on the variable
order Grünwald-Letnikov definition, with nomemory effects.
The results presented in this paper show that the applied
recurrent neural networks provide an excellent approximation
of the Grünwald-Letnikov VO-FC operators.

The paper also includes the case of using basic neural
networks to model VO-FC operators, but the use of such
networks did not bring satisfactory results.

The developed neural operators can be easily imple-
mented as a part of advanced control systems that use frac-
tional control laws or fractional models in their structure.
This approach overcomes an essential drawback of frac-
tional systems, which requires limitless memory resources to
store signal samples subjected to fractional-order integration
or differentiation operations. The presented neural models
and their adaptation for general fractional signal processing
are undoubtedly a novel alternative to the currently used
and found in the literature approximations of constant and
variable-order fractional systems.

The next and natural step in the research related to
the approximation of VO-FC operators by recurrent neural
networks is their implementation on modern digital con-
trol platforms and verification of their proper operation in
industrial-like conditions concerning real-time regime. In the
future, research on the application of recurrent neural net-
works for the approximation of other VO-FC operators with
weak and strong memory effects is planned. Furthermore,

a study is planned to investigate the neural approximations
of VO-FC operators with very low amplitudes of the input
signals to inspect the issue related to weak modeling quality
at low input signal amplitudes mentioned in Section IV.

APPENDIX TRAINING AND TESTING DATA
See Figures 6–9.
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