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ABSTRACT Monitoring construction progress is essential for project management. A variety of excellent
automatic schedule acquisition methods have been proposed, particularly 3D reconstruction. However, both
laser-based and image-based 3D reconstruction methods rely on point clouds which have some inherent
defects. In this study, a rough registration method was proposed to obtain construction progress. The method
does not generate point clouds during the entire process but determines the actual construction progress
by registering the target detection results and the projection of building information model elements. The
method was tested at the construction sites of commercial and residential buildings. The experimental results
indicated that the registration accuracy reached 95.13%. The average external parameter calibration time
and the registration time of each image are 18.57s and 50.59ms, respectively. Compared to similar 3D
reconstruction methods, the proposed method is realistic, fast, and simple. This provides a promising method
for 3D reconstruction from unordered construction-site images.

INDEX TERMS 3D reconstruction, building information modeling, computer vision, construction

component detection, rough registration.

I. INTRODUCTION

Owing to the great investment, long duration, and many
risk factors, construction projects require lean and efficient
management. Traditional information collection methods that
rely heavily on manual work can no longer satisfy the current
management needs of large-scale projects. First, traditional
manual acquisition is time-consuming, as it takes approxi-
mately 20-30% of the feeders’ daily efforts to update the
construction activities, which obviously cannot meet the
requirements for fine supervision of construction [1]. More-
over, tedious processes may result in human error and reduce
the quality of the data. Delays and errors in information tend
to lead to wrong decisions that affect personnel and projects
[2]-[3]. Therefore, it is a challenge for the architecture,
engineering, and construction (AEC) industry to improve the
information feedback speed, quickly and accurately statistics
the project data, and keep abreast of the construction site
in time [4].
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To this end, several automatic technologies have been
applied to improve the accuracy and feedback speed of infor-
mation, such as global positioning system (GPS), bar codes,
radio frequency identification (RFID), video and audio tech-
nology, and computer vision technology [5]-[9]. In partic-
ular, the vision-based 3D reconstruction provides a feasible
solution for effective monitoring of the construction process.
For example, Braun ef al. [10] created point clouds from
the fusion of disparity maps and matched the point clouds
with the building information modeling (BIM) models. Sub-
sequently, the density of points within a certain distance
from the surface was used to infer the existence of building
components. Omar et al. [1] imported images into a software
(Agisoft PhotoScan Pro) to generate point clouds and inferred
the height of cubes by calculating the density of point clouds
between the internal and external envelope boxes of BIM
elements. Bonczak and Kontokosta [11] developed a digital
surface model derived from aerial LiDAR point cloud data
to calculate the building massing, height, volume, exposed
surface area, and compactness ratios for every building.

A common feature of these studies was that point clouds
were created as a medium to retain the 3D information of
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the as-built building. However, as a key part, point clouds
are complex and messy. First, if images are captured and
improperly processed, point clouds are generally noisy and
largely affected by unwanted objects [12]-[13]. For various
forms of point clouds, it is time consuming to remove all
points related to the background and objects of no interest [2].
Additionally, there is no guarantee of completeness of point
clouds, and sufficient overlaps among images are necessary to
cover all areas of interest [12], [14]. Therefore, it is necessary
to find a new way to infer the progress deviation from images
without generating point clouds.

Recently, with the breakthrough of deep learning, target
detection technology has made unprecedented development,
which provides a new direction for image-based construction
process monitoring. In the AEC industry, target-detection
technology has been applied to the detection and tracking
of construction personnel, materials, and equipment. Park
and Brilakis [15] focused on the continuous localization of
construction workers through the integration of detection and
tracking. Zhu et al. [16] identified and tracked the workforce
and equipment from construction jobsite videos. Doukari and
Greenwood [17] automatically extracted useful information
from rasterized plans using image processing techniques.

Therefore, a new 3D reconstruction method based on target
detection is proposed. The building components are detected
from construction site images, and the detection results are
mapped to BIM models, which provides an approach for
comparing the detection results with the as-planned model
to judge the changes in the construction site within a period.
In previous studies, a method was proposed to identify partial
building components in images [18]. Therefore, the key is to
register the detection results and the BIM elements.

Based on this, a method to register the target detection
results and BIM elements was proposed. This was achieved
by comparing the polygonal envelopes projected from BIM
elements with rectangular frames generated by target detec-
tion. The remainder of this paper is organized as follows.
First, literature on image-based 3D reconstruction and image-
based building component recognition is briefly introduced.
The next section presents the process of rough registration of
BIM element projection for the 3D reconstruction of building
structures, and the main steps are discussed in detail. Finally,
the method was tested at a construction site of a commercial
and residential building, and the experimental results and
challenges were discussed.

Il. RELATED WORK
A. IMAGE-BASED 3D RECONSTRUCTION
Existing computer vision-based 3D reconstructions can be
classified into active and passive sensing. Active sens-
ing produces point clouds by direct scanning with a 3D
laser scanner [11], [19]-[20] or 3D ranging cameras [14],
[21]-[22]. Passive sensing produces pictures from a camera
[3], [23] or video frames from monitors [16], [24]-[25].

3D laser scanning technology, based on the laser ranging
principle, can quickly reconstruct the 3D point cloud model
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of a measured object, which has unique advantages in terms
of efficiency and accuracy [26]. However, the high cost, large
amount of data collected on-site, long time consumption, and
high technical requirements for operation prevent its wide
application [19], [27]-[28]. Similarly, a 3D ranging camera
obtains a depth image using a small laser scanner mounted
on the helmet and converts the depth image into 3D point
clouds via software, which has unique advantages in terms
of size and cost. However, its measurement range is limited,
and it requires a lot of registration work for point clouds in the
later stage [22], [29]-[30]. In this research, a passive sensing
method called image-based technology is used, and further
analysis is as follows [31].

1) GENERAL FRAMEWORK FOR IMAGE-BASED 3D
RECONSTRUCTION

The general framework for image-based 3D reconstruction
is shown in Figure 1. Point clouds are generated from
images/frames, and the point clouds or images/frames are
aligned with the BIM. Subsequently, two different inference
paths exist: geometry-based and appearance-based. The for-
mer infers the BIM element status by calculating the density
of the point clouds in the occupied space of the BIM ele-
ment. Owing to the inevitable occlusion and incomplete data,
some researchers combined the logical relationship of the
construction process and the physical relationship between
the building components in the reasoning process [10]. The
latter projects BIM elements registered with 3D point clouds
into the image planes and extracts the texture information of
different building components for reasoning [32]-[33].

Images or Videos |

|

|

|

|

|

+ I
Point cloud-to-BIM or image-to-BIM alignment | :
|
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|

|

|
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|
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Extract texture information |
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FIGURE 1. General framework for image-based 3D reconstruction.

2) DATA COLLECTION AND 3D POINT CLOUDS

The construction-site images include the images captured by
the camera [23], [34]-[36] and video frames, which are essen-
tially continuous images [16], [24], [37]-[38]. The image sets
collected in different studies are diverse and include time-
lapse images or videos from fixed locations, unordered sets
of images, and sequenced sets of images [12].

Owing to the difference in image sets, the methods
used to generate point clouds also vary. Braun et al. [10]
acquired pictures from binocular cameras, and then gen-
erated 3D point clouds according to the triangulation
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principle. The depth information for each point was cal-
culated from the corresponding images. Omar ef al. [1]
obtained images from multiple cameras with fixed positions,
shooting directions, and zoom ratios and imported them
into the Agisoft PhotoScan Pro software to generate point
clouds. Han and Golparvar-Fard [33] obtained point clouds
from a video. Based on the SfM technique, they inferred the
3D coordinates of 2D image points from successive frames
in a moving image. Golparvar-Fard et al. [39]-[41] gener-
ated point clouds from unordered construction-site images
based on the principles of SfM and scale-invariant feature
transform (SIFT).

3) ALIGNMENT

Aligning the as-built and as-planned models is a necessary
step in the 3D reconstruction. After alignment, the mapping
relationship between the BIM and the actual image was
established to facilitate information extraction. There are two
alignment methods: point-cloud-to-BIM and image-to-BIM.
In some studies, point clouds were generated from images
and aligned with BIM. Han and Golparvar-Fard [33] and
Golparvar-Fard et al. [41] proposed an approach that allows
users to select a set of corresponding control points from
the as-built point cloud or registered imagery and have those
associated with the as-planned model. In other studies, the
images were directly aligned using BIM. Kropp et al. [42]
manually aligned the first frame of a video with the wire-
frame of a BIM model in an AR manner. The lines in
the frames were then analyzed to align the BIM with the
subsequent frames of the video. Asadi and Han [43] and
Asadi et al. [44] identified a possible perspective for local-
izing a camera by analyzing the missing points and lines in a
video. Xue et al. [45] transformed image-to-BIM alignment
into an optimization problem. They defined the variables,
objective functions, and constraints. The optimization pro-
cess involved continuously adjusting the position and angle
of the BIM model through the API.

4) CONSTRUCTION PROGRESS REASONING
There are two reasoning methods: geometry-based and
appearance-based.

a: GEOMETRY-BASED REASONING

Braun et al. [10] divided the surface of BIM elements by
grids, and points within a certain distance from the sur-
face were used to judge whether a component existed. The
occluded components were then inferred according to the
logical and physical relationships between the components.
Omar et al. [1] created two envelope boxes inside and outside
at a certain distance from the BIM element surface. Then,
the redundant point clouds were removed, and only the point
clouds between the two envelope boxes were kept. Finally, the
height of the cube was determined by calculating the density
of the point clouds.
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b: APPEARANCE-BASED REASONING
Han and Golparvar-Fard [33] projected registered BIM ele-
ments into 2D image planes and determined the component
type through texture recognition of the image patches. Com-
pared with the geometry-based method, appearance-based
reasoning can recognize different material types and, there-
fore, detect operation-level progress [2].

These two reasoning methods have their own strengths and
weaknesses. Han et al. [2] combined two reasoning methods,
which made the results more credible.

5) TROUBLE WITH POINT CLOUDS

At present, most 3D reconstruction methods rely on point
clouds, but the characteristics of point clouds cause several
problems [31]. For example, billions of points need to be pro-
cessed separately, which consumes computer resources, espe-
cially when the background, noise, and objects of no interest
need to be deleted [2], [13], [46]. Second, the completeness of
the point cloud is difficult to guarantee, and sufficient overlap
between images is required to cover all regions of interest
[12], [14], [47]. In addition, point clouds have problems such
as high noise and difficulty in segmentation and registration
(5], [48].

For point cloud defects, some scholars directly perform
3D reconstruction using images without point clouds [32].
Kim et al. [36] obtained a black-and-white image containing
the target by processing the image and removed the area
outside the mask using a mask-based filter. The mask image
was compared with the target image to obtain the progress
information for a single component. However, the research
object was simple because the background of the image was
a water surface with little noise. Therefore, it is not applicable
for monitoring construction progress. Zhu and Brilakis [49]
used machine learning to identify specific areas. These ANNs
(artificial neural networks) and support vector machines were
trained with segmented image blocks. This method can barely
identify the concrete area but cannot distinguish different
components; thus, the method fails to achieve image-based
3D reconstruction. Nevertheless, they provide research ideas
and methods for developing intelligent algorithms.

Therefore, in this study, a deep learning-based method was
used to identify building components from the images. Con-
sidering the spatial relationship between the imaging plane
and subject, the construction state was inferred by analyzing
the location of each component in the images. Point clouds
were not created during the entire process.

B. IMAGE-BASED BUILDING COMPONENT RECOGNITION
1) TARGET DETECTION ALGORITHM

Image-based building component recognition mainly relies
on the target detection algorithm. The target detection algo-
rithms can be divided into two main categories: traditional
target detection algorithm and deep learning-based target
detection algorithm. Traditional target detection algorithms
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usually include Cascade + HOG/DPM + Haar/SVM and
the improvements and optimizations of them. Traditional tar-
get detection algorithms mainly include the following steps:
image processing, region proposal, feature extraction, train-
ing classifier and classification. Since the area selection is not
targeted, window redundancy occurs, and the time complex-
ity is high. In recent years, after the breakthrough of neural
network algorithm, the target detection algorithm based on
deep learning has been favored by scholars. After continuous
research, many target detection algorithms are iterated. These
algorithms are mainly divided into two categories: region
proposal-based and regression-based. The target detection
algorithms based on region proposal mainly include algo-
rithms such as R-CNN, SPP-NET, Fast R-CNN, Faster
R-CNN, and R-FCN. The accuracy and speed of the CNN
series algorithms are constantly improving. But, due to the
large number of candidate frames extracted, there are a lot
of repeated calculations, which cannot meet the requirements
of real-time detection [50]. The target detection algorithms
based on regression mainly include YOLO, SSD, YOLO v2,
DSSD, and YOLO v3. Compared with the R-CNN series, the
YOLO series detects objects with lower accuracy and recall
rate, but has stronger real-time performance [51]. And the
SSD series algorithms, through experimental tests, show that
its performance is better than YOLO and YOLO v2. Although
it is not faster than YOLO v3, the detection accuracy is
comparable to Faster R-CNN [52]. DSSD is an improved
branch of the SSD algorithm, which is mainly to improve
the defects of small targets that are not robust enough [53].
In summary, different detection algorithms have their own
advantages and disadvantages. For the automatic detection of
building components, it is necessary to consider which target
detection algorithm is most suitable for the construction field
with obvious characteristics and can successfully implement
migration learning.

2) TARGET DETECTION IN CONSTRUCTION
At present, in the AEC industry, there are few studies related
to “image-based building component recognition’, but some
preliminary explorations have been conducted [3], [17]. For
example, some scholars have used target detection technol-
ogy to identify concrete areas from images. However, because
many components are composed of concrete, the detected
concrete areas are interconnected, and the building com-
ponents cannot be subdivided [49], [54]. To overcome this
limitation, Zhu and Brilakis [37], [55] proposed an auto-
matic detection method for concrete columns based on visual
data. By analyzing the boundary information (such as color
and texture) of the concrete columns, the structural columns
were separated from the concrete area. However, this method
cannot be applied to the detection of building components
because of the small difference in the texture and color char-
acteristics of different components in images and the complex
spatial relationship between different components.

Based on the bottleneck encountered in this research,
through the analysis of various improved target detection
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algorithms, it was found that the deep supervised object
detector (DSOD) model is more suitable for the detection of
building components [56]. The use of the DenseNet network
significantly reduces the model parameters and guarantees its
performance [57]. More importantly, this method overcomes
the limitations of traditional detector training based on pre-
training and fine-tuning. Without the pretraining model, the
highest level of the target detector can be obtained with a
limited dataset. Therefore, this study intends to use the DSOD
algorithm for automatic detection of building components.

lll. METHODOLOGY

A. OVERVIEW OF THE ROUGH REGISTRATION METHOD
Figure 2 presents the process model of the proposed method.
The specific steps are as follows.

Assumption: T he BIM model of the building has been built, and the coordinate
system of the building is the same as that of the BIM model.

Step 1: Detector training

- Training set
| Building |—>| Cameras |—> & testing set —>| DSOD model |—>(Target detector)

Step 2: Camera calibration

Zhang's calibration:
- a chessboard with 6x8 squares
- Camera Calibrator toolbox in

MATLAB
PnP algorithm

First image |—>| Attificial points

Internal parameters
Initial external
parameters

Cameras

Step 3: Extraction of 3D coordinates of BIM elements
| BIM models |—>| 3D comner coordinates of BIM elements |—>( 3D location library )

Step 4: Detection and rough registration

Target dctcctor)—)l Detected components |-
| Building |—>| Cameras

{ Imgl | Img2 { Img3 - | - i

OpenCV-based program:

( Internal parameters

- SIFT
- BFMatch.knnMatch
(Initia] external parameters - findE ssentialMat

- solvePnPRansac

=
2
B
=

7
B

2]
4

Internal & external parameters

(3D location 1ibrary)—>| Projection models |->| 2D projection location library |-

FIGURE 2. Process model of the proposed method.

1) STEP 1: DETECTOR TRAINING

First, a set of construction-site images is collected using
multiple cameras. To create a comprehensive dataset, vary-
ing degrees of viewpoint, scale, and illumination must be
considered. The images are divided into training and testing
sets. The training set is annotated using the graphic image
annotation tool Labellmg [58], generating XML files in the
PASCAL VOC format, and then used to train a DSOD-based
detector to automatically recognize the building components
from the construction-site images. Using the trained detec-
tor/recognizer, building components (including the type and
location) are detected from the test set images.
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2) STEP 2: CAMERA CALIBRATION

The internal parameters of the cameras are determined using
Zhang’s calibration method [59]. The initial external param-
eters are calculated from multiple known points in the testing
set image, whereas the others are obtained using an OpenCV-
based program. The specific process is described in detail in
Section III-C.

3) STEP 3: EXTRACTION OF 3D COORDINATES OF BIM
ELEMENT

The 3D coordinates of each corner of the BIM element are
extracted manually, the corner coordinates are converted into
2D coordinates on the imaging plane through the projec-
tion model, and the BIM element projection location library
is established. The specific process is described in detail
in Section III-B.

4) STEP 4: DETECTION AND ROUGH REGISTRATION

First, photographs of the construction site were taken. On the
one hand, the photos should be input into the target detector to
obtain the detection results. On the other hand, these photos
should be sent to the OpenCV-based program. By identify-
ing the SIFT feature points, the new images are registered
with the original image, and the external parameter matrix is
calculated to determine the corresponding projection model
of each image (Section III-C). Then, the 3D coordinates
obtained in Step 3 are converted into 2D coordinates on
the imaging plane through the projection model, and the 2D
projection location library of the BIM element is established
(Section III-D). Finally, the location rectangle generated by
target detection is compared with the item in the 2D pro-
jection location library, and the building components iden-
tified from the images are associated with BIM elements
(Section III-E).

With this method, several manual steps must be clarified.
First, the image sets, including the training, validation, and
testing sets, are collected manually. Similarly, the chessboard
images used to calibrate the internal parameters of the cam-
eras are manually collected. Third, to obtain the initial exter-
nal parameters for each camera, multiple known points must
be manually selected from the initial images, and their 2D and
3D coordinates must be manually provided. Fourth, manual
parameter adjustment is necessary during the training process
of the DSOD-based detector. Fifth, the 3D coordinates of
the BIM element corner are obtained manually in this study,
although they could be extracted from the IFC files.

In practical applications, all the manual operations men-
tioned above are in Step 1-3, which must be performed only
once.

B. EXTRACTION OF BIM ELEMENT CORNER
COORDINATES

To distinguish each component and extract their 3D coor-
dinates, a set of naming rules is formulated, and the corner
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coordinates of each component is extracted from the unified
coordinate system. The specific steps are as follows:

1) STEP 3-1: NAMING THE GRID AND INTERSECTION

To locate the model, it is assumed that the transverse grid of
the model is named with uppercase letters (from bottom to
top, grids A, B, and C, respectively), and the longitudinal grid
is named with Arabic numerals (from left to right, respec-
tively, grid 1, grid 2...), forming the intersection of the grids
(such as Al, A2,D7---).

2) STEP 3-2: DISTINGUISHING THE COMPONENT TYPES BY
LETTERS

A representation symbol is set for each type of member; for
example, B for beams, F for floors, C for columns, and W for
walls.

3) STEP 3-3: NAMING EACH COMPONENT

It is stipulated that the elements, which are in the rectangular
grid or on the left and lower edges of the rectangular grid,
belong to the lower left intersection. The component is
named ‘“‘building number + floor number + symbol of
element type + grid intersection number + supplement
number”’, as shown in Figure 3. For example, in Figure 4,
the selected column is named B1F1-C-B011, which is on the
first floor and belongs to the B1 grid intersection. The left
and lower beams are denoted as BI1F1-B-BOl1 and
B1F1-B-B012, respectively.

Grid intersection

Supplement

FIGURE 3. Component name number.

RS —

FIGURE 4. F1 plane partial view.

4) STEP 3-4: UNIFYING COORDINATE SYSTEMS
The A1 grid intersection is set as the origin of the coordinate
system, the X-coordinate axis coincides with grid A, the
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Y-coordinate axis coincides with grid 1, and the Z-coordinate
axis is determined by the right-hand rule.

5) STEP 3-5: EXTRACTING THE CORNER COORDINATES OF
THE BIM ELEMENT

According to the Cartesian coordinate system, the corner
coordinates of each element are calculated, forming a BIM
element corner coordinate database.

C. PROJECTION MODEL AND CAMERA CALIBRATION

The purpose of camera calibration is to determine a projection
model that refers to the mapping relationship between the
points in 3D space and the pixels in the photo. There are four
coordinate systems in the projection model: world coordi-
nate system (Xw, Yw, Zw) Xw, Yw, Zw), camera coordinate
system (Xc, Yc, Zc) Xc, Yc, Zc), imaging plane coordinate
system (X, Y), and pixel coordinate system (U, V) (U, V).
According to the spatial relationship among these coordi-
nate systems, and considering factors such as the distortion
generated by the camera, the projection model is derived
as follows:

U oy, 0 wu O R ; ;}V:ﬁ
Ze|V|Ii=]10 a v O |:0T 1:| 7
1 0 0 1 0 1W
Xw
_ Yw
= KT Zw (1
1

where Z. is the Z coordinate of the point in the camera
coordinate system; U and V are the coordinates in the pixel
coordinate system; ay = f/dx, oy = f/dy, f is the cam-
era focal length, dx, and dy are the pixel sizes; ug and vg
represent the offset of the camera optical axis in the image
coordinate system, in pixels; R and ¢ represent the offset of the
camera optical axis in the image coordinate system, in pixels;
Xw, Yw, and Zy are the coordinates of the point in the world
coordinate system; and K and T represent the internal and
external parameter matrices, respectively.

The key to camera calibration is to obtain the internal and
external parameter matrices, which is a necessary process for
3D reconstruction. Poor camera calibration can cause image
defects, such as distortion, which can affect the reliability and
accuracy of the information. Therefore, camera calibration is
a critical process in computer-vision applications [60]-[61].

To obtain the internal parameter matrix, Zhang’s calibra-
tion method is used in this study because of its mature
application, wide application range, and reliable and accu-
rate calibration results [59]. The internal parameter matrix
is calculated with a chessboard using the camera calibration
toolbox in MATLAB.

To obtain the external parameter matrix, no more than
five images are selected to calculate the initial external
parameters of each camera. The contents of these pictures
are four side views and a top view of a building. These
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images can be vacant if the cameras are not used for some
views. Subsequently, multiple known points are manually
selected from these images, and the initial external param-
eter matrices are calculated using the efficient perspective-
n-point (EPNP) algorithm [62]. Finally, the external
parameter matrices of other images are calculated using
an OpenCV-based program [63]. The program consists
of the following steps: (1) Extract SIFT feature points
from images; (2) Match features using KNN (k-nearest
neighbor classification) algorithm; (3) Calculate the first
external parameter matrix by “findEssentialMat” function;
(4) Calculate the rests of the external parameter matrices by
“solvePnPRansac” function.

D. ESTABLISHMENT OF BIM ELEMENT PROJECTION
LOCATION LIBRARY

After determining the internal and external parameters of the
camera projection model, the 3D coordinates of the BIM
element corners are substituted into the projection model to
calculate the projected pixels, as shown in Figure 5. Each
corner of the component corresponds to a pixel point, which
is named as ‘pixel-corner’. Then, connect the exterior pixel-
corners to form a convex polygon, named ‘envelope frame’,
so that all the pixel-corners are wrapped in the envelope
frame. Finally, the component location is represented by these
pixel corners on the envelope frame, and a 2D projection
location library of the BIM element is formed.

BIM element corner

/
—+— X
—— e Pixel-corner
| = \
| -—
T~~~ " —e -——
\\
[~ - Envelope frame
~ ™~
™ ~
TR e

FIGURE 5. Envelope frame.

E. SCREENING AND LOCATION REGISTRATION

The purpose of rough registration is to match the building
components identified in the images with items in the BIM
element projection library. However, for each registration,
most of the information in the BIM element projection library
is useless. It is necessary to filter out unrelated envelope
frames to improve the registration efficiency and accuracy.
Therefore, four constraints are formulated and the following
four conditions are screened:

1) COMPONENTS OF UNRELATED FLOORS
For example, the current construction location is on the sec-
ond floor; therefore, the envelope frames of BIM elements
above the second floor are not considered.
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2) THE ENVELOPE FRAME WHICH DOES NOT OVERLAP
WITH THE LOCATION FRAME OF TARGET DETECTION

The envelope frame is projected from the same direction as
the image; therefore, the projection of the component in the
image must overlap with the corresponding BIM element
projection envelope frame.

3) ENVELOPE FRAMES WITH LARGE SIZE GAP

When the distance between the pixel corners on the envelope
frame and the target detection location frame is larger than a
certain threshold, the envelope frame should be excluded.

4) ENVELOPE FRAMES OF IRRELEVANT TYPE

The type of image identification result must be consistent
with the type of BIM element. For example, if the result of
the target detection is a column, the envelope frame of all
non-column components will be excluded.

After excluding irrelevant data, the target detection loca-
tion frames were compared with the remaining envelope
frames individually. As shown in Figure 6, the outer rectangu-
lar frame is a location frame generated by the target detection,
and the inner polygon is an envelope frame generated by the
BIM element projection.

FIGURE 6. Location registration.

For each rectangular frame, the mean-square error between
it and the envelope frame k can be calculated as:

l n
D=~ d* i=12,..., 2
k n;k i n )

where k is the index of the envelope frame, dy;dy; is the
minimum distance from the pixel corner ii of the envelope
frame kk to the four edges of the rectangular frame, and n is
the number of pixel corners.

Dy is used to represent the positional relationship between
the two frames. When Dy, is closer to zero, it indicates that the
degree of overlap between them is higher, and they represent
the same component with a higher probability. Therefore, the
BIM element corresponding to the minimum mean-square
error Dy Dy is chosen, and the registration result is as follows:

K = {k| min Dy} 3

Screening and rough registration are performed using
MATLAB. See the Appendix for the code.
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IV. EXPERIMENT AND DISCUSSION

A. DATA COLLECTION AND EXPERIMENTAL SETUP

At present, research on target detection technology in the
AEC industry is still in its infancy, and there are no ready-
made, open, and integrated image sets available in the con-
struction industry for detection experiments. Therefore, a new
Construction Materials Library (CML) was created, which
includes 5200 images (4500/500/200). These images are
recorded from the construction sites of commercial and resi-
dential buildings. To create a comprehensive dataset, varying
degrees of viewpoint, scale, and illumination were consid-
ered. Subsequently, the images in the training and validation
sets were annotated, including four categories (beam, floor,
column, and wall). A detector based on the DSOD algorithm
was trained and optimized. Finally, 9872 components were
detected in the 200 test set images. After manually removing
erroneous data, 8356 components (including 3032 beams,
1498 floors, 1164 columns, and 1863 walls) were retained
and used as experimental data in this study.

Four constraints are set to narrow the scope of retrieval:
first, the floor information (two floors) is given for the com-
ponents identified from the top view (Constraint 1); second,
at least one corner of the envelope frame is inside the rectan-
gular frame (Constraint 2); third, the horizontal and vertical
dimensions of the envelope frame must be within twice the
size of the rectangular frame (Constraint 3); and fourth, the
component type of the envelope frame must be consistent
with the recognition result (Constraint 4). Rough registration
was performed under four constraints.

B. EXPERIMENTAL RESULTS

Images are selected from the top view and side view to vividly
show the experimental results. Figure 7 and 8 show the rough
registration results for the top and side views, respectively.
The registration results are presented by overlaying the BIM
model on the construction image.

There are 9854 components in the BIM model, so there
are 9854 segmented elements (9854 2D BIM elements).
A total of 8356 members were identified from the 200 images.
Each identified member was registered with filtered 2D BIM
elements.

Among the 8356 components in 200 images, the registra-
tion rate reached 95.13%, and the average external parameter
calibration time and registration time of each image were
18.57 s and 50.59 ms, respectively. To analyze the effects
of the four constraints, the registration results under different
constraints were counted, as shown in Table 1.

In comparison, it was found that Constraint 1 has a signifi-
cant effect on registration accuracy, whereas Constraints 1, 2,
and 4 exert more influence on the average registration time.
The floor information (Constraint 1) can avoid confusion
regarding the same components of the upper and lower floors
in the top view. In the actual construction process, the floor
shown in the top view does not change in a period; there-
fore, it is feasible to provide approximate floor information
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FIGURE 7. Top view (Detection result; Registration results of floors and
beams; 1920 x 940 resolution).

FIGURE 8. Side view (Detection result; Registration results of beams,
floors, columns, and walls; 3648 x 2736 resolution).

(for example, with two floors). Excluding non-overlapping
components (Constraint 2) and known component types
(Constraint 4) may not improve registration accuracy, but
they can significantly shorten registration time. Different
allowable size deviations (Constraint 3) have no significant
effect on the accuracy and speed of registration.

To further analyze the registration results under different
shooting angles, the images were divided into multiple blocks
based on the building surface. The registration results for each
building surface were counted separately, as listed in Table 2.

In the top view, more beams and floors were identified,
which were mainly in the formwork and reinforcement states.
From Table 2, it can be seen that the smaller the shooting
angle, the lower the registration accuracy, because the smaller
the angle, the easier it is for the components with equivalent
shapes on different floors to overlap. In the side view, more
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TABLE 1. Registration results under different constraints.

No.
registered ACC*
comp.
Known 200 8356 8093
Vague ¢ 200 8356 7949
Unknown 200 8356 6750
Non-overlapping Excluded 200 8356 7949
comp. (2) Unexcluded 200 8356 7910
1.5times 200 8356 7948
2 times 200 8356 7949

No.  No.
images comp.

Time ®
(ms)

96.85% 43.21
95.13% 50.59
80.78% 263.12
95.13% 50.59
94.66% 634.54
95.12% 50.21
95.13% 50.59

Constraints

Floor (1)

Allowable size

nﬁﬁ‘t’ilalt:’é) Stimes 200 8356 7984  9555% 51.11

P Al 200 8356 7980  95.50% 51.12
o,

Comp. type (4) Known 200 8356 7949 95.13% 5059

Unknown 200 8356 7949  95.13% 95.61

*Ratio of the number of registered components (true positive) to the total

number of components (true positive + false negative). Because only those
correctly detected components were registered, there were no negative
samples in the 8356 samples in the experiment. Therefore, ACC = true
positive/(true positive + false negative).

® Average registration time of 200 images (including screening and
location registration).

¢ The floor information (2 floors) was given in this study.

TABLE 2. Registration results under different shooting angles.

No. No. comp. Registration ACC (%)
blocks Beam Floor Column Wall Beam Floor Column Wall
Top 0-30° 40 388 313 233 123 95.8295.91 90.79 94.31
view 30-60° 34 347 280 227 103 97.7796.31 92.75 95.15
60-90° 28 303 250 213 95 98.7796.30 96.23 97.89
0-30° 90 703 120 196 532 93.7589.90 85.81 95.86
503 95.2794.57 90.20 96.62

30-60° 73 632 184 145
60-90° 76 659 351 150 507 96.1195.41 89.20 96.45

* Angle between the camera’s optical axis and the normal of the building

View Angle *

Side
view

surface.

beams and walls were identified, and they were all in a
concrete state. Compared with the top view, the accuracy was
relatively low because there were no floor restrictions. As the
shooting angle increased, the accuracy increased; however,
the accuracy improvement was not obvious or even reduced
when the shooting angle was too large. Therefore, it is appro-
priate to have an appropriate angle with the normal of the
building surface.

Some examples of the registration errors are shown in
Figure 9. From left to right are the actual recognition results,
incorrect registration results, expected recognition results,
and correct registration results, respectively. The four exam-
ples are: a wall covered by debris, a beam covered by the
building itself, an internal wall covered by an external col-
umn, and a floor template covered by the building itself. The
inevitable or accidental occlusion results in the component
not pairing with its corresponding BIM elements but is mis-
matched with BIM elements with similar projected areas.

In Figure 9, Case A is a static occlusion, and Cases B,
C, and D are self-occlusions. These occlusions made only a
part of the component recognized, and part of the component
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FIGURE 9. Wrong examples (Actual detection results; Wrong registration
results; Expected recognition results; Correct registration results).

was registered with other components. Some occlusions can
be eliminated by combining the results of multiple-angle
images, whereas others cannot. Adding the logical and phys-
ical relationships of the components can assist in reasoning
and improving the final accuracy. However, some scholars
have pointed out that this approach is opportunistic. Only the
detected components can be considered to exist. This problem
requires further discussion of relevant research.

C. CHALLENGES

Although this paper presented the registration process
between building component detection results and BIM ele-
ments, several critical challenges remain. Some of the open
research problems include the following.

1) OCCLUSION

Occlusion is an inevitable and challenging problem that must
be resolved. It was found that most of the components in
the side view were blocked by scaffolds and protective nets.
Therefore, the acquisition of progress information depends
largely on the identification and registration of the compo-
nents in the top view. However, once the concrete was poured,
it was impossible to identify the beams, columns, and walls
in the top view. Therefore, further research is required to
identify and register these components in indoor images.

2) BIM ACCURACY

Many components were identified in the experiment, but the
size and position deviation from the projected envelope were
too large to be registered. For example, multiple beams can
be identified as a whole, and one beam can be identified as
multiple segments. It is difficult to distinguish the specific
areas of the different components in an image based on a
combination of BIM elements. Therefore, determining the
accuracy of the BIM for registering these components is a
challenge.
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3) DEGREE OF CONSTRAINTS

To avoid errors in rough registration, the types, positions,
and sizes of the building components are restricted in
Section III-E. Because the same type of components rarely
appear together in a local area, it is ideally difficult for
this method to misregister. However, there are cases where
the recognition result deviates from the actual size, which
can easily fail to register if the constraints are too strict.
Appropriate reduction of restrictions and manual judgment
are optional methods. Further research is required to construct
a constraint network. Sometimes, manual processing is nec-
essary because the accuracy of the algorithm is difficult to
improve when it reaches a certain level. At this time, manual
processing can solve this problem at a low cost.

4) INDOOR SCENE

Indoors, the distance between the camera and the object being
photographed is short. A large number of photos must be
taken to cover all scenes on a floor. The more the number
of photos, the more difficult the camera calibration, and the
greater the calibration error. If multiple start scenes are set,
registration accuracy can be improved. However, each ini-
tial scene requires manual selection of known points, which
increases people’s workload and does not meet the original
intention of automatically collecting progress information.
In the future, this method needs to be further improved to
realize its application in indoor scenes.

D. COMPARISON WITH SIMILAR METHOD

A similar method uses camera projection models to “‘back-
project” BIM onto image planes. In these studies, 4D BIM
was projected onto site images, and the image patches cor-
responding to each BIM element were extracted. Then, the
states of the building components were inferred from the
change in appearance of the image patches. This approach
relies on planned 4D BIM, in which different time periods
correspond to different components, and the components of
different time periods are generated in turn.

However, the actual construction progress is not similar to
that of designed 4D BIM. If the actual progress or sequence
is inconsistent with the plan, the projected area is meaning-
less. In other words, the 4D BIM components generated in
the next time period are not necessarily the content to be
constructed in practice. Some components are not detected
in the back projection, which does not mean that progress
has been delayed. It may be that the other components were
first constructed. The method proposed in this study detects
building components from site images, discretizes each com-
ponent, and cancels the relationship between them in a time
sequence. The detection result is consistent with reality, and
the rough registration result between the rectangular frames
generated by target detection and the polygonal envelopes
projected from BIM elements is also consistent with the
actual construction process. Therefore, the 3D reconstruction
results are realistic and are not constrained by the planning
process.
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In addition, the proposed method requires less data and
is faster. For example, in the case of Han et al., 69 com-
ponents generated 6390085 image points, whereas 40 com-
ponents generated 148622647 laser points. For processing
more than a hundred million points, the proposed method
requires approximately 30 s, including both filtering and
reasoning steps. In contrast, in this study, only 91195 points
were processed for the model with 9854 components. The
state of the building components was judged using rough
registration. For each building component, what needs to be
processed is calculating the distances be-tween the corner
points of the projected polygon and the rectangular border
generated by target detection. In addition, the number of
candidate polygons was significantly reduced by the con-
straints. Therefore, the rough registration process was quite
fast (50.59ms/image).

Finally, dimension reduction is used to convert the 3D
as-planned model into a 2D polygon. Data comparison must
be processed in the location registration. These processes are
simple, accurate, and nearly unchallenged.

V. CONCLUSION
To reconstruct a 3D model of a building structure from
unordered construction-site images, this study contributes
a novel rough registration method. The mapping relation-
ship between the BIM model and construction-site images
was established through research on BIM element coordi-
nate extraction, camera calibration, etc.. After detecting the
building components from the construction-site images, the
target detection results were registered with BIM elements
under four constraints. From the experiment, a registration
rate of 95.13% and average registration time of 50.59ms
were achieved. The effects of various factors, such as floor
information, non-overlapping components, allowable size
deviation, component types, and shooting angles, were con-
sidered. Furthermore, it was found that the floor information
had a significant effect on registration accuracy, whereas
the non-overlapping components, allowable size deviation,
and component types had a significant effect on the average
registration time. It was appropriate to have a certain angle
with the normal of the photographed building surface.
Compared to similar 3D reconstruction technologies, the
proposed method is realistic, fast, and simple. Nevertheless,
several critical challenges remain in the research that need
to be studied in the future, including the improvement of
registration accuracy, recognition and registration of indoor
images, and reasonable setting of constraints.

APPENDIX
MATLAB code: https://github.com/yonglong2020/Rough-
Registration
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