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ABSTRACT Environmental noise affects significantly our health and quality of life. Simple techniques,
such as A-weighted decibels, have been applied commonly to the real issues of environmental noise. More
elaborate techniques, considering mechanisms in the central nervous system, have also been developed
continuously and approved by the international organization of standardization (e.g., ISO 532-3; hereafter,
ISO loudness model). These techniques have advanced our knowledge of perceptual noisiness, but still have
some limitations to account for a variety of psychophysical phenomena and our empirical experiences in
acoustic engineering. Here, we propose that perceptual noisiness can be explained better by considering
auditory attention. Attention driven by sensory input has been modeled originally as “saliency” in vision.
This algorithm has also been applied to capture spectral-temporal dynamics of auditory attention (hereafter,
spectral saliency). It has been suggested that the central auditory system contains two pathways identifying
what and where a sound source is. The above spectral saliency corresponds only to the what-pathway.
We therefore created a new auditory spatial saliency model to capture attentional effects along the where-
pathway based on an algorithm of horizontal sound localization. We found that our spatial saliency model
accounted for perceptual phenomena that cannot be explained by the ISO loudness model. Furthermore, the
prediction of perceptual noisiness of environmental sounds (driving sounds of passenger cars) was improved
significantly by integrating spatial saliency with ISO loudness. We conclude that spatial saliency can be used
to capture sound features affecting perceptual noisiness in everyday life.

INDEX TERMS Acoustic signal processing, attention, automotive engineering, biomedical acoustics,

loudness perception, spatial filters.

I. INTRODUCTION

Environmental noise is a critical issue in our industrialized
life. Continuous exposures to loud noises (e.g., airports and
traffics) could induce a variety of health issues [1]. Oper-
ating noise from home appliances (e.g., refrigerators and
computers) also influences our quality of life. Accordingly,
evaluation of perceptual noisiness has been an important issue
in medicine and engineering.

Simple techniques have been used for the convenient
evaluation of perceptual noisiness (e.g., A-weighted deci-
bels [2]). A more elaborate model has also been developed
(ISO 532-3; hereafter ISO loudness model) [3], taking into
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account auditory periphery and some operations in the cen-
tral nervous system [4]-[6]. Indeed, its predictions agree
with the temporal dynamics of neural signals in the auditory
cortex [7].

The ISO loudness model has advanced our knowledge
of perceptual loudness, but still has some limitations [4].
We have also experienced empirically through the develop-
ment of passenger cars that the model does not necessarily
generate predictions matched fully with the impressions of
our expert engineers and customers. We therefore speculated
that there would be missing factors that could improve the
ISO loudness model.

Auditory attention is a candidate of such missing fac-
tors [8], [9]. There are several features capturing our attention
automatically. One of the well-known features is the temporal
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FIGURE 1. Overview of algorithms transforming a binaural sound into a spatial saliency map. The role of each algorithm is as
follows. Binaural sounds were first fed to the localization model to create a linear localization map. The front/back random
flipping was then repeated 1000 times to take into account a cone of confusion. Then, each map was transformed into a nonlinear
localization map reflecting the nonlinear property of the superior colliculus. Spatial-temporal contrasts were calculated to create

a spatial saliency map.

dynamics of auditory signals [10], [11], considered already in
the ISO loudness model. We extend this viewpoint of auditory
attention further by the concept of ““saliency” developed
originally in vision [12], [13].

Visual saliency calculates contrasts in individual features
(e.g., color and orientation) and integrates them to form a
saliency map capturing where visual attention is directed
automatically. This saliency model not only accounts for
oculomotor behavior [14], [15], but also neural activities
controlling spatial attention and gaze directions [16].

The above algorithm has been extended to sounds [9],
which characterizes spectral contrasts in addition to tem-
poral and intensity contrasts incorporated already in the
ISO loudness model [3]. The spectral saliency model has now
been updated taking into account auditory specific spectral-
temporal features [8].

However, the spectral saliency model still has a major
limitation from the viewpoint of the global architecture of
the auditory system consisting of the following two major
pathways: what and where [17], [18]. The what pathway
analyzes the spectral-temporal features of auditory objects.
The where pathway, in contrast, localizes spatially auditory
objects [19]. The concept of the what-pathway corresponds
to the above spectral saliency model. In contrast, auditory
spatial saliency has not been modeled yet based on auditory
physiology.

Here, we propose a new framework that integrates audi-
tory spatial saliency model and the ISO loudness model to
explain perceptual noisiness. We first suggest a new model
of auditory spatial saliency based on a sound localization
algorithm implemented in the midbrain [20], [21]. It cap-
tures psychophysical phenomena for which the ISO loudness
model fails to account [3]. Furthermore, the application of the
spatial saliency model along with the ISO loudness model
to driving sounds in passenger cars explained perceptual
noisiness better than the ISO loudness model alone. These
results suggest that the auditory spatial saliency model can
upgrade the ISO loudness model, and contribute to improving
environmental noise issues in everyday life.
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Il. SPATIAL SALIENCY MODEL

We propose a new saliency model that quantifies the spa-
tial features of sounds received by the left and right ears.
The spatial saliency model is based on the functions of the
superior colliculus, a midbrain structure crucial for directing
spatial attention [22], [23]. It has been shown that the superior
colliculus detects and localizes salient events in the visual
space [24]. We believe that the mechanism of visual saliency
in the superior colliculus can be extended easily to the audi-
tory space because the superior colliculus has an auditory
spatial map in accordance with its visual spatial map, and
its neural circuits are shared between the auditory and visual
maps [25].

In the following sections, we describe the three processes
that consist of the spatial saliency model (Figs.1 and 2):
(A) sound localization on a linear spatial map, (B) nonlinear
transformation to the superior colliculus map, and (C) trans-
formation from nonlinear localization map to spatial saliency
map.

A. SOUND LOCALIZATION ON A LINEAR SPATIAL MAP
The spatial localization in the auditory system is computa-
tionally intensive compared to that in the visual system. The
spatial locations of visual objects are extracted directly by
photoreceptors arranged orderly on the retina. In the auditory
system, on the other hand, sound directions are not repre-
sented explicitly in the spatial arrangements of sensory recep-
tors, but need to be reconstructed indirectly by the central
nervous system [19].

The reconstruction of sound directions is carried out sepa-
rately along the horizontal (azimuth) and vertical (elevation)
axes in the central auditory system. We focused on horizontal
localization because elevation localization usually requires
spectral features whose frequencies are higher than those
included in sounds recorded and analyzed mainly in this study
(<2 kHz) [26].

To describe the algorithms of horizontal sound localiza-
tion and spatial saliency, we use a driving sound of a car
recorded at the front passenger seat (see chapter IV for detail
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FIGURE 2. Schematic diagram of the spatial saliency model. The
algorithm consists of the following five steps: (1) creating multiple maps
with 4 different spatial/temporal scales (Gaussian pyramids),

(2) extracting sound features (intensity, spatial contrast, and temporal
contrast) from a sound localization map using Gabor filters, (3) calcula-
ting contrasts (center-surround operation) between the four maps with
different scales, (4) normalizing the contrast maps and combining them
across scales to obtain a conspicuity map in each sound feature, and

(5) obtaining a saliency map by combining all conspicuity maps. See the
main text for details.cy map.

of measurement conditions). Horizontal localization is based
mainly on the following two cues that compare sounds arriv-
ing differently at the left and right ears: interaural time/level
differences [19] (Fig. 3 (a), (b). These cues are detected
mainly by the medial and lateral superior olive, respectively,
in the brainstem [19], [27], [28]. We adopted a sound localiza-
tion algorithm containing processes corresponding to these
structures [21], [29].

The above algorithm calculates sound directions sepa-
rately for each frequency channel with equivalent rectangular
bandwidth decomposed by a cochlear model [30]. That is,
it localizes multiple sound objects with different frequencies
at the same time (e.g., male and female vocalization) [21].
However, we collapsed the output of all frequency channels
and created a unified auditory spatial map to focus on the
spatial features of sounds for our spatial saliency model
(Fig. 3 (c)). This simplification is supported indirectly by the
fact that signal frequencies in sounds and light (i.e., color) are
collapsed in the superior colliculus at the level of population
neurons [16], [31].
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A majority of algorithms for horizontal sound localization,
including the one adopted in this study, have a common
limitation called a cone of confusion; they cannot deter-
mine whether sounds are derived from front or back based
only on the interaural time/level differences. Two cues have
been suggested to overcome this limitation: the head related
transfer function and head movements [32], [33]. However,
neither of these cues cannot be used in this study because
binaural sounds were delivered by headphones. To detour
this problem, we flipped sound directions front and back
randomly (i.e., 6 or 360 — 6) and repeated this procedure
1000 times (bootstrap method in Fig. 3 (d)). That is, a thou-
sand localization maps were created for each sound and
transformed into spatial saliency maps. A temporal window
for horizontal sound localization was set to 5 ms [34], and
shifted by 1 ms to capture the spatial-temporal dynamics of
sounds.

B. NONLINEAR TRANSFORMATION TO THE SUPERIOR
COLLICULUS MAP

The above localization algorithm estimates sound directions
along the azimuth linearly. However, spatial representation
on the superior colliculus map is not linear [35]; spatial
resolution is the highest at the fovea (central vision) while
it degrades gradually in the periphery. This nonlinear trans-
formation on the superior colliculus map has been modeled
by the following formula [35]:

Azimuthyonlinear

1
—Pn (é\/Azimmhgm, 120 x Azimmhum,)

where Azimuthpineqr and Azimuthyopjinear correspond to
sound directions before and after the nonlinear transforma-
tion, respectively, and two constants (P, Q) are equal to
(1.4 mm, 3 deg) to map the linear external space on the
anatomical superior colliculus surface. This transformation
is modeled based on vision, but consistent with the following
auditory findings; the spatial resolution of sound localization
is the highest at the frontal midline [36], [37].

Fig. 3 (e) shows a nonlinear localization map obtained by
the nonlinear transformation from Fig. 3 (d). The azimuth
axis is represented as being wider on the front side and
narrower on the rear side, reflecting the difference in spatial
resolution (x-axis in Fig. 3 (e)).

C. TRANSFORMATION FROM NONLINEAR LOCALIZATION
MAP TO SPATIAL SALIENCY MAP

A variety of saliency models have been suggested
in vision [12], [38] as well as spectral features in
sounds [8], [9]. Here, we adopted the basic algorithm of
the original saliency model [9], [12] and applied it to
the spatial-temporal dynamics of auditory signals on the
nonlinear localization map derived from the above pro-
cedures. Briefly, the spatial saliency algorithm for audi-
tory signals consists of the following five steps (Fig. 2):
(1) creating multiple maps with 4 different spatial/temporal
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FIGURE 3. Input and output images of the spatial saliency model. (a) Input sound wave (binaural sound). The x/y-axes indicate time and amplitude,
respectively. (b) Enlarged view of (a). The ITD/ILD are shown conceptually in the panel. (c) Linear localization map by the localization model based
on ITD/ILD [21]. (d) Front/back random flipping was repeated 1000 times to take into account a cone of confusion. (e) Nonlinear localization map on
the superior colliculus transformed from (d). (f) Spatial saliency map is calculated based on the spatial-temporal contrasts of (e). The x/y-axes in the
panels (c)-(f) indicate time and azimuth, respectively. The maps (c)-(f) are obtained by analyzing a car driving sound used in Chapter IV.

scales (Gaussian pyramids), (2) extracting sound features
(intensity, spatial contrast, and temporal contrast) from a
nonlinear localization map on the superior colliculus using
Gabor filters [spatial width (at the top layer of the Gaussian
pyramids in the following second step): 0.16 mm (corre-
sponding to 3 degrees in the central visual field); temporal
width: 35 ms; all results reported in this study were similar
using Gabor filters whose spatial-temporal width was half
or twice the above values], (3) calculating contrasts (center-
surround operation) between the four maps with different
scales, except for the combination of the highest and lowest
scales, resulting in 5 contrast maps, (4) normalizing the
contrast maps and combining them across scales to obtain
a conspicuity map in each sound feature, and (5) obtaining
a spatial saliency map by combining all conspicuity maps
linearly.

We calculated a thousand nonlinear localization maps from
each sound by a boot-strap method to take into account
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front/back confusion as mentioned above (see A. SOUND
LOCALIZATION ON A LINEAR SPATIAL MAP).

We applied the above spatial saliency algorithm to a spatial
map derived from each boot-strap iteration and calculated
its summed saliency value. Then, we obtained a thousand
summed saliency values from each sound. Their grand aver-
age was regarded as a representative saliency value of the
corresponding sound (hereafter, spatial saliency).

As with the spatial saliency, we used the time-averaged
short term loudness calculated by the ISO loudness model
(hereafter, ISO loudness). This is valid for the following
two reasons. First, it has been shown that short term loud-
ness is correlated with EEG signals originating from the
auditory cortex [7]. Second, we confirmed that short term
loudness was also correlated significantly with long term
loudness calculated from the same data and known to explain
subjective loudness judgements [6] (Pearson’s r > 0.99,
p<3.6x1073%).
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FIGURE 4. Examples of nonlinear localization/saliency maps for sounds with different interaural
correlations. Left column (a)-(c): Nonlinear localization maps. Right column (e)-(g): Spatial saliency
maps. Top raw (a), (e): Correlated sound. Middle raw (b), (f): Anticorrelated sound. Bottom raw (c),
(8): Uncorrelated sounds. (d) Scatter plots between sound pressure of left and right ears with
different interaural correlation. (h) Cumulative distributions of spatial saliencies for the three sounds
with different interaural correlation. Thick lines and corresponding pale bands are averages and 95%
intervals, respectively, calculated after the bootstrap process (Fig. 1). The markers at 500 ms
correspond to the values of spatial saliency used in the following analyses. Intuitively, correlated
sounds should be localized exactly at the midline, but they had a limited distribution (a) because of
an anatomical delay of contralateral input relative to the corresponding ipsilateral input,
implemented in the localization model [21].
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1Il. EFFECTS OF SPATIAL SALIENCY ON PERCEPTUAL
NOISINESS

It has been shown previously that auditory perceptual noisi-
ness is influenced by the spatial features of sounds [39]-[42].
The current ISO loudness model has been extended to take
into account binaural input, but cannot fully explain the
spatial features of perceptual noisiness because it does not
calculate spatial cues explicitly (interaural time/level differ-
ences) [4], [5]. We therefore examined whether our auditory
spatial saliency model could complement the shortage of
the current ISO loudness model. Specifically, we hypothe-
sized that sounds with higher spatial saliency are experienced
louder than those with lower spatial saliency.

We focused on behavioral phenomena reported previously
by Edmonds and Culling [39] where variation in sound direc-
tions affects perceptual noisiness. Using binaural sounds with
different interaural phase correlation, the following two phe-
nomena have been reported; (1) perceptual noisiness depends
on interaural correlation in the following order: correlated
(the same phase) < anticorrelated (the opposite phase) <
uncorrelated (independent phases)(Fig. 4 (d)), and (2) the
dependence of perceptual noisiness on interaural correlation
is more significant in sounds with stronger low-frequency
intensity (below 1.5 kHz) [39]. An index of interaural cross-
correlation has been proposed previously to account for bin-
aural perceptual noisiness [43]. However, it cannot explain
the above behavioral phenomena simply because it predicts
identical perceptual noisiness for anticorrelated and corre-
lated sounds. Here, we describe how the auditory spatial
saliency model has overcome the limitation of interaural
cross-correlation and could explain the above behavioral phe-
nomena reported in the original study.

A. DEPENDENCE OF PERCEPTUAL NOISINESS ON
INTERAURAL CORRELATIONS

Fig. 4 shows the nonlinear localization maps and the corre-
sponding spatial saliency maps of correlated, anticorrelated
and uncorrelated binaural sounds with identical monoau-
ral spectral features (central frequency: 1 kHz; band range:
937 ~ 1065 Hz; note that artificial sounds used in the orig-
inal report [39] were also adopted in this chapter instead of
natural driving sounds shown in Fig. 3). The correlated sound
(Fig. 4 (a)) was localized at the center because of the limited
range of interaural time differences (see figure legend for
the distribution around the midline). The anticorrelated and
uncorrelated sounds had wider distributions than the cor-
related sound, but there were several important differences
between them (see below).

The anticorrelated sound had a characteristic spatial fea-
ture that localized sounds were distributed widely except
for the center (Fig. 4 (b)). This phenomenon is explained
easily by the localization algorithm based on interaural time
differences. The anticorrelated sound had a fixed interaural
phase difference (180 deg) regardless of frequency. This
means equally that each frequency signal had a unique
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TABLE 1. Effect of interaural correlations on spatial saliency.

Variables Coeff. S.E. T D.O.F P
Correlated -145  0.08 -18.64 237 236x10%
Anticorrelated (Constant) 028  0.05  5.02 237 1.01 x 10°¢
Uncorrelated 0.62 0.08 7.99 237 587x 10

See (1) for the corresponding regression model. Anticorrelated
corresponds to the constant (= intercept), and Correlated and
Uncorrelated are binary dummy variables. We designed this regression
model as simply as possible to test if the predicted order (correlated <
anticorrelated <  uncorrelated) is correct (i.e., without
interactions).Coeff. : regression coefficient, S.E. : standard error, T : t
value, D.O.F : degree of freedom, P : p value.

absolute value of an interaural time difference. In other
words, each frequency signal was localized at a unique abso-
lute direction in anticorrelated sounds. Interaural time dif-
ferences were longer for low-frequency signals compared
to high-frequency signals in anticorrelated sounds. Accord-
ingly, low-frequency signals were plotted peripherally while
high-frequency sounds were localized centrally. The lack of
central directions in Fig. 4 (b) is explained by the fact that the
highest frequency included in the anticorrelated sound used
in this example was limited to 1065 Hz.

The uncorrelated sound had a distribution that was more
uniform compared to the anticorrelated sound (Fig. 4 (c)).
This is because each frequency signal changed its interau-
ral phase randomly, which resulted in localized directions
distributed within the range determined by the maximum
possible interaural time difference of each frequency.

Based on the distributions of localized directions in corre-
lated, anticorrelated and uncorrelated sounds, it was expected
intuitively that their spatial saliencies would be in the follow-
ing order: correlated < anticorrelated < uncorrelated. This
prediction was confirmed quantitatively for sounds used in
this example (Fig. 4 (h)). We further examined this prediction
in other sounds with a variety of spectral features used in
the original study by the following linear regression model
(Table 1; see also Fig. 5 (a)):

Spatial saliency
~ Correlated + Anticorrelated + Uncorrelated (1)

where Spatial saliency was normalized by z-score trans-
formation, Anticorrelated is a constant, and Correlated
and Uncorrelated are binary dummy variables. As shown
in Table 1, Correlated had a significant negative regres-
sion coefficient, indicating that correlated sounds had lower
spatial saliency than anticorrelated sounds. Similarly, Uncor-
related had a significant positive regression coefficient, indi-
cating that uncorrelated sounds had higher spatial saliency
than anticorrelated sounds. Accordingly, the result was con-
sistent with the predicted order of spatial saliency (corre-
lated < anticorrelated < uncorrelated). More importantly,
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TABLE 2. Effect of spatial saliency on perceptual noisiness for sounds
with different interaural correlations.

Variables Coeff. S.E. T D.O.F P OSpectrum  OCondition

Constant 70.13 041 172,05 717 <1.00x107* 023 0.69

Spatial saliency ~ 0.64  0.08  7.98 717 5.86x 1071 0.21 0.04

15O loudness -0.12 009 -1.34 717 0.18 0.12 0.13

See (2) for the corresponding mixed effect model. Spatial saliency and
ISO loudness were normalized by z-score transformation. Constant
corresponds to the intercept. Ospecrum and Gcondgiion are the standard
deviation of random effects for groups with different spectral features and
experimental conditions, respectively [39]. In addition to the three levels
of interaural correlations, the original study also examined monaural
sounds not included in the above analysis. The regression coefficient of
ISO loudness became significant by including the monaural sounds
[regression coefficient + standard error = 8.77 £ 1.15, t(1277) = 7.63, p <
4.55x10-14], while that of spatial saliency remained significant [0.67 *
0.09, 1(1277) =7.13, p < 1.69%10-12]. See Table 1 for abbreviations.

the order of spatial saliency agreed with the perceptual nois-
iness reported in the original study.

We further confirmed the relationship between percep-
tual noisiness and spatial saliency by the following mixed
effect model:

Perceptual noisiness
~ Features + (Features|Spectrum)
+ (Features|Condition)
Features = Spatial saliency + ISO loudness 2

where Perceptual noisiness corresponds to subjective eval-
uation of noisiness for band noise sounds with three lev-
els of interaural correlation (correlated, anticorrelated, and
uncorrelated) reported originally. The parentheses in the sec-
ond and third terms of the regression formula are random
effects for experimental conditions used in the original study.
Specifically, the first random effect of Spectrum in (2) indi-
cates groups with different spectral features (i.e., differences
in central frequency and bandwidth); each group contains
sounds with three levels of interaural correlation whose spec-
tral features are identical. The second random effect of Con-
dition indicates experimental conditions used in the original
study; the baseline of perceptual noisiness was set to either
correlated, anticorrelated, or uncorrelated sounds (see [39]
for details). This is not critical, but included here to account
for potential variation across conditions. Spatial saliency
and ISO loudness included in Features were normalized
by z-score transformation.

The above mixed effect model showed that spatial saliency
contributed significantly to perceptual noisiness (Table 2).
In contrast, ISO loudness had no effect on the perceptual
noisiness of binaural sounds analyzed here [see the leg-
end of Table 2 for the contribution of ISO loudness to
monoaural/binaural sounds [4]].
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FIGURE 5. Relationships between interaural correlations and spatial
saliencies. (a) Effects of interaural correlations on spatial saliencies from
sounds with a variety of spectral contents. (b) Effects of low-frequency
power under 1.5 kHz on spatial saliencies with different interaural
correlations. The results in the panels (a) and (b) were derived from the
same data. The duration and sound pressure level of each test sound
were fixed at 500 ms and 70 dB, respectively. Ten test sounds were
generated for each category (e.g., correlated-250 Hz). Their spatial
saliencies were normalized by z-score transformation. Each data point
and its error bar correspond to the average and standard error of
normalized spatial saliency for each category. The three regression lines
in (b) (solid: correlated; dash: anticorrelated; dotted: uncorrelated) were
derived from the same model shown in Table 3.

These results support our hypothesis that auditory spa-
tial saliency reflects some independent aspects of perceptual
noisiness that could not be captured by ISO loudness.

B. STRONGER IMPACT OF LOW FREQUENCY INTERAURAL
CORRELATION ON SPATIAL SALIENCY

In addition to the dependence of perceptual noisiness
on interaural correlation, the original report has also
shown that the behavioral phenomenon was observed more
significantly in sounds with stronger low-frequency power
(below 1.5 kHz) [39]. It is intuitive to predict that the
behavioral observation could be mediated by auditory spatial
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TABLE 3. Effects of low frequency power on spatial saliency for sounds
with different interaural correlations.

Variables Coeff. S.E. T D.O.F P
Correlated (Constant)  -1.17  0.04 -28.44 235  494x107®
Anticorrelated 1.04  0.07 14.69 235 423x10%
Uncorrelated 1.71 0.07 24.16 235 1.25x 10%
Powery,, :Anticorrelated 434 042 10.24 235 1.41 x 102
Powery,, :Uncorrelated  3.81 042  9.02 235 6.95x 10"

See (3) for the corresponding regression model. Correlated corresponds to
the constant (= intercept), Anticorrelated and Uncorrelated are binary
dummy variables indicating anticorrelated and uncorrelated sounds, and
Powerpon:Anticorrelated and Power;,:Uncorrelated are interactions
between the power of low-frequency signals (< 1.5 kHz) and
anticorrelated and uncorrelated sounds respectively, meaning specific
contribution of low-frequency signals in anticorrelated and uncorrelated
sounds to spatial saliency. See Table 1 for abbreviations.

saliency because of its dependence on the spectral features of
binaural sounds as described above (Fig. 5 (a)). We tested this
prediction by the following regression model:

Spatial saliency
~ Correlated + Anticorrelated + Uncorrelated

+ (Anticorrelated + Uncorrelated) : Powerry, — (3)

where Correlated corresponds to a constant (i.e., base-
line spatial saliency), Anticorrelated and Uncorrelated are
binary dummy variables indicating anticorrelated and uncor-
related sounds, and Powerr,, is power obtained by inte-
gration of A-weighted power spectrum below 1.5 kHz
according to the original report [39]. The interactions
between Anti/Uncorrelated and Powery,,, should capture
the enhanced contribution of low-frequency signals to spa-
tial saliency. An interaction between Powery,, and Corre-
lated was not included because correlated sounds should
be localized around the midline regardless of the power
of low frequency signals. Spatial saliency was normal-
ized by z-score transformation. The result was consistent
with our prediction; the spatial saliency of uncorrelated
sounds was higher for sounds with stronger low-frequency
power (regression coefficients of PowerLow:Uncorrelted in
Table 3, Fig. 5 (b)). A similar result was also observed
in anticorrelated sounds (regression coefficients of Power-
Low:Anticorrelted in Table 3).

These results indicate that behavioral phenomena reported
in the original study [39] could be explained, at least in part,
by auditory spatial saliency.

IV. APPLICATIONS OF SPATIAL SALIENCY MODEL TO
DRIVING SOUNDS

The results described in the section III are consistent with our
hypothesis that auditory spatial attention, captured possibly
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TABLE 4. Six cars used for driving sound recordings.

Cars Sizes Engine Styles
displacements
Car1l Compact 660 cc Wagon
Car2 Compact 1300 cc Wagon
Car3  Middle 1500 cc Wagon
Car4  Middle 1600 cc Sedan
Car5  Middle 2000 cc Wagon
Car 6 Large 3000 cc Sedan

by the algorithm of spatial saliency, could account for percep-
tual noisiness, at least under limited experimental conditions.
Here, we tested the hypothesis further in situations people
encounter in everyday life. Single category sounds, driving
sounds in passenger cars, were selected as our first approach.
Participants were asked to judge the noisiness of each driving
sound. We then examined whether spatial saliency could
complement the current ISO loudness model to account better
for perceptual noisiness.

A. METHODS

1) PARTICIPANTS

Fourteen adults with driver’s licenses (3 women; age ranged
from 27 to 55 years old: average + s.d. = 37 £ 9 years
old) participated in this experiment. They were informed of
the nature of the study and written consented to be part of
the study approved by the ethics committee of Mazda Motor
Corporation.

2) DRIVING SOUNDS
To collect a variety of driving sounds with a wide range
of spatial saliency as well as ISO loudness, we adopted six
cars with different sizes (compact, middle, and large), engine
displacements (660 to 3,000 cc), styles (sedan and wagon),
and brands (see Table 4). To further enhance the variety of
driving sounds, the cars were driven on coarse and smooth
road surfaces at the Mazda Miyoshi Proving Ground. The
driving speeds in all condition were constant approximately
at 100 km/h. All driving sounds were recorded using a head
and torso simulator (HMS II1.0, HEAD acoustics, Herzogen-
lart, Germany; 48 kHz and 24 bits binaural sampling). The
simulator was placed on the front passenger seat (Fig. 6 (a)).
Test sounds (3 seconds) used for the judgements of per-
ceptual noisiness were extracted from the recorded driv-
ing sounds to include mainly sounds caused by interactions
between tires and road surfaces. Sounds caused by other
factors, such as stone-pitching, were excluded as much as
possible. Because of the limited durations of the driving
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FIGURE 6. Recording of driving sounds. (a) Binaural recording by a
dummy head and torso simulator placed on the passenger seat.

(b) Sound pressure levels of 31 test sounds used in our experiment.
Thick line: average, Gray band: 95 % confidence interval.

sounds (10 seconds for each recorded audio file), the temporal
periods of test sounds derived from the same driving sounds
were overlapped partially with each other for 1 s at most. This
procedure resulted in 31 test sounds in total [1 to 4 sounds
(2.6 sounds on average) from each car under each road
surface condition]. The edges of extracted test sounds were
processed by a Hanning window (50 ms window length).

The sound pressure levels of test sounds were different
depending on the car and road surface conditions. How-
ever, to focus on our hypothesis that sound features other
than sound pressure levels contribute to perceptual noisiness,
we adjusted the average sound pressure levels of all test
sounds within a limited range around the grand average of
the original test sounds (88 £ 0.7 dB; see Fig. 6 (b) for the
power spectra of the test sounds).
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The test sounds were filtered using a finite impulse
response (FIR) low-pass filter [function ‘“‘lowpass” with
0.85 steepness and 60 dB stopband attenuation in MATLAB
(R2018b, The MathWorks, United States)] with the cutoff
frequency of 5 kHz before data analyses because their sound
pressure levels above 5 kHz were less than the minimum
audible pressure curve [44] (see also Fig. 6 (b)).

In addition to spatial saliency, we also tested whether
spectral saliency affects perceptual noisiness [9]. To calculate
spectral saliency, we used a high-pass filter with a cutoff
frequency of 20 Hz [function “‘highpass” with 0.85 steepness
and 60 dB stopband attenuation] to limit its calculation within
the audible frequency range [similar results were confirmed
without this filtering (data not shown)].

3) EXPERIMENTAL SYSTEM

Test sounds were played by a pair of open headphones
(HD IV.1, HEAD acoustics, Herzogenlart, Germany, fre-
quency ranges: 12 Hz to 40.5 kHz) through a digital equalizer
(PEQ V, HEAD acoustics, Herzogenlart, Germany) in a car
parked in an anechoic chamber. A PC monitor was placed on
the hood of the car in front of the driver’s seat where partici-
pants sat to present task instructions visually (see Behavioral
task). Noisiness judgments were reported by left/right shift
keys in a keyboard placed on the lap of participants. This
system was controlled by Psychtoolbox-3 (v 3.0.14) [45]
in MATLAB.

4) BEHAVIORAL PARADIGM

A two-interval (alternative) forced choice task was used to
evaluate the relative noisiness of two test sounds played
sequentially (Fig. 7 (a)). After displaying a cross mark for
1 second at the center of the screen, the first sound was
played for 3 seconds with the word “1%"” presented at the
center of the screen. Subsequently, the second sound was
played after an inter-stimulus interval of 1 second with the
word “2"” on the screen. Participants judged which test
sound was noisier by pressing the left or right shift key on
the keyboard. Mappings between left/right keys and nosiness
judgments (e.g., 1! stimulus was noisier than 2" stimu-
lus) were counterbalanced across participants. A selected
mapping rule for each subject was presented on the screen
as a reminder on each trial (e.g., “1t left side” and
“2nd right side”).

The first and second sounds were selected from categories
with different combinations of cars and road surface condi-
tions [e.g. (car A, coarse) vs. (car B, smooth)]. One of the
test sounds in a category, containing 1 to 4 test sounds, was
chosen randomly for this comparison.

All participants performed 132 trials in total, correspond-
ing to the number of permutations of two test sounds selected
from all 12 categories (6 cars x 2 surfaces). Trials were
divided into two blocks, each of which contained approxi-
mately a half of total trials. Participants had a short break
(about 5 minutes) between the blocks of trials. The above
procedure was preceded by a practice block of 20 trials.
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FIGURE 7. Behavioral paradigm and analysis. (a) Behavioral paradigm. On each trial, participants listened to two
consecutive test sounds (1st and 2nd; 3 seconds each) and reported which sound was noisier (1st or 2nd).

An inter-stimulus interval was 1 second. (b) Behavioral analysis. Left: Examples of reports on individual trials
(132 in total). Right: Perceptual noisiness scores estimated from the whole reports of a participant using the

Bradley-Terry model (see METHODS in chapter IV).

White noises with 2 different sound pressure levels
(80.7, 74.7dB) were used as training stimuli.

5) BRADLEY-TERRY MODEL FOR PERCEPTUAL NOISINESS
We estimated the perceptual noisiness of individual test
sounds based on noisiness judgements during the above
two-interval forced choice task using a Bradley-Terry
model [46]. The model estimates the strength of each test
sound based on their wins (i.e., selected as noisier) and losses
(i.e., not selected) during the task (Fig. 7 (b)).

The perceptual noisiness of individual test sound was mod-
eled as follow:

n = exp (Bi+v)
Bi ~ Normal (0, 1)
yi ~ Normal (0, as)
§ ~ Cauchy (0, o)
o ~ Cauchy (0, 1)

o

where 7} corresponds to the estimated noisiness of M test
sound for s™ subject, B; is a fixed effect of i test sound
across all subjects, and y;’ is a random effect of i test sound
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for s™ subject to account for individual differences across

subjects. The random effects of s subject for each stimulus
({3, - .-, v3)) form a normal distribution with its standard
deviation of o* specified for each subject. Individual differ-
ences in o* are taken into account by a Cauchy distribution
with its scale o.

The probability of the 1% test sound (i) judged as noisier
than the 2" test sound (j) in the two-interval forced choice
task was modeled by the following formula:

s s
TDecay * i

Pisj) ~ e
i J

Tls)ecay
Tgecay = exp (,3 Decay + ygecay)
IBDecay ~ Normal (0, 1)

ygmy ~ Normal (0, O’Decay)
ODecay ~ Cauchy (0, 1)

where rgewy accounts for the possible temporal attenua-
tion of the 1% test sound in memory when participants
compared 1%t and 2™ test stimuli at the end of the trial for
each subject. Bpecay is a constant, while its random effect of
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subject, ygecay, corresponds to individual differences across
subjects. yf)ecay (s=1,2, ..., 14) forms a normal distri-
bution with its standard deviation of op.cqy derived from a
Cauchy distribution whose scale is equal to 1. An exponential
is taken for rf)emy because it should be a positive value
(rf)emy = 0.84 was obtained in this experiment, meaning
that the estimated noisiness of the 1st stimulus (e.g., 7;) was
attenuated approximately 16 % before it was compared to that
of the 2nd stimulus (e.g., njs ) during the two-interval forced
choice task).

6) MODEL FITTINGS

We adopted a Bayesian approach to fit the above model to
the binary judgments of relative perceptual noisiness [47].
The posterior distributions of all parameters were gener-
ated by Markov Chain Monte Carlo with 4 chains each of
which sampled 10000 times (after the warm-up samplings
of 1000 times). The model fitting was carried out by RStan
(v2.17.3, Stan Development Team 2018) and R (v3.5.0,
R Core Team 2018).

B. RESULTS

As described in the introduction, we hypothesized that per-
ceptual noisiness is explained by spatial saliency as well as
ISO loudness [3], [4]. Along with spatial saliency, spectral
saliency [9] might also affect perceptual noisiness. Here,
we examined these hypotheses using driving sounds.

1) SPATIAL SALIENCY VS. OTHER SOUND FEATURES

Fig. 8 shows two examples of test sounds whose spatial
saliencies were the maximum and the minimum among the
31 test sounds used in this study. Their cumulative distribu-
tions of spatial saliencies, along with that of the test sound
shown in Fig. 4, were different between each other, suggest-
ing that the algorithm of spatial saliency could capture the
variety of spatial features across the test sounds.

We first examined relationships between spatial saliency
and the other sound features (ISO loudness and spec-
tral saliency). We expected that spatial saliency should be
independent from ISO loudness because it should capture
features that cannot be accounted for by ISO loudness
(see chapter III). We also expected that spatial and spectral
saliencies would also be independent because they calcu-
late contrasts along two different physical dimensions (i.e.,
horizontal direction and spectral frequency). These predic-
tions were confirmed in our test sounds (Fig. 9 (a), (b)).
That is, there were not significant correlations between spa-
tial saliency and both ISO loudness and spectral saliency
(p > 0.3).

At the same time, there was a significant correlation
between ISO loudness and spectral saliencies (Fig. 9 (c)),
presumably reflecting a common feature between them
(i.e., temporal variation [6], [9]).

These results support our hypothesis that spatial saliency
captures features not explained by ISO loudness and spectral
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FIGURE 8. Examples of spatial saliency maps for test sounds. (a) A spatial
saliency map of a test sound with the maximum saliency level.

(b) Another spatial saliency map of a different test sound with the
minimum saliency level. (c) Cumulative distributions of spatial saliencies
for test sounds in (a), (b) and Fig. 3 (f). See Fig. 4 for details.

saliency and could contribute independently to perceptual
noisiness.

2) SPATIAL SALIENCY VS. PERCEPTUAL NOISINESS

We then examined directly whether spatial saliency was
indeed related to perceptual noisiness. The perceptual
noisiness of test sound, 7; (=,3i : constant term of ‘th test
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FIGURE 9. Relationships between three sound features. (a) Spatial saliency vs. ISO loudness. (b) Spatial saliency vs. spectral saliency.

(c) Spectral saliency vs. ISO loudness.

sound regardless of the subject), was quantified using the
Bradley-Terry model (see METHODS for details). We con-
firmed that the ISO loudness of test sounds was correlated
significantly with their perceptual noisiness (Fig. 10 (a)).
We also found that the spectral saliency of test sounds was
correlated with their perceptual noisiness (Fig. 10 (b)). Coun-
terintuitively, however, such correlation with perceptual nois-
iness was not observed in spatial saliency (Fig. 10 (c)).

The above results are apparently inconsistent with our
hypothesis that spatial saliency contributes to perceptual nois-
iness. However, the inconsistency was resolved after remov-
ing the contributions of ISO loudness and spectral saliency
from perceptual noisiness; spatial saliency was correlated
with the residuals obtained from a multiple regression analy-
sis in which perceptual noisiness was defined as a dependent
variable, and ISO loudness and spectral saliency as indepen-
dent variables (Fig. 10 (d)).

To quantify the relative contribution of spatial saliency,
ISO loudness and spectral saliency to the perceptual noisi-
ness, we fit the following multiple regression model to our
data:

Perceptual noisiness ~ ISO Loudness

+Spatial saliency + Spectral saliency  (4)

We first found that the regression coefficient of ISO loud-
ness had a significant positive value (Table 5), confirm-
ing that ISO loudness affected perceptual noisiness. More
importantly, the regression coefficient of spatial saliency
also had a significant positive value, suggesting that spatial
saliency contributed to perceptual noisiness independently
from ISO loudness. The importance of ISO loudness and
spatial saliency was also confirmed by likelihood ratio tests
comparing the full model represented by (4) with reduced
models eliminating either ISO loudness or spatial saliency
(Table 5). We also found a similar trend in spectral saliency,
although it did not reach statistical significance (Table 5).

VOLUME 10, 2022

The above results support our hypothesis that auditory
spatial saliency complements ISO loudness to account for
perceptual noisiness.

V. DISCUSSION

We have proposed a new model of auditory spatial saliency
(Figs. 1 and 2). The model complements the conventional
ISO loudness by taking into account the new features of spa-
tial saliency which explained perceptual noisiness better for
driving sounds in passenger cars than the ISO loudness alone
(Table 5). This strategy of integrating the multiple models for
perceptual noisiness could be utilized not only for the acous-
tic design of engineering products, including passenger cars,
but also for environmental medicine. In this section, we dis-
cuss the following three points: (1) how auditory saliency
complements ISO loudness; (2) neurophysiological basis of
auditory spatial saliency; and (3) potential applications of
auditory spatial saliency to automotive engineering.

A. AUDITORY SALIENCY COMPLEMENTS ISO LOUDNESS
The ISO loudness model was proposed originally by
Zwicker [48], [49], and has been upgraded extensively by
Moore and his colleagues [4] based on new findings from
auditory psychophysics and periphery. The original loudness
model was only for static monoaural sounds, but the current
ISO loudness model has been extended to evaluate dynamic
binaural sounds [4]-[6]. It has now become the world stan-
dard [3] and allows us to evaluate perceptual noisiness
quantitatively.

However, the current ISO loudness model still has room
for improvements at least in the following two points. First,
itdoes not consider interaural time/level differences, although
it explains how to integrate adaptively the levels of bin-
aural sounds to match perceptual loudness. This limitation
makes the model fail to account for the effects of interaural
correlations on the loudness [4], [39]. We have overcome
this limitation by introducing spatial saliency that captures
acoustic contrasts in space (Figs. 4 and 5 (a)). Indeed,
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influences of 1SO loudness and spectral saliency by multiple regression. The y-axis in (d) was
expanded compared to those in (a)-(c) to focus on the range of the residuals.

the integration of spatial saliency with ISO loudness better
explained perceptual noisiness for driving sounds than the
ISO loudness alone (Table 5). Moreover, spatial saliency also
accounted for the perceptual phenomena of interaural correla-
tions (Fig. 5) which the ISO loudness and the interaural cross-
correlation [43] fail to account for.

Second, the ISO loudness model integrates the intensities
of signals across frequency channels [i.e. equal rectangular
bands] to calculate the overall level of loudness, but it does
not take into account a variation across frequency channels.
Although evidence is limited regarding the potential impact
of the variation across frequency channels on the loudness,
we found a trend that the spectral-temporal variation, quanti-
fied by spectral saliency, might possibly reflect some aspects
of perceptual noisiness independently from ISO loudness,
although it did not reach statistical significance (Table 5).
We adopted the original spectral saliency model [9] only
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for the sake of simplicity despite the fact that it does not
take into account the structure of the peripheral auditory
system. This limitation could be overcome easily by simply
incorporating a peripheral cochlear model [50] and/or adopt-
ing more sophisticated spectral saliency models reported
recently [8].

B. NEUROPHYSIOLOGICAL BASIS OF AUDITORY

SPATIAL SALIENCY

The word “‘saliency” has been used previously to model
auditory spatial attention in the field of robotics engineer-
ing [51], [52]. Their algorithms are designed mainly for local-
ization (interaural correlation), but ignore spatial contrast,
a key concept of our spatial saliency model. This limita-
tion was not critical in the previous studies because their
purpose was not to account for human perception/behavior.
On the other hand, our purpose was to account for perceptual
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TABLE 5. Multiple regression for perceptual noisiness in driving sounds.

Regression Likelihood ratio test
Variables Coeff. S.E. T D.O.F P D.O.F ALL P
Constant -3.74 025  -15.23 27 8.91 x 107 4 - -
ISO loudness 0.79 0.05 16.60 27 1.08 x 10" 3 35.5 < 1.00 x 10732
Spatial saliency 0.44 0.10 4.34 27 1.81 x 107 3 7.4 1.26 x 10*
Spectral saliency 0.21 0.11 1.90 27 0.07 3 1.7 0.07

See (4) for the corresponding full regression model. Likelihood ratio tests were carried out by comparing between the full model (4) and each reduced
model excluding the corresponding variable in each row. ISO loudness, Spatial saliency, and Spectral saliency were normalized by z-score
transformation. Constant corresponds to the intercept. See Table 1 for other abbreviations. ALL: log likelihood difference between full and each reduced

model.

noisiness by auditory attention. We therefore built our spatial
saliency model based on a biologically plausible algorithm.

We adopted an algorithm of sound localization based on
the functions of neural circuits in the brainstem that localize
sounds along the horizontal axis (i.e., medial/lateral supe-
rior olive) [21]. Moreover, we also considered the nonlinear
map of auditory space on which the spatial resolution is
the highest at the frontal midline and degrades gradually as
sound directions deviate from the midline [35]. Although it is
unclear whether an auditory spatial map exists in the cerebral
cortex, assuming such a spatial map allows us to adopt an
algorithm used for visual saliency. This approach is supported
physiologically by the structures and functions of the superior
colliculus (see below).

We based our concept of spatial saliency on the struc-
ture and function of the superior colliculus in the mid-
brain, a major structure of eye movement control in the
central nervous system [53], because of the following three
points. First, the superior colliculus receives auditory signals
from the inferior colliculus and integrates them with other
sensory information, especially vision, on its retinotopic
map to control spatial attention multimodally [25]. Second,
auditory spatial attention depends on gaze directions, indi-
cating its dependence on neural circuits with retinotopic
coordinates, such as those in the superior colliculus, instead
of head centered coordinates in which cues for horizontal
sound localization (i.e., interaural time/level differences) are
encoded [54]. Third, neural activity in the superior collicu-
lus is correlated dynamically with spatial saliency, at least
in vision [23]. We focused on the superior colliculus just
for the sake of simplicity. However, it is highly likely that
auditory spatial attention is controlled by neural circuits
integrating the superior colliculus and the auditory where
pathway from the core of the auditory cortex to the parietal
cortex [18].
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C. POTENTIAL APPLICATIONS OF AUDITORY SPATIAL
SALIENCY TO AUTOMOTIVE ENGINEERING

We believe that the current spatial saliency model as well as
the ISO loudness model could be applied to real environmen-
tal and engineering issues. Here, we discuss how our model
could guide our future research toward the model-based
development of acoustic design for passenger cars based on
the mechanisms of the human auditory system.

Driving sounds are generated by the following two mech-
anisms: air transmission and solid propagation of vibration.
Sounds originated from frictions between road surfaces and
tires are transmitted by the air through the floor panel. Sounds
are also radiated from various parts of the body by solid
propagation of vibration so that driving sounds could be
heard from unexpected directions, such as above the head
(i.e., caused by vibration of the roof).

Sounds generated by the above two mechanisms have
different contributions to driving sounds depending on fre-
quencies; those below 500 Hz are influenced more strongly
by the solid propagation of vibration compared to air trans-
mission, while the relationship becomes the opposite above
500 Hz [55]. Because spatial saliency is influenced more
strongly by low frequency sounds compared to high fre-
quency sounds (Fig. 5 (b); a similar result was obtained when
the threshold was lowered from 1.5 kHz to 500 Hz), we specu-
late that the solid propagation of vibration has stronger impact
on spatial saliency compared to air transmission.

The solid propagation of vibration depends on the architec-
ture of the car body because it defines the transmission path
of vibration. The architecture of the car body varies widely
across cars. Accordingly, we expected that spatial saliency
caused partly by the solid propagation of vibration should
also vary across cars. We confirmed this expectation in our
test sounds (Fig. 11; two way ANOVA with the main factors
of Cars and road surface (coarse/smooth); the main factor of
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FIGURE 11. Dependence of spatial saliency on cars and road surfaces
(coarse and smooth). Each data point corresponds to each test
sound (n = 31). See table 4 for car specifics.

Cars: F (5) = 12.94, p = 2.0 x 107>). We therefore speculate
that spatial saliency could be reduced by controlling the solid
propagation of vibration appropriately through the design of
the architecture of the car body.

The solid propagation of vibration is influenced by both
global and local body architectures. Asymmetric rigidities
in the global body architecture create a path that propagates
vibrations from tires to remote parts, such as the roof and
doors. In contrast, rigidities in local body architecture create
sound sources because of the resonance of local components.
Accordingly, spatial saliency could be reduced by balancing
spatially the effects of the global and local body architectures
on the distribution of sound directions at the ears.

The above speculation still needs to be tested in individual
cars experimentally. Such experiments are challenging, but,
will help guide our research towards the model-based devel-
opment of the car body architectures based on the human
auditory system.

VI. FUTURE DIRECTION

We have proposed a new model of auditory spatial saliency
and integrated it to the conventional ISO loudness to account
better for perceptual noisiness for binaural sounds. The spa-
tial saliency model still needs to be extended by integrating
other sound features (e.g., spectral features and head related
transfer function for vertical localization) and to resolve
remaining issues (e.g., cone of confusion) to capture fully
the spatial features of perceptual noisiness. Nevertheless,
it allows us to start creating a new technology of model-based
development for acoustic space in automotive interiors based
on human auditory attention.

Automotive engineering faces with a variety of tradeoff
problems, including those between perceptual noisiness and
other functions/values (e.g., adjusting suspension rigidity to
attenuate solid propagation of vibrations vs. driving sta-
bility; adding noise insulators vs. their cost/weight to be
added). Our new approach could possibly break through such
tradeoff problems by replacing the current ““‘symptomatic
treatments’ of noise reductions (e.g., suspensions and noise

10174

insulators) with the new “‘causal treatments” of designing
the global/local body architectures based on auditory spatial
attention. We also believe that our model could be applied to
a variety of environmental noise issues other than automotive
engineering, and contribute to improving our quality of life.
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