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ABSTRACT In this paper, a barrier adaptive iterative learning control scheme is proposed to solve the
trajectory-tracking problem for tank gun control systems under nonzero initial error condition. A novel
construction method of rectified reference trajectory is presented for dealing with the initial position problem
of iterative learning control for tank gun control systems. With a quadratic form barrier Lyapunov function
adopted to controller design, the quadratic form of system error is constrained within the preset range during
each iteration. Adaptive iterative learning control technique and robust control technique are jointly used to
compensate for the parametric/nonparametric uncertainties and nonsymmetric deadzone nonlinearity. As the
iteration number increases, the system state of tank gun control systems may accurately track the rectified
reference trajectory, which leads to a excellent tracking performance during the part operation interval of
tank gun control systems. Simulation results are presented to verify the effectiveness of the proposed barrier
adaptive iterative control scheme.

INDEX TERMS Tank gun control systems, adaptive iterative learning control, barrier Lyapunov function,
initial position problem.

I. INTRODUCTION
Iterative learning control (ILC) works well in coping
with repetitive tracking tasks or periodic disturbance
rejection [1]–[5]. By updating the control input gradually
according to the system error in previous iterative cycle,
perfect tracking may be achieved over the whole time interval
as the iteration number increases, even where it is very hard
to carry out system modelling. Due to these advantages, ILC
has been applied in the precision control deign for various
devices and processes, such as robotics systems, hard disk
drives, servo control systems and high-speed trains [6]–[11].
Contraction-mapping ILC acts as the mainstream in the early
research and application stage of ILC. So far, it is still a
promising technology. Adaptive ILC may be seen as the
combination of ILC and adaptive control. For the convenience
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in dealing with parametric uncertainties, adaptive ILC has
received increasing attention in this century [1], [12].

Tanks can help troops enhance the efficiency of artillery
firepower and improve the surviving ability of soldiers.
Therefore, tanks are consider as a class of useful weapons in
modern battle for its effective function of attack and defense
meanwhile. Whether in an attacking combat or in a defensive
combat, tanks should accomplish missions fleetly and accu-
rately, despite of the existence of friction, uncertainties and
external disturbances. Therefore, high stability and high con-
trol accuracy are indispensable for the tank gun control sys-
tem. The accurate control for tank gun control systems have
been studied for long, with some control strategies consid-
ered, such as variable structure control [13], PID control [14],
optimal control [15], direct adaptive control [16], adaptive
fuzzy control [17], adaptive robust control [18], active distur-
bance rejection control [19], disturbance observer based slid-
ing mode control [20], adaptive neural network control [21]
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and event-triggered adaptive control [22]. In recent years,
some scholars have explored the ILC algorithms of tank gun
control systems, but the research in this field is not mature yet.

We will consider two important aspects of ILC algorithm
designs for tank gun control systems in this work. The first
aspect is about the initial position problem of tank gun control
systems. In traditional ILC algorithms, the initial errors of
controlled systems are assumed to be zero at each itera-
tion [23]–[25]. Otherwise, a slight nonzero initial error may
lead to the divergence of tracking error, which is the so-called
initial position problem of ILC. It is impossible to reset
the initial system states in industrial applications exactly
to the initial values of reference trajectories. This bring about
the need to develop ILC algorithms for systems subjected to
arbitrary nonzero initial errors. As response, a few solutions
have been proposed during the past twenty years, such as
time-varying boundary layer technique [26], error-tracking
method [27], initial rectifying action [29], [30], etc. As far
as ILC for tank gun control systems is concerned, the studies
on its initial position problem is still at a preliminary stage.
In [31], a robust learning control scheme is proposed to
solve the trajectory-tracking problem for tank gun control
systems, with alignment condition adopted as one remedy to
the initial position problem of ILC. In [32], a time-varying
boundary layer is constructed to overcome the nonzero initial
error during the iterative learning controller design for tank
gun control systems. In [33], a novel neural network-based
error-track iterative learning control scheme is proposed to
tackle trajectory tracking problem for tank gun control sys-
tems. However, none of these works consider the issue of
initial rectification ILC for tank gun control systems. How to
develop an effective initial rectification ILC scheme to meet
the requirement of arbitrary nonzero initial errors for tank gun
control systems is still unclear.

The second issue we will address in this work is about sys-
tem constraints of tank gun control systems during operation.
For a real ILC application systems, in order to improve the
robustness or safety, it is necessary to constrain the system
output, the system state, or the output tracking error during
the operation in some situations. Inspired by the constraint
design strategy in barrier adaptive control [34], [35], barrier
adaptive ILC has been studied in the past decade. In [36],
an output-constrained adaptive ILC scheme is proposed to
solve the tracking problem for a class of nonlinear sys-
tems under alignment condition. In [37], the ILC with error
constraint for MIMO systems under alignment condition is
investigated. In [38], state-constrained ILC is studied for
a class of nonparametric uncertain systems under nonzero
initial error condition, with an error-tracking strategy used to
deal with the initial position problem of ILC. Later on, an
neural network based adaptive ILC algorithm is proposed for
nonlinear uncertain systemswith state constraints in [39]. The
joint position constrain problem for robotic ILC systems is
discussed in [40]. The research results on constrained spatial
adaptive ILC are reported in [41] and [42], respectively.
To the best of authors’ knowledge, so far, no literature has

discussed the system-constraint ILC for tank gun control
systems. How to develop an effective initial rectification ILC
scheme to meet the requirement of error constraints during
each iteration and the requirement of arbitrary nonzero initial
errors for tank gun control systems, has not been addressed
yet.

Motivated by the above discussion, this paper focuses on
the barrier adaptive ILC algorithm design for tank gun control
systems under arbitrary nonzero initial error condition. The
main results and contributions are given as follows.

(1) A novel construction method of rectified reference
trajectory is put forward to overcome the nonzero initial error
problem in the ILC design for tank gun control systems.
A new adaptive ILC law is developed to make the system
state follow the rectified reference trajectory over the whole
time interval, such that the system state can accurately track
the reference trajectory during the predetermined part time
interval.

(2) With a quadratic form barrier Lyapunov function
adopted to controller design, the quadratic form of system
error is constrained within the preset range during each iter-
ation.

(3) A compensating strategy to nonsymmetric deadzone
input is given, under a relaxed assumption on deadzone
parameters.

The rest of this paper is organized as follows. Section II
describes the system definition and problem formulation.
The construction of rectified reference trajectory and the
design process of adaptive iterative learning controller for
tank gun control systems are addressed in Section III.
The convergence analysis of closed loop tank gun con-
trol systems is given in Section IV. Section V presents
simulation results. The conclusion of this work is given
in Section VI.

II. PROBLEM FORMULATION
High-performance tank gun control systems is indispensible
for helping tanks work at full capacity. With the rapid devel-
opment of machinery manufacturing and modern control
technology, the power system and control method of tank gun
control systems tend to be fully electrified and digitalized.
Compared to traditional electro-hydraulic/full-hydraulic tank
gun control systems, full-electric ones own such advantages
as simple structure, high efficiency and easy maintenance.
These advantages help full-electric tank gun control become
the mainstream of tank gun control systems. A full-electric
tank gun control system consists of two subsystems, vertical
subsystem and horizontal subsystem. This vertical subsystem
is actually an AC servo driving system, which is composed
of an AC motor, a deceleration device, a barrel, etc. The
structure diagram of vertical subsystem is shown in Fig. 1.
The block diagram of tank gun control systems, a careful
reduction of a complex nonlinear simulation model, is shown
in Fig. 2. The definitions of symbols in Fig. 2 are given in
Table 1.
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FIGURE 1. Structure diagram of vertical servo system of full-electrical
tank gun.

FIGURE 2. Block diagram of tank gun control systems.

TABLE 1. The definitions of symbols.

From Fig. 2, we can get the following dynamics of tank
gun control control systems.

i̇q = −
R
L
iq −

Kei
L
ωm +

Ka
L
0(up),

ω̇m =
Kt
Ji
iq −

1
Ji
TLs,

(1)

where TLs = TL + Tf . 0(uq) is the output of nonsymmetric
deadzone, which can be described as (2).

0(up) =

mr (uq − br ) for uq ≥ br
0 for bl ≤ uq < br
ml(uq − bl) for uq < bl,

(2)

in which mr , ml and br are strictly positive and unknown,
and bl is strictly negative and unknown. We assume that
mr 6= ml , and mm = min(ml,mr ) is unknown, which
can be regarded as a relaxation to the traditional assump-
tion mr = ml required in some control algorithms [32].

Then, (2) can be rewritten as follows:

0(up) = mmuq + mδuq + δ, (3)

where

mδ =
{
ml − mm, if ml ≥ mr = mm
mr − mm, if mr > ml = mm

(4)

and

δ =

{
−mrbr , for uq ≥ 0
−mlbl, for uq < 0.

(5)

It is obvious that both mδ and δ in (3)-(5) are bounded. From
(1) and (3), we obtain

ω̈m = −
R
L
ω̇m −

KtKe
LJ

ωm +
KaKt
LJi

(mmuq + mδuq + δ)

−(
R
LJi

TLs +
1
Ji
ṪLs). (6)

Define x1 = ωm and x2 = ω̇m. From (6), the dynamics of
tank gun control systems at the kth iteration can be descirbed
as 

ẋ1,k = x2,k ,

ẋ2,k = −
R
L
x2,k −

KtKe
LJ

x1,k +
KaKt
LJi

(mmuq,k

+ mδ,kuq,k + δk )+ f (xxxk , t),

(7)

where xxxk = [x1,k , x2,k ]T and f (xxxk , t) = −( RLJiTLs +
1
Ji ṪLs).

Without loss of generality, we assume f (xxxk , t) = f1(xxxk ) +
f2(xxxk , t), where f1(xxxk ) satisfies the Liphitz-like continuous
condition as

|f1(xxxk )− f1(xxxd )| ≤ α(xxxk ,xxxd )‖xxxk − xxxd‖, (8)

with α(xxxk ,xxxd , t) being a known continuous function, and
f2(xxxk , t) satisfies

|f2(xxxk , t)| ≤ εf (t), (9)

with εf (t) being an unknown time-varying parameter.
The control task in this work is to find a sequence of control

input uq,k such that the system error eeek = [e1,k , e2,k ]T =
xxxk−xxxd converges to zero or its small bounded neighborhood,
as the iteration number increases.

III. CONTROL SYSTEM DESIGN
A. CONSTRUCTION OF RECTIFIED REFERENCE
TRAJECTORY
As mentioned above, eeek (0) 6= 0 is an obstacle of designing
ILC systems. In this work, we will construct rectified refer-
ence trajectory to overcome this obstacle.

In order to achieve the tracking objective, our control strat-
egy is to make xxxk (t) accurately track the initial-rectification
reference trajectory xxx∗k (t) = [x∗1,k (t), x

∗

2,k (t)] for t ∈ [0,T ],
which is formed as follows:

x∗1,k (t) = x1,d (t)+ h(t)e1,k (0)+ h(t) sin(t)e2,k (0), (10)

x∗2,k (t) = ẋ1,d (t)+ ḣ(t)e1,k (0)+ [h(t) cos(t)+ ḣ(t)

× sin(t)]e2,k (0), (11)
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where

h(t) =

{
10(tδ−t)3

t3δ
−

15(tδ−t)4

t4δ
+

6(tδ−t)5

t5δ
, if 0 ≤ t ≤ tδ,

0, if tδ < t ≤ T .

Remark 1: Note that h(0) = 1, ḣ(0) = 0, h(tδ) =
0, ḣ(tδ) = 0, ḧ(tδ) = 0. According to (10)-(11), we can see
xxx∗k (0) = xxxd (0) and xxx∗k (t) = xxxd (t) for t ∈ [tδ,T ]. x∗1,k (t) is
twice differential with respect to t .

B. CONTROLLER DESIGN
Let eee∗k (t) = [e∗1,k (t), e

∗

2,k (t)]
T
= xxxk (t)−xxx∗k (t). From (10) and

(11), we can see eee∗k (t) = eeek (t) for t ∈ [tδ,T ]. Then, it follows
from (7) that

ė∗1,k = e∗2,k ,

ė∗2,k = −
R
L
x2,k −

KtKp
LJ

x1,k +
KaKt
LJi

(mmuq,k

+ mδ,kuq,k + δk )+ f1(xxxk )+ f2(xxxk , t)− ẍ∗1,k ,

(12)

whose vector form is

ėee∗k = Aeee∗k + bbb[e
∗

1,k + 2e∗2,k −
R
L
x2,k −

KtKp
LJ

x1,k ×

+
KaKt
LJi

(mmuq,k + mδ,kuq,k + δk )+ f1(xxxk )

+ f2(xxxk , t)− ẍ∗1,k ], (13)

with bbb = [0, 1]T and

A =
[
0 1
−1 −2

]
. (14)

For such a matrix A, there must exist symmetric positive
definite matrices P and Q, which satisfy PA + ATP = −Q.
Define a candidate barrier Lyappunov function

Vk (t) =
eee∗Tk Peee∗k

2$ (be − eee∗Tk Peee∗k )
, (15)

where $ =
KaKtmm
LJi , be > 0 is the constraint bound of

eee∗Tk Peee∗k . Taking the time derivative of Vk , we obtain the
following expression:

V̇k =
σk

2$
(ėee∗Tk Peee∗k + eee

∗T
k Pėee∗k )

= −
σk

2$
eee∗Tk Qeee∗k +

σk

$
eee∗Tk Pbbb[e∗1,k + 2e∗2,k −

R
L
x2,k

− ẍ∗1,k −
KtKp
LJ

x1,k + f1(xxxk )+ f2(xxxk , t)]

+ σkeee∗Tk Pbbb[uq,k +
mδ,k
mm

uq,k +
δk

mm
], (16)

where σk =
be

(be−eeeTk Peeek )
2 . On the basis of (8), we have

eee∗Tk Pbbb
σk

$
(f1(xxxk )− f1(xxxd ))

≤
σk

$
|eee∗Tk Pbbb|α(xxxk ,xxxd )‖eeek‖

≤
σk

2$
‖eeek‖2 +

σk

2$
α2(xxx,xxxd )(eee∗Tk Pbbb)2. (17)

By utilizing (17), we can rewrite (16) as follows:

V̇k ≤ −
σk

2$
eee∗Tk Qeee∗k +

σk

$
eee∗Tk Pbbb[e∗1,k + 2e∗2,k −

R
L
x2,k

− ẍ∗1,k −
KtKp
LJ

x1,k + f1(xxxd )+ f2(xxxk , t)]

+ σkeee∗Tk Pbbb(uq,k +
mδ,k
mm

uq,k +
δk

mm
)

+
σk

2$
α2(xxx,xxxd )(eee∗Tk Pbbb)2 +

σk

2$
‖eeek‖2

≤ −
σk

2$
eee∗Tk Qeee∗k + σkeee

∗T
k PbbbθθθTϕϕϕk +

σk

$
|eee∗Tk Pbbb|εf

+
σk

2$
‖eeek‖2 + σkeee∗Tk Pbbb(uq,k +

mδ,k
mm

uq,k +
δk

mm
),

(18)

where

θθθ =
[ 1
$
,

1
2$

,−
R
$L

,−
KtKp
$LJ

,
1
$
f1(xxxd )

]T
,

ϕϕϕk = [e∗1,k + 2e∗2,k − ẍ
∗

1,k ,
1
2
α2(xxx,xxxd )eee∗Tk Pbbb, x2,k , x1,k , 1]T .

Based on (18), the control law and learning laws are designed
as

uq,k = −γ1eee∗Tk Pbbb+ up1,k + uρ1,k + uρ2,k , (19)

up1,k = −σkθθθTk ϕϕϕk , (20)

uρ1,k = −ρ1,kup1,k tanh(σkρ1,kup1,k (k + 1)2eee∗Tk Pbbb), (21)

uρ2,k = −ρ2,k tanh(σkρ2,k (k + 1)2eee∗Tk Pbbb), (22)

θθθk = satθ,θ̄ (θθθk−1)+ γ2σkeee
∗T
k Pbbbϕϕϕk , θθθ−1 = 0, (23)

ρ1,k = sat0,ρ̄1 (ρ1,k−1)+ γ3σk |eee
∗T
k Pbbb||up1,k |, ρ1,−1 = 0,

(24)

ρ2,k = sat0,ρ̄2 (ρ2,k−1)+ γ4σk |eee
∗T
k Pbbb|, ρ2,−1 = 0, (25)

where γ1 > 0, γ2 > 0, γ3 > 0, γ4 > 0, and θθθk , ρ1,k and ρ2,k
are used to estimate θθθ, ρ1 and ρ2, respectively. The saturation
function sat·,·(·) is defined as follows:

For a scalar â,

sata,ā(â) =


ā â > ā

â a ≤ â ≤ ā

a â < a

;

for a vector âaa = [â1, â2, · · · , âm] ∈ RRRm, sata,ā(âaa) =[
sata,ā(â1), sata,ā(â2), · · · , sata,ā(âm)

]T .
Substituting (19) into (18), we have

V̇k ≤ −
σk

2$
eee∗Tk Qeee∗k + σkeee

∗T
k Pbbbθ̃θθ

T
k ϕϕϕk + σk |eee

∗T
k Pbbb|ρ2

+
σk

2$
‖eeek‖2 + σkeee∗Tk Pbbb

mm + σkδm

mm
(uρ1,k + uρ2,k )

+ σk |eee∗Tk Pbbb|ρ1|up1,k |, (26)

where ρ1 is the upper bound of
mδ,k
mm

, ρ2 is the upper bound of
1
$
εf +

|δk |
mm

, and θ̃θθk = θθθ − θθθk .
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IV. CONVERGENCE ANALYSIS
Theorem 1: Given the closed loop tank gun control sys-

tem (7) and the control law and learning laws (19)-(25), the
following facts will hold: (1)

lim
k→∞

eeek (t) = 0, ∀t ∈ [tδ,T ]. (27)

(2) eee∗Tk (t)Peee∗k (t) < be and ‖eee∗k (t)‖ <
√
be√
λP

hold during each
iteration, where λP is the minimum eigenvalue of matrix P.

(3) Moreover, all system variables to be bounded at each
iteration.

Proof: i). In this part, we will check the constraint
characteristic by taking the time derivative of Lyapunov func-
tional.

Firstly, let us define a Lyapunov functional as follows:

Lk = Vk +
1
2γ2

∫ t

0
θ̃θθ
T
k θ̃θθkdτ +

1
2γ3

∫ t

0
ρ̃21,kdτ

+
1
2γ4

∫ t

0
ρ̃22,kdτ, (28)

where ρ̃1,k = ρ1−ρ1,k , ρ̃2,k = ρ2−ρ2,k . The time derivative
of Lk is

L̇k = V̇k +
1
2γ2

θ̃θθ
T
k θ̃θθk +

1
2γ3

ρ̃21,k +
1
2γ4

ρ̃22,k . (29)

By the property 0 ≤ |υ|−υ tanh(υ
ε
) ≤ 0.2785ε, we obtain

σk |up1,k |ρ1|eee∗Tk Pbbb| − σkup1,k eee∗Tk Pbbb
mm + δm

mm
uρ1,k

= σk |up1,k |ρ1|eee∗Tk Pbbb| − σk |up1,k |ρ1,k |eee∗Tk Pbbb| + σk |up1,k |

× ρ1,k |eee∗Tk Pbbb| − σkup1,keee∗Tk Pbbb
mm + mδ,k

mm
ρ1,k tanh(σk

× ρ1,kup1,k (k + 1)2eee∗Tk Pbbb)

≤ σk |up1,k |ρ̃1,k |eee∗Tk Pbbb| +
0.2785
(k + 1)2

. (30)

and

σkρ2|eee∗Tk Pbbb| − σkeee∗Tk Pbbb
mm + δm

mm
uρ2,k

= σkρ2|eee∗Tk Pbbb| − σkρ2,k |eee∗Tk Pbbb| + σkρ2,k |eee∗Tk Pbbb| − σk

×eee∗Tk Pbbb
mm + mδ,k

mm
ρ2,k tanh(σkρ2,k (k + 1)2eee∗Tk Pbbb)

≤ σk ρ̃2,k |eee∗Tk Pbbb| +
0.2785
(k + 1)2

. (31)

Substituting (30) and (31) into (26), we have

V̇k ≤ −
λq − 1
2$

σkeee∗Tk eee∗k + σkeee
∗T
k Pbbbθ̃θθ

T
k ϕϕϕk + σk |eee

∗T
k Pbbb|ρ̃2

+ σk |eee∗Tk Pbbb|ρ̃1,k |up1,k | +
0.557

(k + 1)2
, (32)

where λq is the minimum eigenvalue of positive definite
symmetric matrix Q. It is easy to make λq − 1 > 0 hold by
choosing a proper P.

Substituting (32) into (29) leads to

L̇k ≤ −
λq − 1
2$

σkeee∗Tk eee∗k + σkeee
∗T
k Pbbbθ̃θθ

T
k ϕϕϕk + σk |eee

∗T
k Pbbb|ρ̃2

+ σk |eee∗Tk Pbbb|ρ̃1,k |up1,k | +
0.557

(k + 1)2
+

1
2γ2

θ̃θθ
T
k θ̃θθk

+
1
2γ3

ρ̃21,k +
1
2γ4

ρ̃22,k . (33)

By using (23), we have

σkeee∗Tk Pbbbθ̃θθ
T
k ϕϕϕk +

1
2γ2

θ̃θθ
T
k θ̃θθk

=
1
2γ2

(θθθ − θθθk )T (2θθθk − 2satθ,θ̄ (θθθk−1)+ θθθ − θθθk )

=
1
2γ2

[−θθθTk θθθk + θθθ
Tθθθ − 2θθθT satθ,θ̄ (θθθk−1)

+ 2θθθTk satθ,θ̄ (θθθk−1)]

= −
1
2γ2

[θθθk − satθ,θ̄ (θθθk−1)]
T [θθθk − satθ,θ̄ (θθθk−1)]

+
1
2γ2

[satθ,θ̄ (θθθ
T
k−1)satθ,θ̄ (θθθk−1)+ θθθ

Tθθθ

− 2θθθT satθ,θ̄ (θθθk−1)]

≤
1
2γ2

[satθ,θ̄ (θθθ
T
k−1)satθ,θ̄ (θθθk−1)+ θθθ

Tθθθ

− 2θθθT satθ,θ̄ (θθθk−1)]. (34)

Since both satθ,θ̄ (θθθk−1) andθθθ are bounded, there exists a there
exits a positive number m1, which satisfies

σkeee∗Tk Pbbbθ̃θθ
T
k ϕϕϕk +

1
2γ2

θ̃θθ
T
k θ̃θθk ≤ m1 (35)

Similarly, by using (24), we can see that there exists positive
numbers m2 and m3, which satisfy

σk |eee∗Tk Pbbb|ρ̃1,k |up1,k | +
1
2γ3

ρ̃21,k

=
1
2γ3

[−ρ21,k + ρ
2
1 − 2ρ1satρ1,ρ̄1 (ρ1,k−1)

+ 2ρ1,ksatρ1,ρ̄1 (ρ1,k−1)]

=
1
2γ3

[satρ1,ρ̄1 (ρ1,k−1)satρ1,ρ̄1 (ρ1,k−1)+ ρ
2
1

− 2ρ1satρ1,ρ̄1 (ρ1,k−1)]−
1
2γ3

[ρ1,k − satρ1,ρ̄1 (ρ1,k−1)]
2

≤
1
2γ3

[satρ1,ρ̄1 (ρ1,k−1)satρ1,ρ̄1 (ρ1,k−1)+ ρ
2
1

− 2ρ1satρ1,ρ̄1 (ρ1,k−1)]

≤ m2, (36)

and

σk |eee∗Tk Pbbb|ρ̃2 +
1
2γ4

ρ̃22,k

=
1
2γ4

[−ρ22,k + ρ
2
2 − 2ρ2satρ2,ρ̄2 (ρ2,k−1)

+ 2ρ2,ksatρ2,ρ̄2 (ρ2,k−1)]

=
1
2γ4

[satρ2,ρ̄2 (ρ2,k−1)satρ2,ρ̄2 (ρ2,k−1)+ ρ
2
2

− 2ρ2satρ2,ρ̄2 (ρ2,k−1)]−
1
2γ4

[ρ2,k − satρ2,ρ̄2 (ρ2,k−1)]
2
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≤
1
2γ4

[satρ2,ρ̄2 (ρ2,k−1)satρ2,ρ̄2 (ρ2,k−1)+ ρ
2
2

− 2ρ2satρ2,ρ̄2 (ρ2,k−1)]

≤ m3, (37)

respectively. Combining (35)-(37) with (33), we have

L̇k ≤ −
λq − 1
2$

σkeee∗Tk eee∗k + m1 + m2 + m3 +
0.557

(k + 1)2

≤ m1 + m2 + m3 +
0.557

(k + 1)2
. (38)

In light of Lk (0) = 0 and (38), the boundedness of Lk (t) may
be derived during t ∈ [0,T ]. Further, we have

eee∗Tk (t)Peee∗k (t)

2$ (be − eee∗Tk (t)Peee∗k (t))
≤ t(m1 + m2 + m3 +

0.557
(k + 1)2

).

(39)

Note that eee∗Tk (0)Peee∗k (0) = 0 for any k . Once eee∗Tk (t)Peee∗k (t)
increases nearly to be for any t ∈ (0,T ],

eee∗Tk (t)Peee∗k (t)
2$ (be−eee∗Tk (t)Peee∗k (t))

→ +∞ will happen, which is contrary
to the inequality (39). Therefore,

eee∗Tk (t)Peee∗k (t) < be (40)

holds for t ∈ [0,T ], which implies that

‖eee∗k (t)‖ <

√
be
√
λP

(41)

for t ∈ [0,T ] and for any k .
ii) In this part, we will analyze the convergence of track-

ing error by calculating the difference of Lk (t) between two
adjacent iteration index.

From (32), we obtain

Vk ≤
∫ t

0
eee∗Tk Pbbbθ̃θθ

T
k ϕϕϕkdτ +

∫ t

0
|eee∗Tk Pbbb|ρ̃2dτ

+

∫ t

0
|eee∗Tk Pbbb|ρ̃1,k |up1,k |dτ +

0.557t
(k + 1)2

. (42)

While k > 0, by utilizing (28) and (42), we can derive

Lk − Lk−1

=

∫ t

0
σkeee∗Tk Pbbbθ̃θθ

T
k ϕϕϕkdτ +

∫ t

0
σk |eee∗Tk Pbbb|ρ̃2,kdτ

+

∫ t

0
σk |eee∗Tk Pbbb|ρ̃1,k |up1,k |dτ +

0.557t
(k + 1)2

− Vk−1

+
1
2γ2

∫ t

0
(θ̃θθ
T
k θ̃θθk − θ̃θθ

T
k−1θ̃θθk−1)dτ +

1
2γ3

∫ t

0
(ρ̃21,k

− ρ̃21,k−1)dτ +
1
2γ4

∫ t

0
(ρ̃22,k − ρ̃

2
2,k−1)dτ. (43)

By the relationship (a − b)2 − (a − b̂)2 ≤ (a − b)2 − (a −
satb,b̄(b̂))

2, it follows from (23) that

1
2γ2

(θ̃θθ
T
k θ̃θθk − θ̃θθ

T
k−1θ̃θθk−1)+ σkeee

∗T
k Pbbbθ̃θθ

T
k ϕϕϕk

≤
1
2γ2

(2θθθ∗ − θθθk − satθ,θ̄ (θθθk−1))
T (satθ,θ̄ (θθθk−1)− θθθk )

+ σkeee∗Tk Pbbbθ̃θθ
T
k ϕϕϕk

≤
1
γ2

(θθθ∗ − θθθk )T (satθ,θ̄ (θθθk−1)− θθθk )+ γ2σkeee
∗T
k Pbbbϕϕϕk )

= 0. (44)

In a similar way, from (24) and (25), we can obtain

1
2γ3

(ρ̃21,k − ρ̃
2
1,k−1)+ σk |eee

∗T
k Pbbb|ρ̃1,k

≤
1
γ3

(ρ1 − ρ1,k )

× (sat0,ρ̄1 (ρ1,k−1)− ρ1,k + γ3σk |eee
∗T
k Pbbb||ũq,k |)

= 0 (45)

and

1
2γ4

(ρ̃22,k − ρ̃
2
2,k−1)+ σk |eee

∗T
k Pbbb|ρ̃2,k

≤
1
γ4

(ρ2 − ρ2,k )(sat0,ρ̄2 (ρ2,k−1)− ρ2,k + γ4σk |eee
∗T
k Pbbb|)

= 0, (46)

respectively. Substituting (44)-(46) into (43) yields

Lk − Lk−1 ≤ −Vk−1 +
0.557t
(k + 1)2

, (47)

which further implies

Lk (t) ≤ L0(t)−
1
2$

k−1∑
j=0

eee∗Tj Peee∗j
be − eee∗Tj Peee∗j

+

j=k+1∑
j=1

0.557t
j2

.

(48)

Due to

lim
k→∞

j=k+1∑
j=1

0.557t
j2
=

0.557π2t
3

, (49)

from (48), we get

Lk (t) ≤ L0(t)−
1

2$be

k−1∑
j=0

eee∗Tk Peee∗k +
0.557π2t

3

≤ L0(t)+
0.557π2t

3
−

λP

2$be

k−1∑
j=0

‖eee∗k‖
2 (50)

LetML = t(m1+m2+m3+0.557). According to (38), we can
see

0 ≤ L0(t) ≤ ML , ∀t ∈ [0,T ]. (51)

It follows from (50) and (51) that

Lk (t) ≤ ML +
0.557π2t

3
−

λP

2$be

k−1∑
j=0

‖eee∗k (t)‖
2, (52)

which implies

lim
k→∞

eee∗k (t) = 0, ∀t ∈ [0,T ]. (53)
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FIGURE 3. x1 and its reference signal x1,d (constraint ILC).

According to the construction strategy described in (10)-(11),
from (53), we have

lim
k→+∞

eeek (t) = 0, ∀t ∈ [tδ,T ]. (54)

Meanwhile, ϕϕϕk and θθθk can be verified to be bounded by
using the boundedness of ‖eee∗k‖ and the property of saturation
functions. Further, uk and other signals can be guarantee to
be bounded.

In this work, a quadratic form Lyapunov function is used to
design iterative learning controller to constrain the quadratic
form of system error within the preset range during each
iteration. In addition, hyperbolic tangent function is used
to replace signum function for relieving the chattering
phenomenon.

V. NUMERICAL SIMULATION
In this simulation example, the adopted simulation param-
eters in the tank gun control systems are given as
R = 0.4�, J = 0.0067 kg · m2, i = 1039, L = 2.907 ×
10−3H, Kt = 0.195N · m/A,Ke = 0.197 V/( rad · s−1),
B = 1.43 × 10−4 N · m, Ka = 2, T = 3.
xxxk (0) = [0.8 + 0.1rand1(k),−0.02 + 0.02rand2(k)]T .
xxxd = [cos( 23π t),−

2
3π sin( 23π t)]

T . The control objective
is to make xxxk accurately track xxxd . 1f (xxxk , t) = 13.2 +
0.1 x1,k + 0.2 x2,k + 0.2sign(x2,k ) + 0.2rand3(k) sin(0.5t).
Here, rand1(·) − rand3(·) are random numbers between
0 and 1. The values of deadzone parameters are set as br =
0.2, bl = −0.3,mr = 1.5 and ml = 2.
The proposed adaptive ILC law (19) and adaptive learning

laws (23)-(25) are adopted in this simulation, with γ1 =
5, γ2 = 1.5, γ3 = 0.1, γ4 = 0.1, θ = −100, θ̄ = 100,
ρ̄1 = 20, ρ̄2 = 20,

P =
[
7.5 2.5
2.5 2.5

]
. (55)

The trajectory-tracking profiles of angular velocity and angu-
lar acceleration of the tank gun servo system at the 10th cycle
are shown in Figs. 3-4, respectively, with the tracking error
profiles illustrated in Fig. 5-6. From Figs. 3-6, we can see that
xxxk (t) follows xxxd (t) for t ∈ [tδ,T ], as the iteration number

FIGURE 4. x2 and its reference signal x2,d (constraint ILC).

FIGURE 5. The error e1 (constraint ILC).

FIGURE 6. The error e2(constraint ILC).

increases. The convergence history of eee∗Tk Peee∗k is given in
Fig. 7, where Jk := maxt∈[0,T ] eee∗Tk (t)Peee∗k (t). From Fig. 7,
we can see that eee∗Tk (t)Peee∗k (t) < be holds during each iteration.
The control input signal the 10th iteration cycle is shown in
Fig. 8. As shown in Figs. 3-7, the closed-loop tank gun servo
system can obtain good tracking performance. The above
simulation results show that the adaptive iterative learning
controller can obtain an excellent control performance for the
tank gun control system.

For comparison, the no-constraint adaptive ILC algorithm
is adopted to simulation as follows:

uq,k = −γ1eee∗Tk Pbbb+ up1,k + uρ1,k + uρ2,k , (56)
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FIGURE 7. Convergence history of eee∗T
k Peee∗

k (constraint ILC).

FIGURE 8. Control input(constraint ILC).

FIGURE 9. Convergence history of eee∗T
k Peee∗

k (no-constraint ILC).

up1,k = −θθθTk ϕϕϕk , (57)

uρ1,k = −ρ1,kup1,k tanh(ρ1,kup1,k (k + 1)2eee∗Tk Pbbb), (58)

uρ2,k = −ρ2,k tanh(ρ2,k (k + 1)2eee∗Tk Pbbb), (59)

θθθk = satθ,θ̄ (θθθk−1)+ γ2eee
∗T
k Pbbbϕϕϕk , θθθ−1 = 0, (60)

ρ1,k = sat0,ρ̄1 (ρ1,k−1)+ γ3|eee
∗T
k Pbbb||up1,k |, ρ1,−1 = 0,

(61)

ρ2,k = sat0,ρ̄2 (ρ2,k−1)+ γ4|eee
∗T
k Pbbb|, ρ2,−1 = 0, (62)

The values of learning gain and control parameters in
(56)-(62) are set to be the same as the corresponding ones

in (19)-(25), respectively. The convergence history of eee∗Tk Peee∗k
in this algorithm is shown in Fig. 9, where the definition of
Jk is the same as in Fig. 7. Comparing Fig. 9 with Fig. 7,
we can see the maximum of eee∗Tk Peee∗k in no-constraint ILC does
not observe the barrier property. The above simulation results
verify the effectiveness of theoretical analysis in this work.

VI. CONCLUSION
In order to solve the trajectory-tracking problem for tank gun
control systems with quadratic error constrained and arbitrary
initial errors, an initial-rectification adaptive ILC scheme has
been proposed in this paper. For removing the zero initial
error condition in ILC design, the control strategy of this
work is to let the system state track the rectified reference
trajectory. To improve the robustness and system safety, the
quadratic form of system error is constrained within a preset
range by using barrier Lyapunov approach. Adaptive ILC and
robust control are jointly used to compensate for the paramet-
ric/nonparametric uncertainties and nonsymmetric deadzone
nonlinearity in tank gun control systems.
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