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ABSTRACT Load forecasting is a critical aspect for power systems planning, operation and control. In this
paper, as part of research efforts of an ambitious project at Memorial University of Newfoundland in
St. John’s, Canada, to achieve more energy efficient and environmental friendly ““Sustainable Campus™,
we present a day-ahead load forecasting approach for the energy management system of the project. The
hourly load consumption dataset from January 1, 2016 to March 31, 2020 is used in the paper, which was
collected from two power meters on campus. Using the load consumption dataset along with the collected
meteorological dataset, a total of 19 regression model-based day-ahead load forecasting algorithms for
Memorial University of Newfoundland’s campus load are developed and evaluated in this paper. These
19 models belong to five families of regression models in MATLAB Regression Toolbox: Linear Regression,
Regression Trees, Support Vector Machines (SVM), Gaussian Process Regression (GPR), and Ensemble
of Trees. It is found that the family of GPR models shows the best load forecasting performance because
they are nonparametric kernel-based probabilistic models. Two GPR models, Rational Quadratic GPR and
Exponential GPR, are recommended as the best models for load forecasting through this study.

INDEX TERMS Short-term load forecasting, regression model, day-ahead load forecasting, Gaussian

process regression, probabilistic models, university campus load.

I. INTRODUCTION

Load forecasting is essential to maintain the balance of power
supply and demand in power grids, and serves as the foun-
dation of power market operation. Power systems planning
and operation rely on accurate load forecasting on various
time horizons [1]. Load forecasting accuracy has significant
impact on power grids’ stability and operating cost, for exam-
ple, a 1% reduction in the load forecasting error reduced
10 million pounds operating cost per year for one utility
company in the United Kingdom [2].

The principle of load forecasting was introduced in 1894 by
Samuel Insull, an innovator in the electric utility industry.
He analyzed that different load use trends, such as domes-
tic and commercial end-users, concluded that the maximum
consumption was observed in the day time for domestic
consumption while industries have maximum consumption
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at night [3], [4]. Load forecasting enables the electric util-
ity to make efficient unit commitment decisions, minimize
the spinning reserve, and properly schedule the maintenance
plan; and optimize the transmission network’s power flow
to minimize underloads and overloads. Accurate load fore-
casting can lead to substantial savings in operational and
maintenance costs, enhanced power supply efficiency, proper
transmission and distribution future planning decisions.
Grid modernization, such as renewable energy sources
integration, demand response, and electric vehicles, has
introduced increased uncertainty due to electricity demand
becoming more active and less predictable, and load forecast-
ing is more challenging than ever before. Tomorrow’s smart
distribution systems feature distributed renewable energy
generation and demand response control, can operate inde-
pendently from the bulk power system as microgrids, where
the load may contain more stochastically abrupt deviations
due to much larger impact from the behavior of end users.
Successfully operating such a system requires much more
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accurate and high-resolution load forecasting than today’s
existing techniques [5]. With the implementation of advanced
data acquisition systems (such as smart meters and advanced
metering infrastructure (AMI) meters), and the advancement
of data analytic techniques and artificial intelligence, load
forecasting has attracted significant research interests from
academia and industry.

Based on the forecasting time horizon, load forecasting
can be categorized into short-term, medium-term, and long-
term load forecasting. The short-term load forecasting deals
with the forecasting of several minutes up to one week into
the future; while medium-term and long-term load forecast-
ing are two weeks and three years, respectively [2], [6].
Among the three types of load forecasting, the short-term
load forecasting is the most investigated subject in the liter-
ature due to its great importance in the operation planning,
dealing with demand response, unit commitment, economic
dispatch, and energy trading. Operation activities of power
grids, such as regulation bids, energy arbitrage, and market-
clearing mechanisms, are conducted on hourly bases, which
rely on short-term forecasting techniques to provide accurate
estimations of future load demands [7]. In case of a fault,
fast restoration methods can be deployed to minimize the
total amount of expected unsupplied demand through self-
healing schemes, it requires fast and precise short-term load
forecasting to realize a robust final restoration [7].

Knowledge-based expert system utilizes the knowledge
of skilled human experts into a software for load forecast-
ing. However, there is tremendous difficulty to transfer such
knowledge to developing rules during load forecasting. The
advancement of artificial intelligence techniques has brought
the concept of soft computing-based load forecasting, which
makes it an adaptable learning method for training the data
set. The drawback of artificial intelligence techniques is that
it sometimes cannot identify the mathematical expression
between dependent and independent variables [4].

Whereas the regression analysis is an essential mathemat-
ical tool in determining the statistical relationship between
various dependent and independent variables with the fol-
lowing advantages: 1) It gives the strength and direction of a
relationship between variables; 2) Unlike simple correlations,
it allows the use of more than one predictor, and allows the
prediction of an outcome even when the multiple predictors
are correlated with each other; 3) It can be used to cor-
rect errors based on previous assumptions; and 4) Excellent
outcomes can be obtained with relatively small set of data.
Therefore, regression algorithms are used in this paper for
the short term load forecasting.

In the literature, load forecasting methods can be divided
into three streams: 1) point (deterministic) load forecast-
ing [1], [2], [5], 2) probabilistic load forecasting [6]-[9], and
3) hybrid methods by combining point and probabilistic load
forecasting [10]. The brief summary of the three streams
are shown in Fig. 1. The point load forecasting is most
researched for decades by forecasting the expected value of
future load using various statistic and machine learning tech-
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FIGURE 1. Short-term load forecasting methods in the literature.

niques, while the probabilistic load forecasting only attracts
research attention recently. In smart grid environment, the
probabilistic load forecasting is essential as variability and
uncertainty associated with the electricity demand increase,
the demand at individual household or distribution feeder
level can be quite volatile due to demand response programs
and feeder reconfiguration activities. Probabilistic load fore-
casting provides electric load forecasting output in the form
of intervals, scenarios, density functions, or probabilities;
its typical applications include stochastic unit commitment,
probabilistic price forecasting, and probabilistic transmission
planning [8].

Regression-based load forecasting models have been
developed to provide load forecasting for the entire country,
a specific region, a university campus, and small loads, such
as a microgrid connected to a community etc. The models can
be developed for various time horizons (short-term, medium-
term, and long-term), where a wide range of influential envi-
ronmental and temporal parameters have been considered.
Short-term load forecasting is crucial to the energy security
and stability to the load due to its immediate impact [11].
However, it has been observed that the performance of the
developed short-term load forecasting models for the uni-
versity campus load degrades with a smaller load size [12].
Therefore, many robust regression algorithms have been uti-
lized to improve the effectiveness of the developed data driven
short-term load forecasting models. It is found that Artificial
Neural Network (ANN) is the mostly adopted regressor to
develop short-term load forecasting models for the university
campus load [11]-[13]. Despite being a powerful regressor,
many researchers are not convinced about the direct applica-
tion of ANN, as it may not be adaptive to all datasets [14].
While compared, several other regressors appear to be more
effective than ANN to develop short-term load forecasting
models for the university campus load. For example, the
Support Vector Regressor (SVR) performs better than ANN
in [15]. The Multiple Linear Regression (MLR), ANN and
SVR are compared in [16], and SVR shows the most promi-
nent performance. The Autoregressive Integrated Moving
Average with exogenous variables (ARMAX), MLR, ANN,
SVR are studied in [17], and SVR appeared to be the most
suitable one. ANN, SVR and Ensemble (Random Forest)
are studied in [18], and ensemble performs better. In [19],
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Gaussian Process Regression (GPR) is chosen after com-
paring among SVR, RF and GPR. Ref [11] concludes that
simple machine learning based regressors are more effective
to develop short-term load forecasting models than com-
pound regressors. Therefore, in this paper, to find the best
short-term load forecasting algorithms for the university cam-
pus load profile and predictors, the effectiveness of the Linear
Regression, Support Vector Regression, Ensemble Trees, and
Gaussian Process Regression (GPR) has been analyzed and
compared.

In this paper, we focus on short-term load forecasting
for the university campus load at Memorial University of
Newfoundland, St. John’s, Canada. As part of research efforts
of an ambitious project at Memorial University of New-
foundland to achieve more energy efficient and environmen-
tal friendly ““Sustainable Campus”, we have developed an
energy management system involving newly designed solar
power and energy storage. To achieve effective control of the
energy management system, the short-term load forecasting
is critical.

To find the best short-term load forecasting algorithms for
the university campus load profile and predictors, we have
investigated the accuracy of day-ahead short-term load fore-
casting using 19 regression models in five regression fami-
lies, including Regression, Linear Regression, Support Vector
Regression (SVR), Ensemble Trees, and Gaussian Process
Regression (GPR). The first four families belong to point
forecasting category; while the GPR models are nonpara-
metric kernel-based probabilistic models [20]. Since support
vector machine (SVM) methods are commonly used for load
forecasting [21], [22], SVM models serve as forecasting
benchmarks for short-term load forecasting in this paper.
The historical load datasets from January 2016 to March
2020 recorded at the two meters installed on the university
campus are used in this study along with historical meteo-
rological dataset. The load forecasting accuracy is evaluated
using the statistic error indices, Mean Absolute Percentage
Error (MAPE), Mean Absolute Error (MAE), and Root Mean
Square Error (RMSE), to find the best fitted regression mod-
els. After initial selection among the 19 regression models,
the six top performing models are further evaluated using
various response and residual plots to find the recommended
final regression models.

The main contributions of the paper include: 1) propose an
effective load forecasting approach for the university campus
load; and 2) demonstrate probabilistic forecasting models
(Gaussian Process Regression models) are more accurate than
other models.

The paper is organized as follows: In Section II, the back-
ground information of the university campus load is pro-
vided, the proposed load forecasting approach is introduced
and explained; In Section III, a brief description of various
Regression models is presented along with performance eval-
uation indices; Simulation results and data analysis for load
forecasting are demonstrated using 19 regression models in
Section IV; and Conclusions are drawn in Section V.
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Il. THE PROPOSED LOAD FORECASTING APPROACH FOR
THE UNIVERSITY CAMPUS LOAD

In this section, we introduce the background information
about the campus load of Memorial University of Newfound-
land first; then the proposed load forecasting approach is
presented.

A. ABOUT THE UNIVERSITY CAMPUS LOAD
The campus load at Memorial University of Newfoundland
consumes a significant percentage of electricity demand in
the province of Newfoundland and Labrador.

Heating is provided all year round from a high-temperature
hot water plant for all structures on campus. During the
typical months of a year, this plant will have two out of its four
boilers up and running; while during the cold winter months,
all of the four boilers will work. The campus consumes
approximately 11 million liters of diesel for annual heating
purposes of 60 buildings on the St. John’s campus on average,
which costed 75 cents per liter in 2019, or roughly $8.5 mil-
lion annually. Every year, this combustion releases more than
25,000 tons of carbon dioxide into the atmosphere, equivalent
to almost 7,000 automobiles. Therefore, by converting the
present system to electrical-based heating, the university can
bring sustainable initiatives to the province, bring economic
benefits and reduce harmful emission. Therefore, an ambi-
tious project was conducted by our research team, aiming to
make the campus more energy efficient and environmental
friendly towards a future “Sustainable Campus” . To achieve
this goal, solar power and energy storage are designed, and
an energy management system is developed. To realize this
energy management system’s proper operation, short-term
load forecasting is required.

The load forecasting data were collected from two power
meters (Meter 1 and Meter 2) on campus, which record read-
ing every 15-minute. For our load forecasting model, hourly
data were used.

In this paper, an analysis of the university campus load
demand from January 1, 2016 to March 31, 2020 is conducted
by focusing on monthly (Fig. 2), seasonal (Fig. 3) and annual
patterns. The study results revealed a correlation between
energy usage and temperature. The university campus has an
average demand of 10 MW from the local utility at St John’s,
Newfoundland Power, and winter months usually consumes
more. An unplanned outage to the campus’ power system will
be a severe issue as thousands of students and faculty use
the campus. There are several emergency generators with a
combined capacity of 3,500 kW, which provide emergency
power, such as lighting on stairs and the operation of pumps
for heating. Apart from this, four generators having an indi-
vidual capacity of 800 kW can provide 3,200 kW emergency
power to Health Science Centre.

As shown in Fig. 2, the load demand patterns of the uni-
versity campus show an increase during the winter months,
December, January, and February, due to space heating
requirements; while show a decrease from May to October.
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FIGURE 2. The average monthly load demand in MW of the university
campus.
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FIGURE 3. The average seasonal load demand in MW of the university
campus.

The seasonal load demand of the university campus is shown
in Fig. 3. The seasonal periods are defined as follows:
1) Spring (March to May); 2) Summer (June to August);
3) Fall (September to November); and 4) Winter (December-
February).

B. THE PROPOSED LOAD FORECASTING APPROACH AND
MODEL CREATION

In this paper, an effective load forecasting approach using
regression models is proposed. The flowchart in Fig. 4 illus-
trates the needed steps. The procedure to implement the
proposed approach is demonstrated in the following six steps:

o Step 1: Data collection. Two datasets need to be col-
lected: one is historical load demand data; another is
historical meteorological data.

o Step 2: Regression models selection. The regression
models are used in the proposed method, and suitable
regression models are selected for load forecasting.
In this paper, 19 regression models are selected.

o Step 3: Input parameters selection. Important input
parameters such as weather parameters are evaluated and
selected.

o Step 4: Regression models creation and load forecasting
conducted using them. The selected regression models in
Step 2 will be trained and tested, and then will be used
to conduct load forecasting.

o Step 5: Comparison of the performance of regression
models. To compare the performance of the regression
models, the forecasted load is compared with the actual
measured load, and statistical error matrices are used to
evaluate their accuracy.
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FIGURE 4. The flowchart of the proposed load forecasting method.

o Step 6: Recommendation of regression models with the
highest accuracy. Based on previous steps, the regres-
sion models with the highest accuracy will be selected.

1) DATA COLLECTION AND PREPROCESSING

Among the six steps in the proposed approach, Step 1 on
data collection and preprocessing is essential as input-output
datasets are required to train the model. Data preprocessing
has been a prerequisite for transforming the raw data so that
the model can effectively learn the input-output relationship.
In the pre-processing level, mathematical operations such
as normalizing, ranking, and correlation are used [23]. The
required data collection and preprocessing is shown in Fig. 5.

a: DATA COLLECTION
The initial step of datasets collection involves the weather
data, time indicators and load demand data.

i) THE METEOROLOGICAL DATASET COLLECTION

A meteorological dataset is obtained from Newfoundland
and Government of Canada website (https://climate.weather.
gc.ca/). It is found that the meteorological data affect the
load demand at the university campus, so their impact must
be included in the load forecasting model [24]. The most
significant independent variables for load forecasting are
weather conditions. For domestic and agricultural customers,
the weather effect is most common, and it can also change the
user load profile. Load forecasting models use weather fore-
casting and other elements to predict the future load in order
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TABLE 1. Pearson’s correlation coefficient.

Collection Data Preprocessing

of Load Data ) | . |

Correlation Data Cleaning
Analysis of weather I Data Transformation |

) parameters and load

Collection I Data Reduction |

of Weather Data —
| Data Discretization |

FIGURE 5. Data collection and preprocessing.

to minimize operational costs [24], [25]. In this study, the
following eight weather parameters are collected for model
creation:

1) Dry Bulb Temperature (DBT): the temperature of the
air that is not subject to humidity or solar radiation.

2) Wet Bulb Temperature (WBT): thermometer reading
where a damp cloth soaks the measuring instrument’s
bulb.

3) Humidity: Psychometrics from a Mollier chart is used
to derive the air’s relative humidity and the dew point
from the DBT and WBT. The correlation to the electri-
cal load can vary over the year because of the seasonal
weather data changes.

4) Precipitation, fog, haze, or other exposure blockages,
such as blowing snow or dust, may decrease visibility.

5) The wind chill: itis an index to show the average person
how cold the weather conditions are. It is obtained by
integrating temperature level and wind speed velocity
into one number.

6) Wind direction (10’s deg/tens of degrees): It reflects the
average direction in two minute periods.

7) Wind speed (km/h): The airspeed in kilometers per
hour (km/h) above 10 m from the ground.

8) Visibility in kilometers (km) It is the range in which a
person can see and identify objects of the ideal size.

Although all weather parameters have a direct impact on the
load demand, the temperature, humidity and visibility have
greater impact on load variations than others.

if)  TIME INDICATOR

In short-term load forecasting, time is the critical factor to
consider because its effect on the customer’s load demand
is highest. Some of the time indicators used in this study
include: date, weekday, and time [24].

iii) LOAD PARAMETERS

The following load parameters are used for the load demand
data in this study: previous day load in kW; previous day load
in kVAr; previous day load in kVA; and previous day load
power factor.

b: DATA CORRELATION

To study the correlation among the chosen weather parame-
ters and the electrical load, the Pearson correlation analysis
has been conducted. Pearson correlation analysis is a linear
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Parameters Pearson’s Correlation Coefficient
Peak load time 0.91
Off-Peak Load time —0.9245
Day of the week 0.75
Previous day Load 0.93
Previous day Load 0.85
Previous day Load 0.91
Previous day power factor 0.7065
Dry Bulb Temperature —0.88
Wet Bulb Temperature —0.8
Humidity —0.65
Wind chill —0.63
Visibility —0.68

correlation analysis approach, which produces Pearson’s cor-
relation coefficients ranging from 0 to &1, and a value close
to 1 indicates a strong correlation. A positive sign indicates
a proportional relationship, and a negative sign indicates
an inversely proportional relationship. The outcome of the
correlation analysis has been tabulated in Table 1.

The value of the correlation coefficients indicates that
parameters, such as “‘Day of the week”, “Previous day power
factor”, “Humidity”, “Wind chill”’, and ““Visibility”, exhibit
strong correlation with the load, while the rest of the param-
eters exhibits a very strong correlation with the load.

¢: DATA PREPROCESSING

Real-life measurements are susceptible to various degrees
of discrepancies including incomplete data, noise, missing
values, outliers, redundant data and inappropriate formatting,
which influence the performance of the regressors. Therefore,
the data must be pre-processed to ensure the data reliabil-
ity [26]. In this analysis, data preprocessing includes the
following three sub-phases:

e Data Cleaning: It includes filling missing values, noise
removal, outlier detection, and resolving discrepancies
within the dataset [27]. Shape-Preserving Piecewise
Cubic Spline Interpolation is used to fill columns with
the partial missing weather data.

e Data Transformation: It involves various methods
including integrating multiple files into a single usable
format [27], and scaling the attribute to follow specific
properties. After finding the data sets with corerelation
and data cleaning, the final predictors dataset was cre-
ated.

e Data Reduction: It aims to capture most of the data
properties while removing redundancies by providing a
reduced representation of the data, either by reducing the
number of attributes or by sampling.

2) TRAINING AND TESTING REGRESSION MODELS

The training dataset is initially used to train a model, the
results are then analyzed by varying its parameters until the
most efficient parameters are obtained the MATLAB tool box
provided the optimized model for all the regression models.
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After obtaining satisfied results, the trained model is used to
test using testing datasets, various statistic error indices and
evaluation plots are then used to evaluate the performance.
The testing data are unseen by the trained model and are used
to optimize the load forecasting model’s control parameters,
which helps to optimize and evaluate the performance of the
created model.

K-Fold Cross-Validation: The initial data sample is ran-
domly partitioned into k equivalent sized subsamples in
k-fold cross-validation. A single subsample is retained from
the k subsamples as recognition data for model testing, and
the remaining k-1 subsamples are used for training. The
cross-validation method is then repeated k times, with each
of the k subsamples used as the validation data exactly once.
To obtain a single estimate, the results of k can then be
summed. In this paper, five-fold cross-validation is performed
for all models to prevent the models from overfitting.

Fig. 6 shows the procedure of training and testing regres-
sion models.

Ill. REGRESSION MODELS

In this paper, five families of regression model algorithms
provided in the MATLAB Regression Toolbox are selected
to construct the short-term load forecasting model for the
university campus. They are Linear Regression, Regression
Trees, Support Vector Machines (SVM), Gaussian Process
Regression (GPR), and Ensemble of Trees. Table 2 shows
regression models used in this study.

Linear Regression: It is the simplest regression models
used to forecast outcomes by modeling the relationship
between the independent variable and the variable dependent.
Since there are several independent and dependent variables,
the model attempts to find the relationship between two or
more explanatory variables and a response variable [28], [29].

Regression Trees: A single output (response) variable and
multiple input (predictor) variables are used in all regression
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TABLE 2. Regression models used in this study.

Family of Regression Models
Linear Regression

Chosen Regression Models

Linear Regression model
Interactions Regression model
Robust Regression model
Stepwise Linear Regression Model
Medium Tree

Coarse Tree

Regression Trees

Fine Tree
Support Vector Machines Linear SVM
(SVM) Quadratic SVM

Cubic SVM

Fine Gaussian SVM
Medium Gaussian SVM
Coarse Gaussian SVM

Gaussian Process Regression Rational Quadratic GPR
(GPR) Squared Exponential GPR
Matern 5/2 GPR
Exponential GPR
Ensemble of Trees Boosted Trees
Bagged Trees

techniques. The variable output is numerical. The general
regression tree structure method allows a combination of
continuous and categorical variables to be input variables.
A regression tree is built by a process called binary recursive
partitioning. It is an iterative method that divides the data
into partitions or branches, and then divides each section into
smaller groups as each upper branch is approached. Initially,
all training sets are grouped into the same section. In the
first two partitions or branches, the algorithm starts assigning
the data, using any possible binary split on every field. The
algorithm chooses the division that minimizes the sum of
the squared variances in the two different partitions from the
mean. Each of the new branches is then added to this dividing
guideline. This process continues until any node exceeds the
user’s minimum node size and becomes a terminal node [29].

Support Vector Machines: For nonlinear transformation,
kernel functions in SVM are used. This study uses standard
kernel functions, such as the linear kernel, the polynomial
kernel, the Gaussian, or the radial basis function. Polynomial
functions of the lower degree tend to underfit the model and
do not have adequate results. With the polynomial increasing
in degree, the curve is better suited [29].

Gaussian Process Regression: Gaussian process regres-
sion (GPR) models are nonparametric kernel-based proba-
bilistic models with a finite set of random variables with
a multivariate distribution. Any linear combination is dis-
tributed evenly. The Gaussian process theory is named after
Carl Friedrich Gauss since it is based on the notion that
an infinite-dimensional generalization of multivariate normal
distributions is the Gaussian distribution. Gaussian processes
are utilized in statistical modeling, regression to multiple tar-
get values, and analyzing mapping in higher dimensions [30].

Ensemble of Trees: An ensemble uses numerous algo-
rithms to increase its accuracy in terms of efficiency and
prediction. The Bagging or Bagged regression tree is a
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statistical classification-based regression technique designed
to improve accuracy and stability of machine learning algo-
rithms. Instead of using a single fit method, a linear combina-
tion of model fitting is created by constructing and integrating
multiple predictors.

To find the best regression models for the short-term load
forecasting, we performed: 1) Training a data set with cross-
validation of 5 folds for all the models; 2) Plotting the
behavior of regression Models with RMSE, R-Squared Value,
MSE, MAE, and 3) Analyzing the results to see similarities
and differences of the data [31].

A. DATASETS DESCRIPTION

In the proposed work, one-hour interval data from January 1,
2016 to March 31, 2020 are used as the simulation dataset.
We eliminated columns with completely missing weather
data and used Shape-Preserving Piecewise Cubic Spline
Interpolation to fill columns with partial missing weather
data.

1) VALIDATION DATA

First of all, out of the dataset from January 2016 to March
2020, we took out one-week data from each month from the
2016-2020 dataset in a pattern as follows: the 1% week from
the 15 month, the 2%¢ week from the 2" month, the 3 week
from the 3 month, the 4™ week from the 4™ month, the
15t week from the 5™ month, and the 2" week from the 6™
month etc. We use the above taken out data forming a new
dataset, which serves as the validation dataset for the created
model. The validation dataset consists of 8,976 rows and
15 columns.

2) TRAINING AND TESTING DATA

After the validation dataset is created, from the rest of
the historical recorded dataset, 80% of the data is used
for training, and the remaining 20% of data is used for
testing. The training data for the regression models are
with 5-fold cross-validation. The testing data are treated
as unseen by the trained model and used to optimize the
load forecasting model’s control parameters, which helps
to optimize and evaluate the performance of the model
created.

The testing and training data can be viewed as a matrix with
28,428 rows and 15 columns. The rows represent each hour
of a day from January 1, 2016 to March 31, 2020, excluding
the validation dataset. The first 14 columns are the predictors
or input, and the last column is the training target data, i.e.,
the load in kW.

3) PERFORMANCE EVALUATION DATASET

For performance evaluation after training and testing the
model a random day (24 hours data) from validation dataset
which falls in the month of March 2020, January 2020,
October 2019, and July 2019 was selected representing each
seasons of the year.
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B. PERFORMANCE EVALUATION INDICES

The forecasted load is compared with the actual measured
load for each regression model. By calculating three different
statistical evaluations, the Root Mean Square Error (RMSE),
the Mean Absolute Error (MAE), and the Mean Absolute
Percentage Error (MAPE), the load forecasting capacity of
each method and model accuracy can be assessed [26], [27].
If the value of RMSE > MAE, it means that there is a
variation in errors.

1) MEAN ABSOLUTE ERROR (MAE)
The MAE measures the average magnitude of the errors,
which can be calculated by

PIREI
MAE = —— ey
n
where f/t is the prediction, Y; is the true value from field
recording, and #n is the number of measurement points.

2) MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)
This error percentage is a measure of the prediction accuracy
of a forecasting method in statistics, it produces a measure of
the relative overall fit, which can be calculated by

i Y,—¥,
Do Y,

n

MAPE = x 100 2)
where f’t is the prediction, Y; is the true value from field
recording, and » is the number of measurement points.

3) ROOT MEAN SQUARE ERROR

The RMSE is the standard deviation of the residuals (pre-
diction errors). Residuals are a measure of how far from the
regression line data points are, so RMSE is a measure of how
spread out these residuals are. It can be calculated as follows:

RMSE =,/ Lim -1 A3
n

where IAG is the prediction, Y; is the true value from field
recording, and n is the number of measurement points.

4) R-SQUARED
R-Squared is a statistical measure of how close the fitted
regression line is to the results. R-squared lies between 0 and
1. Generally, a higher R-squared value implies that the model
matches the data better.

The following criteria is used to evaluate load forecasting
performance using the error indices:

o The RMSE is always positive, and a smaller RMSE
value indicates a good model.

o The R-squared lies between 0 and 1. R-Squared indi-
cates a good model near 1.

« The MSE is the square of the RMSE, and a smaller MSE
value indicates a successful model
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FIGURE 7. Forecasting results using five families of regression models for a day in July 2019: (a) regression tree models, (b) Gaussian Process Regression
models, (c) Ensemble of Trees models, (d) Linear regression models, and (e) SVM models.
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FIGURE 8. Forecasting results using five families of regression models for a day in October 2019: (a) regression tree models, (b) Gaussian Process
Regression models, (c) Ensemble of Trees models, (d) Linear regression models, and (e) SVM models.

« The MAE is positive, similar to RMSE, a smaller MAE

« An error percentage very close to zero means the pre-

value suggests a successful model.

C. PERFORMANCE EVALUATION PLOTS

1) PREDICTED VERSUS ACTUAL RESPONSE PLOTS

The plot is used to evaluate the trained model’s performance,
dicted values are very relative to actual values. and it helps to understand how well the regression model
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FIGURE 9. Forecasting results using five families of regression models for a day in January 2020: (a) regression tree models, (b) Gaussian Process
Regression models, (c) Ensemble of Trees models, (d) Linear regression models, and (e) SVM models.

forecasts for different response values. The model’s predicted
response is plotted against the actual response. A perfect
regression model has a predicted response equal to the true
response, and all the points are in a diagonal line. The vertical
range from the line to any point is the forecast error for
that particular point. A good model has small errors, and the
forecasts are scattered near the line. Typically, a great design
has points spread roughly symmetrically around the diagonal
line. If we can see any clear patterns in the plot, the design
should be improved.

2) RESIDUAL PLOTS

For a model with good performance, it must satisfy: 1) Resid-
uals unsymmetrically spread around zero; 2) Residuals’ size
alters considerably towards the right; and 3) Plots exhibit a
nonlinear pattern clearly.

3) RESPONSE PLOTS

The response plot shows the predicted response versus the
actual response. If the true response and predicted response
of a model are identical, it indicates the model has good
performance.

IV. SIMULATION RESULTS

The simulations are performed using MATLAB 2020 Regres-
sion Toolbox with the five-fold cross-validation. A day from
July 2019, October 2019, January 2020, and March 2020

VOLUME 10, 2022

(4 days) from Performance Evaluation Dataset are selected
to perform the regression model-based load forecasting. The
outcome of the regression analysis are tabulated in Tables
3 and 4.

A. BENCHMARK MODEL

Support Vector Machine (SVM) or Support Vector Regres-
sor (SVR) is a widely adopted regressor for developing
short-term load forecasting models. Therefore, while propos-
ing improved regressors for short-term load forecasting, SVR
is mostly chosen as the benchmark model [19]. Similarly,
SVM is chosen as the benchmark model in this paper.

B. SIX TOP-PERFORMANING MODELS

The comparisons of the 19 regression models-based fore-
casted load vs. actual load for the four chosen days (in July
2019, October 2019, January 2020 and March 2020) are
shown in Figures 7 - 10. Based on the Forecasted vs. Actual
Load pattern from Figure 7-10 it can be observed Rational
Quadratic GPR, Exponential GPR, Matern 5/2 GPR, Squared
Exponential GPR, Medium Gaussian SVM and Bagged Tree
regression models where able to replicate the load more
accurately.

Table 2 shows the performance evaluation through
R-Squared, MSE, MAE, and RMSE values for the load fore-
casting using the 19 regression models. Table 3 shows the
percentage errors of all 19 models.
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FIGURE 10. Forecasting results using five families of regression models for a day in March 2020: (a) regression tree models,
(b) Gaussian Process Regression models, (c) Ensemble of Trees models, (d) Linear regression models, and (e) SVM models.

Based on the simulation results and performance eval- It is found that all four GPR algorithms are chosen among
uation indices among the 19 regression models, the six the six-top performing modes. GPR models are nonparamet-
top-performing models are determined to be: ric kernel-based probabilistic models, therefore, this type of

probabilistic models work better than other models.

1) Rational Quadratic GPR, The selection of the six top-performing models are based

2) Exponential GPR, on evaluation done using the following criteria:

3) Matern 5/2 GPR,

4) Squared Exponential GPR, « Evaluate RMSE, R-Squared, MSE, and MAE values of
5) Medium Gaussian SVM, all the created models using the training and testing
6) Bagged Tree. dataset.
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FIGURE 11. R-Squared plots for the six best performing models: (a) Squared Exponential GPR, (b) Rational Quadratic GPR, (c) Medium
Gaussian SVM, (d) Matern 5/2 GPR, (e) Bagged Trees, and (f) Exponential GPR.
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FIGURE 12. Predicted Response for the six best performing models: (a) Squared Exponential GPR, (b) Rational Quadratic GPR, (c) Medium
Gaussian SVM, (d) Matern 5/2 GPR, (e) Bagged Trees, and (f) Exponential GPR.

o Analyze the MAPE of the Performance Evaluation
Dataset to find the model with the least error percent-
age. This helps to analyze how much percentage error
can occur when the load is forecasted using a particu-

lar model.
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o Evaluate performance evaluation graphs of all cre-
ated models
dataset.

using the training and testing

Performance evaluations for the top six performing models

through R-squared plots, residual plots of predicted model
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FIGURE 13. Response plots for each day in a week for the six best performing models: Squared Exponential GPR, Rational Quadratic GPR, Medium
Gaussian SVM, Matern 5/2 GPR, Bagged Trees, and Exponential GPR.

TABLE 3. Load forecasting model performance evaluation. TABLE 4. Load forecasting model evaluation using mean absolute
percentage error (%).
Regression models RMSE R- MSE MAE
(kW) Square  (kW?) (kW) Regression models Tuly October ~ January = March gverage

Rational Quadratic GPR__ 30176 0.97 91058 __ 203.67 2019 2019 2020 2020
Exponential GPR 320 0.96 102480 221.11 Rational Quadratic GPR 4.54 1.76 2.06 1.97 2.58
Bagged Tree 435.59 0.93 189740 314.43 Exponential GPR 4.16 1.72 1.99 2.92 2.69
Magtfm < PR 093 oT350 325 Bagged Tree 490 176 216 264 2386

. - - = Matern 5/2 GPR 4.12 1.77 2.01 2.03 2.48
Medium Gaussian SVM 480.58 0.92 230960 348.78 Medium Gaussian SVM 4.60 1.67 214 253 273
Squared Exponential GPR 48331 092 233590  362.47 Squared Exponential GPR __ 4.83 1.85 237 224 2.82
Fine Tree 52243 0.9 272940 365.35 Fine Tree 4.80 3.40 2.39 3.79 3.59
Medium Tree 52597 0.9 276650  383.88 Medium Tree 495 242 2.53 3.76 3415
Fine Gaussian SVM 559.16 0.89 312660 376.31 Fine Gaussian SVM 8.25 26.55 7.05 3.25 11.275
Coarse Tree 56451 0.89 318670 _ 419.54 ES;ECS{;;Z jig f‘;; iﬁ gj;‘ 3‘2‘25
Cubic SVM 54474  0.89 296760 _ 400.04 Quadratic SVM 478 220 2.86 3.0 323
Quadratic SVM 01672 0.87 382210  453.96 Coarse Gaussian SVM 189 227 2.6 2.65 3.10
Coarse_Gaussian SVM 637.8 0.86 406790 470.13 Interactions Regression 5.44 3.15 3.0 2.83 3.60
Interactions Regression 657.34  0.85 432090  491.67 Stepwise Linear 5.06 31 312 309 3.595
Stepwise Linear Regression  661.02  0.85 436950  496.34 Regression : : : :
Boosted Tree 764.86  0.79 585010  605.14 Boosted Tree 543 426 5.53 2.92 4.53
Lincar Regression 76845 079 590520 588.56 Linear regression 610 349 242 768 492

> Robust regression 5.59 3.05 2.64 2.11 3.347

R_obust Regression 775.66  0.79 601640  576.06 Lincar SYM 5.50 2822 PEY) 300 3433
Linear SVM 782.84  0.78 612840 579.3

although all six chosen models’ forecasts are symmetrically

and response plots of the trained model are shown in Fig- scattered, scatter points for the Rational Quadratic GPR in

ures 11-13. Fig. 11 (b) and for Exponential GPR in Fig. 11 (f) are much
more tightly placed around the diagonal line than other four

C. RECOMMENDED TWO FINAL MODELS models, which demonstrate improved performance.

Fig. 11 shows the R-Squared plots for the six top performing Similar characteristics can be observed in the predicted

models. A good forecasting model is scattered tightly and response plot given in Fig. 12. Both Rational Quadratic GPR
symmetrically near the diagonal line. As shown in Fig. 11, (Fig. 12 (b)) and Exponential GPR (Fig. 12 (f)) exhibits
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TABLE 5. Hyperparameter setting of the proposed models.

Exponential GPR | Rational Quadratic GPR
Kernel Exponential Rational Quadratic
Function
Kernel Sigmal | SigmaF | Sigmal | AlphaRQ | SigmaF
Parameters | 35.9 3177.32 | 9.54 0.024 5103.01
Optimizer Quasi-newton Quasi-newton
Basis Constant Constant
Function
Prediction Block Coordinate | Block  Coordinate ~ Descent
Method Descent (BCD) (BCD)
BCD Block | 1000 1000
Size
Number of | 100 100
Greedy
BCD
Step 0.001 0.001
Tolerance
BCD 1x10° 1% 10°
Iteration
Limit
Fit Method | Standard Deviation | Standard Deviation
Active Set | Random Random
Method
Random 59 59
Search Set
Size
Tolerance 1x10°° 1x10°°
Beta 1.11 x 10* 1.065 x 10*
Sigma 16.86 4.28 x 102

asymmetric distribution around the zero line more tightly than
other four models, which indicate a better performance.

In Fig. 13, true and predicted response of the chosen
six models are box-plotted. To be a good model, true and
predicted response should be identical. Squared Exponen-
tial GPR exhibits dissimilarities on Monday, Tuesday and
Saturday (Fig. 13 (a)), Medium Gaussian SVM on Monday
and Saturday (Fig. 13 (c)), Matern 5/2 GPR on Saturday
(Fig. 13 (d)), and Bagged Trees on Monday and Satur-
day (Fig. 13 (e)). However, true and predicted response of
Rational Quadratic GPR (Fig. 13 (b) and Exponential GPR
(Fig. 13 (f)) remain identical every day.

Comparing the six top-performing models, the analysis
confirms that Rational Quadratic GPR and Exponential GPR
algorithms are the two recommended final models. They are
more accurate and reliable for predicting the university cam-
pus load demand throughout every season than other models.

The Rational Quadratic model showed excellent results in
RMSE, R-Squared, MSE, and MAE values when it came to
the validation dataset. The error of the predicted model was
analyzed for four months out of all the six top-performing
models, Exponential GPR can produce more accurate results
with less error percentage.

Compared to other models, Rational Quadratic GPR and
Exponential GPR was able to mimic the actual load pattern
more effectively.

We have chosen SVM model as a benchmark in this paper,
the two GPR models (Rational Quadratic GPR and Expo-
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nential GPR) are nonparametric kernel-based probabilistic
models, and they have outperform the SVM models.

V. CONCLUSION

In this paper, an effective short-term load forecasting
approach for the university campus at Memorial University
of Newfoundland, St. John’s, Canada is proposed. In the
proposed approach, 19 regression models are firstly used to
create load forecasting models using measured historical load
demand data, these models are then evaluated through error
indices. Among the 19 models, six top-performing models are
determined.

The recommended final models are GPR models,
which are nonparametric kernel-based probabilistic models.
Through this research, it is found that the GPR is a viable
load forecasting methodology. It is nonparametric, i.e., it is
not limited by a functional form, so rather than calculat-
ing the probability distribution of parameters of a specific
function, GPR calculates the probability distribution over all
admissible functions that fit the data. GPR is able to learn
useful patterns through the utilization of the available training
datasets and performs data extrapolation. A GPR implements
a prediction model that is computationally inexpensive, while
it is able to make predictions using small and scarce training
datasets. In addition, it provides a predictive distribution
defined by the mean value together with the respective vari-
ance. Therefore, Rational Quadratic GPR and Exponential
GPR algorithms are recommended for load forecasting in this

paper.

APPENDIX

Hyperparameters are internal parameters of a regression algo-
rithm. A regressor set the coefficient values of a data driven
regression model using its hyperparameters. Hyperparameter
of the proposed GPR models are tabulated in the table below.
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