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ABSTRACT Conversion of a visible face image into a thermal face image (V2T), or one thermal face image
into another one given a different target temperature (T2T), is required in applications such as thermography,
human body thermal pattern analysis, and surveillance using cross-spectral imaging. In this work, we propose
to use conditional generative adversarial networks (cGAN)with cGAN loss, perceptual loss, and temperature
loss to solve the conversion tasks. In our experiment, we used Carl and SpeakingFaces Databases. Frèchet
Inception Distance (FID) is used to evaluate the generated images. As well, face recognition was applied to
assess the performance of our models. For the V2T task, the FID of the generated thermal images reached
a low value of 57.3. For the T2T task, we achieved a rank-1 face recognition rate of 91.0% which indicates
that the generated thermal images preserve the majority of the identity information.

INDEX TERMS Generative adversarial networks, image-to-image translation, thermal pattern generation,
face recognition, biometrics.

I. INTRODUCTION
Both visible and thermal spectra provide useful biometric
information on human subjects. Most biometric tasks, such
as face detection and recognition, focus on the visible spec-
trum. Thermal cameras, unlike visible spectrum ones, allow
for capturing the low-light scene. However, in most cases,
thermal images cannot be used for face recognition given that
legacy databases of faces contain only visible spectra images.
In thermography for healthcare applications, the opposite
image-to-image translation may be needed.

This paper focuses on two tasks. The first is dedicated
to answering the question: Is it possible to convert a face
image taken in visible spectrum into an image taken in ther-
mal spectrum? The second task poses the question: How to
convert a thermal face image taken at a certain measured
body temperature into a thermal image given a different
temperature?

The associate editor coordinating the review of this manuscript and
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In this paper, we build a deep learning model to solve
these two image-to-image translation tasks. We use a con-
ditional generative adversarial network (cGAN) [1], condi-
tioned on input visible or thermal images, to generate the
output images. Our cGAN consists of a ‘U-Net’ generator
(G) and a PatchGAN discriminator (D). We use the Carl
Database [2] and the SpeakingFaces Database [3] containing
visible and thermal images to train our model. For converting
a visible face image into a thermal face image (V2T), we use
the SpeakingFaces Database which contains paired visible
face images and thermal images to train our model, with a
cGAN and Mean Absolute Error (MAE) loss. For the second
task, converting a thermal face image into another thermal
face image with the target temperature (T2T), we modify
our model to include temperature information. We use the
Carl Database containing thermal faces with different tem-
peratures to train our model. The model is trained using a
combination of cGAN loss, perceptual loss [4], and temper-
ature loss. We extend our previous work [5], by applying the
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Frèchet Inception Distance (FID) [6] and face recognition
techniques to measure the performance of the proposed
cGAN. Applying face recognition techniques on the resulting
generated thermal images shows an acceptable performance.

The main contributions of our work are listed below:
1) We propose to use cGAN to solve two cross-

spectrum image-to-image translation tasks, V2T and
T2T. To solve these tasks, we modified the structure
of cGAN as cGANV2T and cGANT2T . To the best of
our knowledge, it is the first time that the T2T task is
approached this way.

2) Two different databases are used to train cGANV2T and
cGANT2T , with different loss function combinations.

3) We evaluate the performance of our two cGANmodels
using FID and face recognition techniques.

The paper is organized as follows: Section II provides a
literature review related to GAN and image to image trans-
lation tasks. Section III describes the architecture of the
proposed cGAN. Section IV provides information on the
databases used for training and describes the pre-processing
steps applied to the images. Section V summarizes the results
of the proposed cGAN application. Section VI concludes the
paper.

II. RELATED WORK
A. GENERATIVE ADVERSARIAL NETWORKS
GANs were proposed in 2014 [7], followed by multiple suc-
cessful applications in various fields [8]. AGAN is comprised
of a generator (G) and a discriminator (D). D is trained on
real samples from a collected database and fake samples
generated by G and is responsible for classifying samples as
real or fake.G is to generate fake samples that are real enough
to foolD. The adversarial process is formulated as a minimax
game [7]:

min
G

max
D

E(x∼pdata)[logD(x)]+ E(z∼pz)[log(1− D(G(z)))]

(1)

where the distribution of the real sample x is denoted by
pdata, pz represents the distribution of the noise input z, and
E is to calculate the expectation of the following expression.
By training G and D together, they compete with each other
and achieve an equilibrium where G can implicitly learn the
distribution of the collected samples, without the need of any
crafted loss functions.

However, GANs suffer from adversarial training instability
and mode collapse problems [9], [10]. An improved archi-
tecture called DCGAN was proposed in [9] to resolve the
training instability problem, by using CNN and batch nor-
malization [11]. Most recently, Wasserstein GAN [12], [13]
and LSGAN [14] were proposed to improve the adversarial
training stability and alleviate the mode collapse problem.

In our work, we adopt cGAN [1], with G aiming to gen-
erate thermal face images, conditioned on input visible or
thermal images. Many image-to-image translation tasks, such
as converting semantic labels to real city photos or converting

architectural labels to real structural images, were approached
using the cGAN to generate target images [15]. For the
V2T task considered in our paper, the condition is the input
visible image, and the proposed cGAN is built to generate
a corresponding thermal image. This task is similar to the
one described in [16] and [17]. K. Lai et al. [16] used cycle-
GAN to convert images between visible and thermal domains.
K. Landry et al. [17] uses GAN to convert images from ther-
mal spectrum into visible. In our experiment, we focus on
converting images from visible spectrum into thermal. For
the T2T task, the condition includes both the input thermal
image and a target temperature, and the proposed cGAN
is constructed to generate a thermal image given a target
temperature.

B. FACIAL ATTRIBUTE EDITING
Facial attribute editing aims to manipulate single or mul-
tiple attributes of a given face image, while preserving its
identity details [18]. In contrast, our approach to T2T aims
to edit the temperature attribute for a given thermal face.
Manymethods have been proposed recently to solve the facial
attribute editing problem, and most of them have only been
applied to visible face images. Li et al. [19] trained a deep
identity-consistent attribute transfer model to add/remove
an attribute to/from a visible face image. To do so, they
employed an adversarial attribute loss and a deep identity
feature loss. Shen and Liu [20] adopted the dual residual
learning strategy to simultaneously train two networks by
adding and removing a specific attribute. StarGAN [21] per-
formed the facial attribute editing based on the attribute labels
by introducing an attribute classification loss [22] and a cycle
consistency loss [23], which can perform multiple attribute
editing simultaneously using only a single model.

Wang et al. [24] proposed an IPCGAN with a cGAN
module, an identity-preserved module, and an age classi-
fier to address the face aging problem by editing the age
attribute on a given face. Unlike this approach, in our paper,
facial attribute editing is applied to the thermal spectrum,
i.e., manipulating the temperature attribute of thermal face
images. In our T2T task, we use thermal images from the
Carl Database [2] to train our cGAN, with an adversarial,
perceptual, and temperature loss function.

III. PROPOSED METHOD
In our work, we use cGAN to solve both of the image-to-
image translation tasks. Our implementation of cGAN con-
sists of a generator (G) and a discriminator (D). The minor
differences in the structures of the G and D for V2T and
T2T will be described in detail in Subsection III-A. For
V2T conversion, the input of GV2T is a visible image, and
the expected output is a thermal image. The input of DV2T
includes both a visible image and a thermal image, and the
output indicates whether the input thermal image is the real
paired image of the input visible image. For T2T conversion,
the input ofGT2T is a thermal image and a target temperature,
and the output is the generated image with a thermal pattern
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FIGURE 1. cGAN network for the V2T conversion. The generator (GV 2T ) converts visible images into thermal images. GV 2T consists of an input block (the
left-most green cuboid), 7 encoding blocks (the following 7 green cuboids), a bottleneck block (the left-most yellow cuboid), 7 decoding blocks (the
following 7 yellow cuboids) and an output block (the right-most yellow cuboid). There is a direct skip (blue curve arrow) connecting each
encoding-decoding pair. The Discriminator (DV 2T ) is to determine whether the input visible and thermal images are paired. The structure of DV 2T is
similar to the DT 2T presented in Fig. 2, and the minor difference will be described in Section III-A.

corresponding to the target temperature. The input ofDT2T is
a thermal image, and the output indicates whether the input
thermal image is real or generated. By training each G and
D together, they should reach an equilibrium such that G
generates a thermal image that is real enough to fool D.

A. PROPOSED FRAMEWORKS
The following is an overview of the cGAN used, simi-
lar to the cGAN described in [15], with a discussion of
necessary changes. We use ‘U-Net’ [25] as our generator
(G) and a 6-layer PatchGAN as our discriminator (D) for
both conversions. Both possess the convolution-BatchNorm-
LeakyRelu [9] blocks.

Fig. 1 shows the network structure of our GV2T . Simi-
lar to our previous design [26], GV2T consists of an input
block, 7 encoding blocks, a bottleneck, 7 decoding blocks,
and an output block. Each encoding block down-samples
the previous block by 1/4 (1/2 of length and 1/2 of width)
with strides = 2, and each decoding block up-samples the
previous block by 4 times. For the ith decoding block, we con-
catenate it with the last ith encoding block in the channel
dimension, before applying the LeakyRelu activation. The
filter size is set to 4 ∗ 4 for all blocks. The filter number is set
to 64 for the first encoding block, and doubles for each of the
following blocks until it reaches 512; after that, it remains at
512. The filter number for each decoding block is the same as
the encoding block connected to it. For the bottleneck block,
the filter number is set to be 512, and the activation function
is ReLU. For the output block, the filter number is set to 1,
and the activation function is Sigmoid.

Fig. 2 shows the PatchGAN structure of DT2T . It is a
6-layer CNN, with the number of filters for the layers set to
64, 128, 256, 512, 512, and 1, respectively. For the first four
layers, the stride is set to 2, and for the last two layers, the
stride is set to 1. The output is a 16 ∗ 16 matrix, and each
value is to map a 70 ∗ 70 receptive field in input as real or
generated.

The input layer of GT2T and DT2T are slightly different
from GV2T and DV2T . For GT2T , we add one more channel

to incorporate the target temperature information so that the
input layer has 4 channels, while for GV2T it has 3 channels.
ForDT2T , we only input the thermal images into the networks
so that the input block has 3 channels, therefore, DV2T has
6 channels with the concatenated visible and thermal images
as input.

B. OBJECTIVE FUNCTION FOR V2T
The objective function of cGANV2T is defined as follows:

LcGANGV2T (GV2T ,DV2T ) = E(x) log(1− DV2T (x,GV2T (x)))

LcGANDV2T (GV2T ,DV2T ) = −E(x,y) logDV2T (x, y)

−E(x) log(1− DV2T (x,GV2T (x)))

(2)

where x and y are paired visible-thermal images. GV2T tries
to minimizeLGV2T , andDV2T aims to minimizeLDV2T . Addi-
tionally, we appended the Mean Absolute Error (MAE) loss
to help the generator converge faster, and also preserve the
identity information of the ground-truth thermal images in
the pixel-order. TheMAE loss can be calculated by averaging
the absolute difference between the pixel values of the same
coordinate:

LMAE (GV2T ) = E(x,y)
1
V
[||y− GV2T (x)||1] (3)

where V stands for the number of pixels in the input or output
images. Combining these losses together, our final objective
is expressed as follows:

LcGANGV2T = LGV2T + αL
MAE

LcGANDV2T = LDV2T (4)

where α controls the weight of LMAE with respect to LGV2T .
Here, we set α = 100, determined by the best visual effect of
generated thermal images on the training set.

C. OBJECTIVE FUNCTION FOR T2T
The objective function of cGANT2T conversion can be written
as follows:

LcGANGT2T (GT2T ,DT2T ) = E(x) log(1− DT2T (GT2T (x, t)))
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FIGURE 2. cGAN network for the T2T conversion. GT 2T converts a thermal image into another thermal image with target temperature, and we add one
more channel to represent the temperature information in the input block. The temperature predictor is pre-trained to provide the temperature loss.
VGG is to provide perceptual loss. DT 2T is a 6-layer PatchGAN that determines whether the input thermal image is real or generated.

LcGANDT2T (GT2T ,DT2T ) = −E(x) logDT2T (x)

−E(x) log(1− DT2T (GT2T (x, t)))

(5)

where x is the input thermal image and t is the target tem-
perature. Additionally, we use the perceptual loss Lprp as
proposed by Johnson et al. [4]. It is formed using the features
extracted from selected layers of the pre-trained VGG net-
work [27] given by:

Lprp(GT2T ) = E(x)

N∑
i=1

1
Vi
[||F (i)(x)− F (i)(GT2T (x, t))||1]

(6)

where F (i) represents the ith layer with Vi activations of the
VGG network, and N is the number of selected layers in the
VGG model. In our work, we empirically choose 4 layers
of the VGG network as F , to calculate Lprp. With Lprp,
we preserve the similarity of the high-level features of the
input and output thermal images.

In addition, we use a temperature loss to enforce the gen-
erated thermal image fit into the target temperature. To get
the thermal pattern corresponding to the target temperature,
we pre-train a temperature predictor. We label each thermal
image by the value of temperature, based on the tempera-
ture matrix provided by [2]. Our temperature predictor has
the same architecture as Alexnet [28], except that the last
fully-connected layer has only one unit with tanh activation.
The temperature loss is defined as follows:

Ltemp(GT2T ) = E(x)σ (TP(GT2T (x, t)), t) (7)

In the above equation, σ () corresponds to an MAE loss,
and TP() is our trained temperature predictor. During back-
propagation, Ltemp forces the parameters of GT2T to change
and generate faces that represent the target temperature. Com-
bining these losses together, our final objective is expressed

as follows:

LGT2T = LcGANGT2T + αL
prp
+ βL temp

LDT2T = LcGANDT2T (8)

where α and β are set at 100 and 500, determined by the
criterion of the best visual effect of the generated thermal
images from the training set.

The reason that we use Lprp rather than LMAE for the T2T
task is that increasing or decreasing the temperature of the
input thermal face image inevitably changes the pixel values
of the image, thus causing a large LMAE . To some extent,
LMAE and Ltemp are contradictory in the T2T task. However,
one of our goals for the T2T task is to keep the subject identity
information, sowe useLprp to preserve the high-level features
of the input thermal faces.

IV. EXPERIMENT SETUP
A. DATABASES
In this paper, we use two databases. The first database is
the Carl Database [2], in which visible and gray-scale ther-
mal images, containing human faces, are collected simul-
taneously, using a TESTO 880-3. The database contains
41 subjects. For each subject, four image acquisition sessions
were performed within two months, each with three different
lighting settings (natural, infrared, and artificial), and five
images for each lighting setting. This generates 41 ∗ 4 ∗
3 ∗ 5 = 2, 460 visible-thermal image pairs. However, the
visible-thermal image pairs are not aligned, and, thus, cannot
be used to train the cGANV2T directly.Wewill provide details
of our alignment process in Section IV-B. In addition, this
database contains the temperature matrix corresponding to
the thermal images, which provides the possibility to generate
a thermal image with a different target temperature. In our
work, to keep it consistent with another database, we used
the Testo software [29] to convert the raw data into thermal
images using an ‘iron’ palette. We used these images instead
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of the provided gray-scale thermal images, to train and test
the proposed model.

The second data set is the SpeakingFaces Database [3],
which provides much more well-aligned visible-thermal face
image pairs, compared to the Carl Database. In the Speak-
ingFaces Database, subjects are required to read commands,
and their voice, thermal faces, and visible faces are recorded
by microphones, FLIR T540 thermal camera, and Logitech
C920 Pro HDweb-camera simultaneously. The database con-
tains 142 subjects. In our work, images of subjects 1−21 are
not used due to the incompleteness of these samples. For each
subject, the image acquisition is conducted using two trials,
each trial involves 8,100 frames. To record the images, the
cameras are placed in 9 different positions in order to acquire
the face images from 9 different angles, and 900 frames each.
In our work, only the face images taken in the front angle from
SpeakingFaces Database are used. Due to the high volume of
the database and the high similarity between the images taken
subsequently, we sampled only 5% of the frontal face images.
Altogether, we use 122 ∗ 2 ∗ 900/20 = 10, 980 thermal-
visible image pairs. The thermal images and visible images
are aligned. However, unlike the Carl Database, the temper-
ature information of the thermal images was not available in
this database.

B. ALIGNMENT, FACE EXTRACTION AND RESIZING
The following is an overview of our approach to
pre-processing of the two databases. We consider the res-
olution of 256 ∗ 256 of the face images used to train our
two cGAN models. In the Carl Database, the visible and
thermal images were not aligned and, thus, could not be
used for training or testing directly. We applied the facial
landmarks annotated manually by Alperen [30], and coor-
dinated the mapping to extract the faces from visible and
thermal images.We then resized the extracted faces to achieve
the resolution of 256 ∗ 256. Fig. 3 shows an example of an
original visible-thermal face image pair and the same image
pair after the alignment and resizing. Based on the 6 facial-
landmark-position pairs (blue points) provided by Alperen,
we learn the coordinate mapping between the visible image
and the thermal image. Details of the coordinate mapping
will be described in the next paragraph. Next, we applied
the pre-trained face detector tool dlib [31] to extract the
face from the visible image and expand it by a factor of 1.3,
in order for the whole face (solid green box) to be extracted.
The learned coordinate mapping is used to map the solid
green box within the visible image into the thermal image;
this results in extracting the thermal face (dashed green
box). At last, we resize the two extracted faces to achieve
a resolution of 256 ∗ 256 and get the aligned visible-thermal
face image pair.

Below we explain the coordinate mapping process. The
Cartesian coordinates of the six points in the visible image are
annotated as follows: {xvn, yvn} , 1 ≤ n ≤ 6. The same coordi-
nates in the thermal image are denoted as {xtn, ytn} , 1 ≤ n ≤
6. We map the points in the visible images into the points

FIGURE 3. Alignment and resizing operation of both the visible and
thermal images. Six blue points in each image are manually
annotated [30]. The solid green box in the visible image was detected by
the ‘dlib’ face detector. By learning the coordinate transformation through
six-point pairs, we map the solid green box within a visible image into
the dashed green box within a thermal one. Next, the two green boxes
are resized to reach the 256 ∗ 256 resolution (red boxes).

in the thermal images through the linear transformation as
described below:

ax × xvn + bx = xtn
ay × yvn + by = ytn

1 ≤ n ≤ 6 (9)

whereax , bx , ay, by are the coefficients to control the linear
mapping. We calculate the coefficients by minimizing the
squared error:

ax , bx = argmin
ax ,bx

6∑
n=1

(ax × xvn + bx − xtn)2

ay, by = argmin
ay,by

6∑
n=1

(ay × yvn + by − ytn)2 (10)

Since the visible and thermal images in the SpeakingFaces
Database are already aligned, we directly use the dlib to
extract the face from the visible images, and then expand it
by a factor.We use the same coordinates to extract the thermal
face.We then resize the extracted faces to achieve a resolution
of 256 ∗ 256 and form the training set for the two cGAN
models.

C. TRAINING AND TESTING FOR V2T
To train our V2T model, we use the visible-thermal image
pairs of subjects 21− 142 from the SpeakingFaces Database.
We use images collected from subjects 41− 142, all together
102 ∗ 2 ∗ 45 = 9, 180 image pairs, to train the model. Images
collected from subjects 21 − 40, provide 20 ∗ 2 ∗ 45 =
1, 800 images pairs, to test the model. The FID metric [6]
is applied in our case to evaluate the similarity between
the generated thermal images and the ground-truth thermal
images. The FID is computed by passing the generated and
real images into the pre-trained InceptionV3 model [32] and
using the difference from the last pooling layer:

FID = ||µr − µg||2 + tr(6r +6g − 2
√
6r6g) (11)

where µ represents the mean for the real (r) and generated
(g) images, 6 represents the covariance for the real (r) and
generated (g) images, and tr is the trace linear function. The
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TABLE 1. The forehead temperature range and distribution for the
thermal images in Carl Database.

lower FID score means that the quality of images generated
by the generator is similar to the real ones; for example, the
FID of 0 indicates that the generated and the ground-truth
images are identical. Note that FID can vary between 0 and
600 in some cases.

D. TRAINING AND TESTING FOR T2T
In our experiment, we use images collected from subjects
1−30, all together 30∗4∗3∗5 = 1, 800 images, to train the
model. The images collected from subjects 31 − 41, totally
660 images, are used to test the model. The temperature
of the centre of the subject’s forehead on the thermal face
image is considered to be the ground truth temperature. The
temperature distribution of the thermal images in the different
ranges is given in Table 1, which indicates that this is an
unbalanced database. We used 80% of the images to train our
temperature predictor, and use the remaining 20% to test the
predictor.We linearly scale the temperature into [-1, 1] so that
it falls into the range of tanh output. We use MAE to evaluate
our temperature predictor. Note that the MAE is 0.27 ◦C in
the testing database.

E. FACE RECOGNITION IN THERMAL SPECTRUM
In order to verify the similarity of the original and the gen-
erated face in both T2T and V2T, we apply face recognition
in both thermal and visible spectra. The following method-
ology was used to evaluate the performance of such face
recognition.

Face recognition is applied in this work to find the real
identity of a test sample among all subjects in the database.
We apply transfer learning [33] on three pre-trained models:
InceptionV3 [32], Xception [34], and MobileNet [35].

The face recognition in T2T was performed using four-
fold cross-validation, with each fold representing a different
acquisition session. For V2T conversion, we use two-fold
cross-validation. The number of folds is determined by the
session numbers available in each database.

We train each CNN model with the images from three
(for T2T) or one (for V2T) session(s) and validate it with
the images from the remaining session. After fine-tuning the
optimal parameters for the particular validation set, we test
the final performance of the CNN with the synthesized ther-
mal images. This way the parameters are adjusted using the

TABLE 2. Average identification performance (%) and standard deviation
across two-fold cross-validation for V2T conversion. MobileNet performs
the best (bolded) in three models.

criterion of the performance of the face generation. We com-
pare the performance of the real and generated thermal
images. We also perform face recognition in the visible spec-
trum for comparison.

Our approach employs Transfer Learning. It involves load-
ing the pre-trained weights optimized for the ImageNet chal-
lenge first. The last fully-connected layer and classification
layer from each model are removed, and an average pooling
layer, two fully-connected layers with 512 units, and a classi-
fication layer are added to eachmodel. Two training processes
are applied sequentially. Initially, the model is trained with
the other layers frozen, allowing only the newly added layers
to update, with a higher learning rate for 50 epochs. Next,
the entire model is trained with a lower learning rate for
50 epochs with a fine-tuning purpose [16]. Due to the high
volume of the SpeakingFaces Database, for the face recog-
nition in the V2T task, we resize the images to achieve the
128∗128 resolution. For the T2T task, we keep the resolution
of 256 ∗ 256.

V. RESULTS
A. V2T GENERATED IMAGES
For V2T conversion, we use three instances of visible images:
ground-truth thermal images using the ‘iron’ palette, gener-
ated ‘iron’ palette thermal images, and the corresponding FID
values, as shown in Fig. 4. The generated thermal images
reach satisfactory visual effects. For some parts of the gener-
ated images, our model does not perform well, such as a ther-
mal image in the first column that seems to have an artifact
in the hair part. For the second subject, the generated thermal
image cannot reproduce the curly hair in the forehead.We use
FID to measure the similarity between the generated thermal
images and the ground-truth thermal images. The FID of all
images in the test set achieved the value of 57.3 which is
reasonably low compared to the maximum FID values that
can reach 600 or higher.

1) V2T FACE RECOGNITION
The performance of face recognition (using 1 : N com-
parison) is evaluated by the rank performance and the True
Acceptance Rate (TAR) at the targeted 1% and 0.1% False
Acceptance Rate (FAR). For each subject, we calculate
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FIGURE 4. Three instances of visible images, ground-truth ‘iron’ thermal
images, generated ‘iron’ thermal images, and the corresponding FID
values. The black arrows show the parts that are not preserved well.

FIGURE 5. CMC curve for InceptionV3, Xception, and MobileNet using the
SpeakingFaces database. Test case includes the synthesized thermal
images, the validation case is composed of real thermal images, and the
visible validation consists of visible images. MobileNet performs the best
than the other two models. Performance on validation (Valid) is better
than on testing (Test).

TAR = TP/(TP + FN ), where TP and FN represent the
number of true positive and false negative, respectively. The
overall TAR was taken as the average TARs for each subject.
For evaluation, the targeted 1% or 0.1% FAR corresponds to
a specific acceptance threshold. The testing set was formed
based on the synthesized thermal images using the cGANV2T ,
and the validation set was formed using original thermal
images.

FIGURE 6. CMC curve for InceptionV3, Xception, MobileNet using the Carl
database. The test case consists of the synthesized thermal images,
validation case includes real thermal images, and visible validation
consists of visible images. MobilNet performs the best than other two
models. Performance on validation (Valid) is slightly better than on
testing (Test).

Table 2 illustrates the performance for the validation
set (Valid) and test set (Test) of the three different networks.
Valid shows higher TAR because the validation images have
the same spectrum as the training images. Test produces
lower TAR since Test are formed from generated images.
For testing, the MobileNet network demonstrates the best
performance in terms of TAR at the targeted FAR and rank-1,
and the Xception model reports the worst result.

Fig. 5 shows the Cumulative Matching Characteris-
tic (CMC) for the face recognition rate of the three network
models when accepting identities at ranks between 1 to 30.
All the models perform better on Valid compared to Test,
which indicates the loss of identity information following
the V2T conversion. MobileNet performs the best, while
InceptionV3 performs the worst.

We used cGANV2T to convert visible face images into
thermal face images, and FID and face recognition techniques
to evaluate the generated thermal images. These images keep
similarity to the ground-truth thermal images, and the overall
FID reached 57.3. The rank-1 face recognition rate of Test
is lower than Valid (14.0% for InceptionV3 and 15.8% for
Xception). MobileNet has a better performance than the other
two networks, with regard to TAR and rank-1 accuracy, on all
of the sets.

B. T2T GENERATED IMAGES
For T2T conversion, we list four instances of the input and
generated thermal images with different target temperatures
as shown in Fig. 7. The four input thermal images have
four different original temperatures, from lowest to highest.
As seen in Fig. 7, from left to right, thermal images become
lighter due to their higher facial temperature. We also used
the trained temperature predictor to predict the tempera-
tures of the generated thermal images, and list the MAE in
Table 3.
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TABLE 3. Performance summary on generated thermal images with
different target temperatures.

TABLE 4. Average performance (%) and standard deviation across
four-fold cross-validation for T2T conversion.

C. T2T FACE RECOGNITION
Table 4 reports the performance for the Valid and Test, for
the three network models. Valid shows higher performance
because the validation images come from the remaining ses-
sion of the database. Test produces lower performance, due
to the fact that Test is generated by the cGANT2T . For testing,
MobileNet and Xception show similar and good performance
while InceptionV3 shows the worst.

Fig. 6 illustrates the performance of different networkmod-
els when accepting identities from rank 1 to 10. For testing,

the CMC curve shows that Xception and MobileNet mod-
els are similar in their performance, while the InceptionV3
model performs the worst. All the models perform slightly
worse at the Test than Valid sets, which indicates that our
cGANT2T model preserves most of the identity information.
We compared our results with Athira. S et al.’s work [36],
which utilizes local binary pattern [37], pyramid histogram of
oriented gradients [38], k-nearest neighbors [39], and support
vector machine [40] for thermal face recognition with dif-
ferent schemes, with the highest being 91.0%. Our approach
shows a higher recognition rate over most of the approaches.

Table 3 reports the performance of face recognition using
MobileNet model at different target temperatures in Test.
Generated thermal images with target temperatures of 33.5,
34.0 and 34.5 ◦C have similar performance in terms of
TAR and rank-1 face recognition rate. The generated thermal
images with a target temperature of 33.0 ◦C have slightly
worse performance because of the insufficient amount of
low-temperature samples in the database.

Table 5 reports the performance of face recognition using
MobileNet model of each subject in both the Test and Valid
set. A small fraction of subjects (6, 7, 8, 9, 11, 12, 20, 39) has
an obvious decline of face recognition on Test compared with
Valid set. Most of the subjects have a similar performance in
terms of face recognition.

We use cGANT2T to convert thermal images into thermal
images with a given target temperature. Our generated ther-
mal images show high structural similarity to the ground-truth
thermal images. Similarly, the face recognition performance
for each subject and each target temperature on Test with
Valid sets indicates that our approach preserves the structure
corresponding to the target temperature with high accuracy.

TABLE 5. Face recognition performance summary on generated thermal images for each subject.
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FIGURE 7. Four instances of input thermal image (left-most column) with original temperatures and the corresponding
thermal images (other four columns) were generated given different target temperatures. The original temperatures of
the input thermal images change from low (top) to high (bottom), and the target temperature varies from low (left) to
high (right).

The rank-1 accuracy of Test has a slight decline compared to
Valid: 2.8% lower for Xception, 5.0% lower for MobileNet,
and 7.1% lower for InceptionV3. This means that the gen-
erated thermal images almost completely retain the identity
information.

VI. CONCLUSION
In this paper, we describe an approach to the solution of two
image-to-image translation tasks using cGAN: V2T and T2T.
To convert visible to thermal images, we train our cGANV2T
using the criteria such as cGAN loss and MAE loss. The FID
of the generated thermal images reached 57.3. To convert
thermal to thermal images with different target temperatures,
we train our cGANT2T using the criteria of cGAN loss,
perceptual loss, and temperature loss.

We also used face recognition techniques to evaluate the
generated images. For T2T conversion, we reached a high
face recognition rate, which means that the generated thermal
images preserve the subjects’ identity. The main outcome of
this paper is proof of the feasibility of the proposed technique

to generate thermal images given a target temperature, once
either visible or thermal images of the subject are provided.

The proposed solutions address multiple applications from
various fields. For example, in healthcare and medical sci-
ences, one may need to model the thermal pattern distribution
on subjects’ faces given a target temperature. In surveillance,
there might be a need to convert visible spectrum image
stored in a legacy database to thermal, in order to compare
with a probe image, acquired using thermal surveillance cam-
eras, to determine the identity of a person.
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