IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received December 25, 2021, accepted January 9, 2022, date of publication January 18, 2022, date of current version January 28, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3144079

A Survey of Challenges in Spectrum-Based
Software Fault Localization

QUSAY IDREES SARHAN"“12 AND ARPAD BESZEDES !

! Department of Software Engineering, University of Szeged, 6720 Szeged, Hungary
2Department of Computer Science, University of Duhok, Duhok, Kurdistan Region 42001, Iraq

Corresponding author: Qusay Idrees Sarhan (sarhan@inf.u-szeged.hu)

This work was supported in part by the University of Szeged Open Access Fund under Grant 5459; in part by the Ministry of Innovation
and Technology, NRDI Office, Hungary within the framework of the Artificial Intelligence National Laboratory Program (MILAB); and in
part by the Hungarian National Research, Development and Innovation Office, through the ““Security Enhancing Technologies for the
IoT,” under Grant 2018-1.2.1-NKP-2018-00004. The work of Qusay Idrees Sarhan was supported by the Stipendium Hungaricum
Scholarship Program.

ABSTRACT In software debugging, fault localization is the most difficult, expensive, tedious, and time-
consuming task, particularly for large-scale software systems. This is due to the fact that it requires significant
human participation and it is difficult to automate its sub-tasks. Therefore, there is a high demand for
automatic fault localization techniques that can help software engineers effectively find the locations of
faults with minimal human intervention. This has led to the proposal of implementing different types of such
techniques. However, Spectrum Based Fault Localization (SBFL) is considered amongst the most prominent
techniques in this respect due to its efficiency and effectiveness. In SBFL, the probability of each program
element (e.g., statement, block, or function) being faulty is calculated based on the results of executing test
cases and their corresponding code coverage information. However, SBFL techniques are not yet widely
adopted in the industry. The rationale behind this is that they pose a number of issues and their performance
is affected by several influential factors. For example, the characteristics of bugs, target programs, test suites,
and supporting tools make their effectiveness differ dramatically from one case to another. There are massive
studies on SBFL that cover its usage, formulas, performance, etc. So far, no dedicated survey points out
comprehensively the issues of SBFL. In this paper, various SBFL challenges and issues have been identified,
categorized, and discussed alongside many directions. Also, the paper raises awareness of the works being
achieved to address the identified issues and suggests some potential solutions too.

INDEX TERMS Program spectra, spectrum based fault localization, software testing, challenges and issues,

survey.

I. INTRODUCTION

Software cover many aspects of our everyday life as they
are used in different application domains such as healthcare,
military, automobile, and transportation. Thus, our modern
life cannot be imagined without software. The extensive use
of different software products in our day-to-day activities has
led to a significant increase in their size and complexity [1].
As a result, the number and types of software faults have
also increased. Software faults not only lead to financial
losses; but also loss of lives. Finding the locations of faults in
software systems has historically been a manual task that has
been known to be tedious, expensive, and time-consuming,

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana

10618 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

particularly for large-scale software systems [2]. Besides,
manual fault localization depends on the developer’s expe-
rience to find and prioritize code elements that are likely
to be faulty. Developers spend almost half or more of their
programming time on finding faults alone [3]. Therefore,
there is a serious need for developing automatic fault local-
ization techniques that can help developers effectively find
the locations of faults in software systems with minimal
human intervention. Different types of such techniques have
been proposed and implemented by researchers and devel-
opers. However, Spectrum Based Fault Localization (SBFL)
is considered amongst the most prominent techniques in this
respect due to its lightweight, language-agnostic [4], easy to
use [5], and relatively low overhead in test execution time [6]
characteristics.

VOLUME 10, 2022

https://orcid.org/0000-0001-8708-0063
https://orcid.org/0000-0002-5421-9302
https://orcid.org/0000-0003-3264-185X

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

IEEE Access

In SBFL, the probability of each program element (e.g.,
statement, block, or function) being faulty is calculated based
on the results of executing test cases and their corresponding
code coverage information [7]. Currently, SBFL techniques
are not yet widely adopted in the industry as they pose a
number of issues and their performance is affected by several
influential factors [8], [9]. For example, the characteristics
of bugs, target programs, test suites, and supporting tools
make their effectiveness differ dramatically from one case
to another. In the literature, there are massive studies on
SBFL covering its formulas, performance, and applications.
However, no dedicated survey points out comprehensively the
issues of SBFL. Thus, it is crucial to present and categorize
various SBFL challenges and issues to offer a comprehensive
survey on the topic.

The main contributions in the paper can be summarized as
follows:

1) Conducting s systematic literature survey on the chal-
lenges of SBFL.

2) Identifying and presenting 18 SBFL challenges and
issues.

3) The paper also raises awareness of the works being
achieved to address the identified challenges and
issues, and suggests some potential solutions in order
to help those working on this topic and those interested
in making contributions to it.

The study begins with the formulation of a research ques-
tion (RQ) that addresses several aspects of the considered
topic. It then identifies the related papers that should be
read in order to answer its RQ. Finally, it discusses poten-
tial research opportunities in the field. To accomplish the
aforementioned goals, relevant papers were collected and
thoroughly analyzed in a systematic manner.

The remainder of this paper is organized as follows:
Section II briefly introduces the background of SBFL and its
main concepts. Section III presents the most relevant works.
Section IV describes the research methodology employed
to perform the study. Section V presents the study’s find-
ings. Section VI outlines the threats to validity and the steps
considered to overcome them. Finally, in Section VII, the
conclusions of the study are given.

Il. BACKGROUND OF SBFL

SBFL is a dynamic program analysis technique that is per-
formed through program execution [10], [11]. The goal of
SBFL is to address the problem of finding the root causes
of bugs by utilizing information from program elements
executed by test cases, in particular the outcomes of tests
and their code coverage [12]. Thus, to identify and locate
elements more likely to be faulty. In SBFL, code coverage
information (also called program spectra), which is obtained
from executing a set of test cases with recording their results,
is used, by a ranking formula, to calculate the probability of
each program element (e.g., statement, block, or function)
being faulty [13]. Code coverage provides information on

VOLUME 10, 2022

which program element has been executed and which one has
not during the execution of each test case, while test results
are classified as passed or failed test cases. Passed test cases
are executions of a program whose outputs are expected,
whereas failed test cases are executions of a program whose
outputs are unexpected [14].

The idea of program spectra was mentioned for the first
time in 1987 [15]. However, the use of program spectra for
fault localization was first proposed in a study on the year
2000 problem (also known as the Y2K problem) aimed at
discovering errors in calendar data formatting and storage for
dates in and after the year 2000 [16]. It is worth mentioning
that Tarantula is one of the first approaches, proposed in
2002 [17], that uses a ranking formula to calculate elements’
suspiciousness in SBFL [12]. Afterwards, many other formu-
las have been introduced and the roots for many of them are
from biology such as Ochiai [18] and Binary [19].

To illustrate the work of SBFL, assume that there is a
Python mid() function that takes three numbers as input and
returns the median value. The mid() function, which is a
well-known code segment used for describing fault localiza-
tion [20], comprises twelve statements S; (1 < i < 12) and
six test cases Tj (1 < j < 6) as shown in Figure 1 that have
been executed and the spectra (the execution information of
statements in passed and failed test cases) have been recorded
as presented in Table 1. There is a fault in statement 7 (the
correction is m = x), and only two test cases, T1 and T6, hit
that faulty statement. An entry of 1 in the cell corresponding
to statement §; and test case 7; means that the statement S;
has been executed by the test case T}, and it is 0 otherwise.
Also, an entry of 1 in the row labeled R, which represents test
results, means that the corresponding test case failed, and it is
0 otherwise. Intuitively, a statement that is executed by more
failed test cases is more likely to be considered as a faulty
statement.

I: defmid(x, y, 2): import mid_function
2 m=z
3 if y<z: def test T1():
4: if x<y: assert mid_function.mid(3, 3, 5) ==
S m=y ‘
6 elif x<z: deftest_T2():
7 m=y assert mid_function.mid(1, 2, 3) =2
else:
8: if x>y: def test_T3():
9: m=y assert mid_function.mid(3, 2, 1) ==2
10: elifx>z:
11: m=x deftest T4():
12: returnm assert mid_function.mid(5, 5, 5)==5
def test_T5():
assert mid_function.mid(5, 4, 3) =
def test_T6():
assert mid_function.mid(2, 1, 3) ==

FIGURE 1. Running example - code and test cases.

The spectra information is then used by a spectra formula
(also called a ranking metric [21], a suspiciousness met-
ric [22], a risk evaluation metric [23], or a fault locator [24])

10619

IEEE Access

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

TABLE 1. Running example - spectra and four counters.

Statement | T1 | T2 | T3 | T4 | TS | T6 | ef | ep | nf | np
1 1 1 1 1 1 1 1 5 0 0
2 1 1 1 1 1 1 1 5 0 0
3 1 1 1 1 1 1 1 5 0 0
4 1 1 0 0 0 1 1 2 0 3
5 0 1 0 0 0 0 0 1 1 4
6 1 0 0 0 0 1 1 1 0 4
7 1 0 0 0 0 1 1 1 0 4
8 0 0 1 1 1 0 0 3 1 2
9 0 0 1 0 1 0 0 2 1 3
10 0 0 0 1 0 0 0 1 1 4
12 1 1 1 1 1 1 1 5 0 0
R 0 0 0 0 0 1

to compute how suspicious each element is of being faulty.
Table 2 presents a few numbers of spectra formulas proposed
in the literature.

TABLE 2. Several spectra formulas with their formulas.

Name Formula
_ef
Tarantula fﬁ%nf
el 4 ep
eftnf eptnp
Ochiai =
\/(ef+nf])c- (ef+ep)
[
Overlab min(ef,nf.ep)
Wong2 ef —ep
2ef-nj—ep
Goodman 2-ef+nftep

Often, a formula is expressed in terms of four counters [25]
that are calculated from the spectra as follows:

o ef: the number of times a statement is executed (e) in
failed tests.

o ep: the number of times a statement is executed (e) in
passed tests.

« nf: the number of times a statement is not executed (n) in
failed tests.

« np: the number of times a statement is not executed
(n) in passed tests cases.

Finally, the statements are ranked based on their computed
suspiciousness scores and then examined by developers in
descending order, ranging from the most suspicious to the
least suspicious. Statements with the highest scores are con-
sidered the most likely to be buggy. Table 3 presents the
scores and ranks of applying different spectra formulas on
the spectra information of our running example. In the case
of the Tarantula formula, for example, statements 6 and 7 are
ranked as the most suspicious elements by the formula as they
have the highest scores compared to others. The third most
suspicious element is 4 and so forth. It is worth mentioning
that the statement 11 has not been included in the scoring as
it has not been executed by any test case. Figure 2 shows the
steps of the SBFL process and how the developer examines
the suggested list of suspicious program elements.

In the previous example, we used statements as the basic
code elements for fault localization. However, it is important
to note that different kinds of granularities are frequently used
as well such as functions and code blocks. Technically, the

10620

Program
(e.g., statements or
methods)

Test suite
(T1, T2, ...,Tn)

v

Execution

Program spectra
(test coverage & test
results)

Ranked list of
suspicious element

Is the current
element faulty?

Fix the faulty
element

Examine the N
next element

FIGURE 2. SBFL process.

TABLE 3. Running example - scores and ranks.

Tarantula | Rank | Ochiai | Rank | Overlab | Rank | Wong2 | Rank | Goodman | Rank
score score score score score

0

0.5
0.5
0.5
0.71
0
0.83
0.83
0
0
0
0.5

0.41
0.41
0.41
0.58
0
0.71
0.71
0
0
0
0.41

-0.43
-0.43
-0.43
0
-1
0.33
0.33
-1
-1
-1
-0.43

0| oo wa| | L | W rof —

| 00| 00| 00| —| —| oo wo| 4| | &
4| 00| oe| 00| | | oo| wo| &u| | &
A is] s o of L 1 4]] &

00| W] o[| =| —| | w| 0| 50| o)
4| 00| 00| co| —| —| 00| La| £ | &

o|lo|o|o|o|o|o| o oo

5| 3|

granularity is determined by the granularity of code coverage
measurement.

lll. RELATED WORKS
The SBFL has been an important and active research field
for decades. However, a survey study on the issues and chal-
lenges in this research field is lacking. A few general survey
studies on software fault localization have been found in the
literature as the most relevant publications. In this section,
these studies are presented briefly.

The authors in [26] provided an overview of coverage-
based testing and compared between 17 coverage-based

VOLUME 10, 2022

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

IEEE Access

testing tools including a tool called “eXVantage” which is
developed by the authors. The comparison was based on
several factors but focused more on coverage measurement.
Then, they discussed various features (e.g., test case gener-
ation, test report customization, and automation) that should
make tools more useful and practical. Also, they briefly men-
tioned that some tools have scalability issues, which makes
them only suitable for small-scale software systems. Many
others provide fine testing granularity, but the performance
overhead prevents them from being useful for testing. How-
ever, the study helps developers pick the right tool that suits
their requirements and development environment.

In [27], the authors presented evidence that the empirical
evaluation of the accuracy of coverage-based fault locators
depends on many factors. They summarized the problems that
they encountered during their own empirical evaluation of the
accuracy of fault locators and classified them into two main
categories: threats to validity and threats to value. Then, each
category presents its own set of issues and their consequences
on the accuracy, including fault injection, instrumentation,
multiple faults, and unrealistic assumptions.

In [28], the authors briefly provided a review of the previ-
ous studies on software fault-localization in a table in terms
of techniques, evaluation methods, and the datasets used.
However, their results are very abstract and no details have
been provided nor issues and challenges have been discussed.

In [29], the authors surveyed the fault localization tech-
niques from 1977 to 2014. They classified the techniques into
eight categories: program slicing, spectrum-based, statistics,
program state, machine learning, data mining, model-based
debugging, and additional techniques. They also listed popu-
lar subject programs used to study the effectiveness of differ-
ent fault localization techniques. Their survey also addresses
fault localization tools developed by the presented studies.
Additionally, they presented some research challenges with
fault localization techniques such as fault interference, pro-
grams with multiple faults, and granularity levels selection.

In [12], the authors conducted a survey on the state-of-the-
art of SBFL research including the proposed techniques, the
type and number of faults they address, the types of spectra
they use, the programs they utilize in their validation, and
their use in industrial settings. Also, they highlighted some
challenges (e.g., tied entities, faults introduced by missing
code, and coincidental correctness) on SBFL research that
have to be tackled to improve the SBFL to be used in real
development settings.

In [30], the authors briefly discussed two issues, granular-
ity levels and entities having the same suspiciousness, based
on what the authors encountered in their collaboration with
the industry. They highlighted that there are many different
granularity levels that can be employed to generate a spec-
trum, but there is no guide for practitioners to help them
select the right spectrum granularity they require. Also, they
discussed ties within rankings due to having entities with the
same suspiciousness which needs more attention in order to
propose new strategies for tie-breaking.

VOLUME 10, 2022

In [31], [32], the authors presented the issue of mul-
tiple fault localization (MFL) of software systems in the
software fault localization domain. They identified three
prominent MFL debugging approaches, i.e., one-bug-at-a-
time debugging approach, parallel debugging approach, and
multiple-bug-at-a-time debugging approach. Also, they pre-
sented some challenges with the identified approaches and
provided some directions for future works.

All the survey studies mentioned earlier were general sur-
veys that did not focus in detail on the issues in the SBFL.
Some of them briefly highlighted a very limited number of
issues. Also, most of them were not conducted systematically.
In contrast, our paper provides a thorough and systematic
survey based on a detailed research methodology to examine
different issues in the SBFL alongside possible solutions
or research gaps for further investigations. As a result, our
paper extends the details of the aforementioned studies by
identifying, categorizing, and discussing 18 important issues
comprehensively.

IV. RESEARCH METHODOLOGY

The systematic process followed in this study is based on the
guidelines provided by [33] and [34]. It consists of several
stages as presented in the following subsections.

A. IDENTIFICATION OF RESEARCH OBJECTIVE
The objective of this paper is to answer the following research
question:

“What are the challenges and issues posed by spectrum-
based fault localization (SBFL)?”

Answering the aforementioned question is achieved by
providing a comprehensive survey via reviewing the publi-
cations on the topic. Thus, helping developers/researchers to
better understand the SBFL and contribute to its development
and research.

B. SEARCH STRATEGY

1) LITERATURE SOURCES

Five well-known online literature sources indexing publica-
tions of software engineering and computer science were
used. Table 4 lists these sources as well as links to their
websites.

TABLE 4. Literature sources used to search relevant studies.

Source Link

IEEE Xplore http://ieeexplore.ieee.org
Elsevier ScienceDirect http://sciencedirect.com
ACM Digital Library http://portal.acm.org
Scopus http://scopus.com
SpringerLink http://springerlink.com

2) SEARCH STRING
The following search string was used to find the relevant
publications from the literature sources:

(“spectrum” OR “statistical” OR “‘coverage”) AND
(“fault”) AND (“localization”)

10621

IEEE Access

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

In the defined search string, the Boolean operators were
employed to link all the selected terms with each other [35].
Where the “OR” operator was used to link synonyms or
related terms and the “AND” operator was used to link the
major terms. It is worth mentioning that no publication time
span was set during the search.

C. PAPER SELECTION
1) PAPER INCLUSION AND EXCLUSION CRITERIA
Several criteria for including and excluding papers (based on
the titles, abstracts, and full-text readings) were considered to
decide whether a publication is relevant to our study or not as
follows:

Inclusion criteria:

« Publications related directly to the topic of this study.
This is ensured by reading the title of each obtained
paper. When the title reading was not enough, the
abstract or full-text reading has also been applied.
It is worth mentioning that in full-text reading/filtering,
we eliminated those papers that do not talk about issues
or we could not use them to identify challenges.

« Papers published online from 2002-2021.

Exclusion criteria:

« Publications that are not available in English.
o Duplicated publications.

2) SNOWBALLING

In this paper, the snowballing technique [36] was also used to
reduce the risk of missing some relevant papers. The newly
found papers are then subjected to the paper selection process
recursively.

Figure 3 shows the paper selection process and its outcome
at each stage. In addition, Table 10 lists all papers (with
their references, titles, and publication years) obtained after
applying the paper selection process.

V. RESULTS

To answer the identified research question of this study, all
the related publications were extensively read and analyzed.
Thus, several challenges and issues posed by the SBFL
have been identified alongside many directions, as shown in
Figure 4, classified into several categories, and then discussed
as follows.

A. STATISTICAL ANALYSIS

In SBFL, statistical analysis is used to correlate program
elements with failures [37], where similarity formulas from
the statistics and data mining domains are used to measure the
likelihood of a program element being faulty. The issue here
is that software testers and researchers are not statisticians.
Worse yet, most of them do not have access to statisticians
or cannot afford to send their data to one. As a result, they
often select SBFL formulas without statistical justifications.
Another issue is that they evaluate their contributions using
statistics to demonstrate that their technique is significantly

10622

Apply search string on llterature databases

IEEE Xplore ISclenceDlrect ACM lerar\ Scopus ISpringerLink

83 18 275
_) <—
+

551

Not English publications]

i 551-1=550

Duplicated publications]

i 550-131=419

Title filtering]

i 419-243=176

Abstract filtering]

Apply inclusion/exclusion criteria

i 176-35=141

Full-text filtering]

l 141-64=77

Apply snowballing

77+53=130

A 4

Total number
of papers=130

FIGURE 3. The outcome of the paper selection process.

better than the state of the art by applying their technique and
the state of the art technique on one or more faulty programs.
Then, they use statistics to demonstrate that a proposed new
technique locates faults ““significantly” better than the state
of the art. As they are not statisticians and do not have statis-
ticians readily available, this may lead to incorrect statistical
analysis and conclusions about the importance of their SBFL
results [38].

To solve these issues, more studies are required to evaluate
if some SBFL formulas are statistically significantly better
than others. Besides, statistical tools are needed to help devel-
opers evaluate their results. For example, the authors in [38],
[39] presented the first such tools called “MeansTest”. The
tool automates some aspects of the statistical analysis of
results by checking whether the statistical methods used and
the results obtained are both plausible. It examines the data
under consideration for several properties including normal-
ity and distribution. Then, it uses that information to deter-
mine which statistical method to use in order to obtain better
results. The tool has been applied to the works presented in
the papers at the 6th International Conference on Software
Testing, Verification, and Validation (ICST’13). Six papers

VOLUME 10, 2022

Q. I. Sarhan, A. Beszédes

: Survey of Challenges in Spectrum-Based Software Fault Localization

IEEE Access

.

~—
A

) S —

5

—

| —

Bugs due to missing
code

Statistical analysis

Coverage types Simulation of SBFL

Elements tie Test flakiness

Division by zero Seeded and real bugs

Spectra formulas
selection

No interactivity

Negative scores

Source of bugs

.
Single and multiple

Buigs Top-N ranking

Ranked elements Results visualization

.
Limitations of SBFL
tools

No contextual
information

FIGURE 4. Challenges and issues of SBFL.

were discovered to have potentially misstated the significance
of their findings because of the selection of inappropriate
statistical techniques.

B. COVERAGE TYPES

Since the granularity of fault localization is determined by the
granularity of code coverage, the selection of which coverage
type to use in the SBFL is crucial as each coverage type
influences the performance of SBFL techniques in one way
or another [29]. Program coverage elements can be divided
into several common types as follows:

« Statement coverage: There are different lines of code
that can be considered for statement coverage. Thus,
the issue is which line of code can be considered as
the most suitable choice. In [40] for example, all the
lines of code in the target program are considered for
statement coverage. While in [41], lines of code that
are preprocessor directives, variable declarations, and
function declarations have not been considered for state-
ment coverage. The number and type of lines of code
considered for statement coverage may have a notable
impact on the performance of any spectra formula based
on the location of the buggy line. To illustrate this, let
us consider that we have two versions of the same target
program: (a) version A with 1000 lines of code which
include all different types of lines of code. (b) version B
with 100 lines of code which does not include variable
declarations, function declarations, etc. Then, we sup-
pose that the buggy line of code was located at the 500th
position in the ranking list of version A. The same buggy
line of code was at the 4th position in the ranking list of

VOLUME 10, 2022

version B. Using the Exam measure in Equation 1 [42],
which measures the percentage of statements that the
programmer needs to examine before the actual bug is
found, program B gives 4% as compared to program A,
which gives 5%. This indicates that the fewer ranked
statements a program has, the fewer statements the pro-
grammer has to examine to find the buggy statement.

E
Exam = <—) - 100% 1
N

where E is the position of the faulty statement in the
ranking list and N is the total number of statements in
the ranking list.

Therefore, comprehensive experimental studies have to
be conducted to distinguish between different types of
lines of code and their impact on fault localization
performance. For example, an interesting investigation
could be giving an importance score to each line of
code in the target program. Importance scores could be
computed via the influence of a specific line of code on
the behavior of a target program. However, statement
coverage is one of the most used coverage types as it
often provides the exact locations of faults [43]

Branch coverage: Here, each one of the possible
branches from each decision point is considered for
branch coverage. The issue in this type of coverage is
that a fault in the condition of an if-then-else may lead
to the execution of the else branch in all failed test cases.
Thus, ranking the statements in this branch higher than
the faulty condition, which is also executed by passing
test cases [27], [44], [45].

Block coverage: Here, a number of program statements
are considered for block coverage [46]. Block size is
determined by the compiler and it depends on the pro-
gram size and structure. The standard size of a block is
5-7 statements [1]. Using statement coverage may result
in ties of scores between the statements within the same
block of a program. While this issue is reduced in the
block-based spectra coverage.

Function coverage: Function (or method)-level granular-
ity can also be employed as a program spectra or cover-
age type. Compared to statement-level granularity, it has
several advantages [47], [48]: (a) it provides more global
contextual information about the investigated program
entity, (b) it is scalable to large programs and executions,
(c) some studies report that it is a better granularity for
the users [49], (d) it reduces the number of program tied
elements too, (e) it is also one of the most commonly
adopted approaches as the basic program elements [43].
However, the number of statements in some functions is
huge sometimes. Thus, it would not be easy to locate a
faulty statement in such functions.

Data-flow coverage: This is about how variables are
defined and then used in a target program. Also, it con-
cerns the relationships among them. Data-flow coverage
provides more details than the standard coverage types

10623

IEEE Access

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

but it requires more execution and memory overheads
during test case execution [50].

C. ELEMENTS TIE
In SBFL, program elements are ranked in order of their sus-
piciousness from the most suspicious to the least. To decide
whether an element is faulty or not, developers examine each
element starting from the top of the ranking list. To help
developers discover the faulty element early in the exami-
nation process and with minimal effort, the faulty element
should be put in the highest place in the ranking list. However,
ranking only based on the suspiciousness scores computed by
spectra formulas causes an issue called elements tie [51].
Elements tie means having a similar suspiciousness score
for more than one program element in the target pro-
gram [30]. Tied elements are usually ranked based on three
approaches [52] as follows:

o MIN measure (also known as the worst case): it refers to
the bottom-most position of the elements that share the
same suspiciousness score.

o MAX measure (also known as the best case): it refers to
the topmost position of the elements that share the same
suspiciousness score.

« MID measure (also known as the average case): it refers
to the average of the position of the elements that share
the same suspiciousness score and it is calculated using
Equation 2.

E-1
MID:S+(2—) 2)

where S is the tie starting position and E is the tie
size. It is worth noting that the MID measure considers
the average of all possible positions. Therefore, it is
more widely used than the other two approaches. Also,
the MID measure must be applied on ascending sorted
suspiciousness scores.

It is quite frequent that ties include faulty elements and
it is not limited to any particular SBFL technique or target
program. Such elements are tied for the same position in
the ranking list. Also, it indicates that the used technique
cannot distinguish between the tied elements in terms of their
likelihood of being faulty. Thus, no guidance is provided to
developers on what to examine first [53], [54]. In addition,
the greater the number of ties involving faulty elements, the
more difficult it is to predict at what point the faulty element
will be found during the examination.

Ties among program elements can be divided into two
types as follows:

o Non-critical ties: This type refers to the case where
only non-faulty elements are tied together for the same
position in the ranking list. Here, if the tied elements
have a higher suspiciousness score than the actual faulty
element, then every element will be examined before
finding the faulty element. On the other hand, if the
tied elements have a lower suspiciousness score than

10624

the actual faulty element, then the faulty element will
be examined before the tied elements. Thus, there is
no need to continue examining the ranking list. In both
cases, the internal order in which the tied elements are
examined does not affect the performance of fault local-
ization in terms of the number of elements that must be
examined before finding the faulty element.

« Ciritical ties: This type refers to the case where a faulty
element is tied with other non-faulty elements [53].
In this type, the internal order of examination affects the
SBFL performance. It is worth mentioning that critical
ties are not a rare case in fault localization. Besides,
a significant portion of the elements in the program
under consideration might be critically tied. Therefore,
there is a need for tie-breaking strategies.

Many approaches can be used to handle the ties problem
in the ranking list of program elements. In [55], the authors
proposed a tie-breaking strategy that firstly sorts program
statements according to their suspiciousness scores and then
breaks ties by sorting them according to applying a con-
fidence formula. Such formula is designed to measure the
degree of confidence in a given suspiciousness score. When
two or more statements have the same suspiciousness score,
the score assigned to the statements with higher confidence
is more reliable, and thus the statements are more likely to be
faulty.

In [51], the authors proposed a grouping-based strategy
that employs another influential factor alongside statements’
suspiciousness scores. This strategy groups program state-
ments based on the number of failed tests that execute each
statement and then sorts the groups that contain statements
that have been executed by more failed tests. Afterward,
it ranks the statements within each group by their suspi-
ciousness scores to generate the final ranking list. Thus, the
statements are examined firstly based on their group order and
secondly based on their suspiciousness scores. Their results
show that ranking based on several factors can improve the
SBFL effectiveness. Thus, the grouping-based strategy could
be effective in tie-breaking as well.

In [53], the authors proposed many tie-breaking
approaches and also suggested using dynamic program slic-
ing as a promising solution to break ties. To illustrate this,
consider the fest() function in Figure 5. The function has
nine statements (1-9) and a fault in statement 3 (it should
be b =1y). Table 5 presents the function spectra after exe-
cuting four test cases (T1-T4) and the suspiciousness scores
for all the statements after applying Tarantula. It can be
noted that eight statements are critically tied (i.e., having
the same suspiciousness score of 0.5). Here, dynamic slic-
ing can be used for tie-breaking based on the following
steps:

o Constructing the dynamic slice of each failed test case.

« Taking the intersection set of statements from the con-

structed slices. From Table 5, this set will be the state-
ments 3, 6, and 9.

VOLUME 10, 2022

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

IEEE Access

1: deftest(x,y, z):

2: x=x+ty

3: b=z

4. ifx>1:

5: b=x-4

6: ifb>0:

i o=y+tz
else:

8 o=y+z+1

9 return o

FIGURE 5. A test() function with a faulty statement.

TABLE 5. A test() function - spectra, four counters, and scores.

Statement | T1 | T2 | T3 | T4 | ef | ep | nf | np | Scores
1 1 1 1 1 2 2 0 0 0.5
2 1 1 1 1 2 2 0 0 0.5
3 1 1 1 1 2 2 0 0 0.5
4 1 1 1 1 2 2 0 0 0.5
5 0 1 1 0 0 2 2 0 0
6 1 1 1 1 2 2 0 0 0.5
7 1 0 1 0 1 1 1 1 0.5
8 0 1 0 1 1 1 1 1 0.5
9 1 0 0 1 2 2 0 0 0.5
R 1 0 0 1

« Giving higher priority to the statements in the obtained
intersection set.

« Examining the statements with higher priority (i.e., 3, 6,
and 9) before the other statements (i.e., 1, 2,4, 7, and 8).
Since the set with higher priority does include the faulty
statement, it can be found that the dynamic slicing has
reduced the size of the critical tie from eight to three
statements.

D. DIVISION BY ZERO

There is always a possibility of the denominators of some
spectra formulas having zero. As a result, error messages
are produced. For example, when the formula “Overlab” is
applied to the information presented in Table 1; the error
message ‘“‘Division By Zero” is printed for each program
statement. Therefore, we considered the value zero as a score
for each statement as can be noted from Table 3. To overcome
this issue, several possible solutions have been proposed in
the literature as follows:

« Considering zero as a result. The value zero is assigned
to each program entity in which its denominator is
zero [41], [56], [57].

o Adding a small fixed constant such as 107° to the
denominator [7], [58].

e Adding a larger value such as the number of tests
plus 1 to the denominator. Such value is larger than
any value which can be returned with a non-zero
denominator [7], [57].

However, the aforementioned solutions may introduce

undesired issues as well. For example, more program ele-
ments will have the same suspiciousness score in the ranking

VOLUME 10, 2022

list, forming new ties. Often, scores generated using these
solutions are not considered by the researchers in the lit-
erature. Simply, they are totally removed from the ranking
list and thus not displayed to the developer. However, more
studies are required here to answer what is the rate of program
elements having the same score using these solutions and
whether a faulty element could be within these elements
or not.

E. NEGATIVE SUSPICIOUSNESS SCORES

In SBFL, most of the formulas used to compute suspicious-
ness scores of program elements produce positive scores.
However, few formulas (e.g., Wong2 and Goodman) produce
both positive and negative scores. This may cause a critical
issue when a weighting method is applied to the generated
scores for some valid reasons. For example, the final score of
each element in the whole program or in a group of elements
can be multiplied by a weighting value to determine which
element is more important than others based on a reason
such as which one contributes mostly to the behavior of the
program, which one appears more in failed test cases, which
one appears less in passed test cases, etc. Therefore, applying
a weighting method to the negative scores produced by such
formulas will change the original rank order of the scored
elements. In other words, the rank order of the suspicious
elements after applying a weighting method will be different
from the rank order of the same elements before applying a
weighting method.

To illustrate this, consider the scores produced by the
Wong?2 formula in Table 3. It can be noted the statements 4, 5,
and 10 are assigned with the same score (i.e., -1) and the same
rank order (i.e., 3); but we would like to consider the state-
ment 4 as the most suspicious element because it has been
executed by a failed test case while the two other statements
were not. So, we decided to apply a weighting method that
multiplies the score of 4 by the weighting value 0.9 (more
suspicious) and the scores of 5 and 10 by the weighting value
0.1 (less suspicious). The results of applying our weighting
method will decrease the score of 4 and thus put it in the worst
position in the ranking list (i.e., 5 rank instead of 3); while
it does the opposite with both 5 and 10. A possible solution
to this issue is to apply the weighting method to each score
generated by such formulas; the absolute of each score has to
be taken before ranking the scores.

F. SOURCE OF BUGS

In the software development process, it is common to break
the code of a program into several source code files. For
example, putting the functions in one file and the classes
using these functions into another. This practice is useful for
structuring source code files and for reusing existing code.
However, it also has its drawbacks in the context of software
fault localization. In Figure 6 for example, File B includes
two functions, LessThanFunction() and GreaterThanFunc-
tion(), with a bug in the statement 6, it should be m = x
instead of m =y, of the first function. These two functions

10625

IEEE Access

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

File B
1: def LessThanFunction(x, y, z):
2 m=z
File A 3. ifx<y:
i 4 m=y
1: import B : /
2: def mid(x, y, z): ‘ 5(ellfxfz
3 ify<z: imported 2 m=y
= sTh: i return m
2. el?;' Al iontsy) - 3: def GreaterThanFunction(x, y, z):
6 m=B.GreaterThanFunction(x,y,z) ?0. ?tl X:\z .
7: returnm ; >):
12: elifx>z:
13: m=x
14: returnm

FIGURE 6. Fault propagation.

have been imported into File A. Thus, File B propagated
its bug to File A. As a result, File A will also have a bug
in statement 4. When File A is tested using the statement
granularity/coverage level, it will show that it has a bug in
statement 4. The developer will then examine statement 4 to
find out that it calls a function from File B. The issue here
is that s/he will not be able to know which statement in the
called function caused the bug in order to be fixed.

In the literature, there is a lack in the experimental studies
that try to distinguish between propagated/imported bugs and
not propagated bugs. Therefore, it would be very useful to
study this issue alongside many directions such as deciding if
abug is imported or not, specifying from where it is imported,
how to locate it in its original place, and measuring its impact
on the whole fault localization performance and process.

G. SINGLE AND MULTIPLE BUGS

A bug is a program element that shows unexpected behavior
when executed by a test case. In general, program failures
are caused either by a single bug or multiple bugs [31], [32].
A single-bug problem is where all the failures of test cases
are caused by just one bug. In other words, whenever a test
case fails, the same buggy element should have been executed
in that test case. On the other hand, a multi-bug problem is
where the failures of test cases are caused by more than one
bug. Sometimes, a bug could be in a preprocessor directive
or an initialization element that is used at multiple places in
the target program. This issue shows that the target program
has multiple bugs. Another issue here is that as the bug is in
a statement (e.g., initialization statement) that is executed by
all passed and failed test cases that statement is mostly not to
be ranked high; making it difficult to be identified [44].

To address this issue, further studies are required to know
whether a program really has multiple different bugs or a
single bug element that is used at multiple places. In the
case of the latter, it would be useful to specify the location
of the first appearance of the bug and consider it in the
fault localization process while ignoring the other places it
has been used at. It is worth mentioning that many SBFL
techniques are designed for programs with single bug only.
Therefore, it would be interesting to study the impact of
multiple bugs on the performance of SBFL. A good starting

10626

point on this is what has been performed in [59], where
an empirical investigation on multiple-fault versions from
different open-source programs has been conducted in order
to study the negative impact of multiple-faults on SBFL and to
explore the fundamental causes of this negative impact. Also,
it has been found that some SBFL formulas are more robust
to multiple-faults and showed the best performance among
all others. In general, pure SBFL is not always sufficient for
effective fault localization in multi-fault programs [60], [61].
Other ways to address the issue of multiple bugs in a program
is to design novel suspiciousness formulas as in [62], or to
divide the failed test cases into different clusters. The test
cases in a cluster fail due to the same bug. In other words,
each test cluster represents a different bug. Then, the failed
test cases in each cluster combined with all passed test cases
are used to localize only a single fault as in [63]-[65].

H. RANKED ELEMENTS

1) THE RANKED LIST OF ELEMENTS IS HUGE

Mostly, a large number of program elements are included in
the ranking list generated by SBFL techniques [44], [66]. This
is not preferable for the following main reasons:

o The more ranked elements, the more ties are produced
as many program elements exhibit the same execution
patterns.

o It may increase the number of elements having the
speciousness score of 0 due to the issue of division by
ZEero.

« Ahuge number of elements that are unrelated as suspects
of a bug get considered in the ranking list.

Possible ways to address this issue are either combining
the ranking with other suspiciousness factors derived from the
testing and program elements contexts such as using program
slicing as mentioned in a previous section or reducing the
length of the target programs via applying code optimization
and transformation techniques. To illustrate this, consider a
Java function called matrch() which takes two inputs s and w
and returns back whether the sentence s contains the word w
or not. The function code is written in two ways, an unopti-
mized version of the code with a bug in the statement 9 and
an optimized version of the code with the same bug in the
statement 8, as shown in Figures 7 and 8. The unoptimized
code of the function has 15 statements which all will be
included in the ranking list; while the optimized code of the
same function has only 10 statements to be included.

Table 6 presents the spectra and test case information of
all the statements alongside their speciousness scores before
optimizing the code, and Table 7 presents the same informa-
tion but after applying code optimization. It can be noted that
code optimization reduces the number of ranked statements.
Besides, we can see that it eliminates some ties completely
and reduces some others. And, no statement has been scored
with the value 0.

However, it would be interesting to study code opti-
mization and its impact on performance alongside many

VOLUME 10, 2022

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

IEEE Access

1: boolean match(String s, String w)

{

2 boolean result=false;
3 int count=0;
4: int i=0;
5% while(i!=s.length())
i
6: if(s.charAt(i)==w.charAt(count))
¢
1
i countt+;
8: if(count==w.length())
9: result=false;
10: break;
1
s
¥
else
11; if(count!=0)
{
12 i--;
13 count=0;
b
14: i=i+1;
}
15: return result;

}

FIGURE 7. Running example - unoptimized code.

1: boolean match(String s, String w)

{

2: boolean result=false;
3. int wordLen=w.length();
4: int diffLen=s.length()-wordLen;
5. for(int i=0;i<=diffLen;i++)
{
6: String str = s.substring(i,wordLen+1i);
i if(w.equals(str))
{
8: result=false;
9: break;
H
}
10: return result;

FIGURE 8. Running example - optimized code.

directions. Many code optimization techniques reduce the
length of programs without changing their outputs. Thus, the
effects of these techniques have to be investigated experimen-
tally and their feasibility has to be reported with evidence.
A possible solution to the issue of the suspicious elements
is not related logically as code is to group them into differ-
ent logically related categories to at least understand why
these elements were considered suspicious. Software module
clustering could be employed in this respect as a potential
solution to this issue. More studies are required to evaluate the
usage of other potential factors and to measure their impacts
on the SBFL performance. Here, we list out some factors
that we believe will have a positive impact on the ranking
effectiveness as follows:

VOLUME 10, 2022

TABLE 6. Running example - spectra and four counters before
optimization.

T1 | T2 | T3 | ef | ep | nf | np | Scores

1 1 1 1 1 2 0 0 0.5
2 1 1 1 1 2 0 0 0.5
3 1 1 1 1 2 0 0 0.5
4 1 1 1 1 2 0 0 0.5
5 1 1 1 1 2 0 0 0.5
6 1 1 1 1 2 0 0 0.5
7 1 1 0 1 1 0 1 0.67
8 1 1 0 1 1 0 1 0.67
9 1 0 0 1 0 0 2 1
10 1 0 0 1 0 0 2 1
11 0 1 1 0 2 1 0 0
12 0 1 0 0 1 1 1 0
13 0 1 0 0 1 1 1 0
14 1 1 1 1 2 0 0 0.5
15 1 1 1 1 2 0 0 0.5
R 1 0 0

TABLE 7. Running example - spectra and four counters after

optimization.

T1 | T2 | T3 | ef | ep | nf | np | Scores

1 1 1 1 1 2 0 0 0.5
2 1 1 1 1 2 0 0 0.5
3 1 1 1 1 2 0 0 0.5
4 1 1 1 1 2 0 0 0.5
5 1 1 1 1 2 0 0 0.5
6 1 1 1 1 2 0 0 0.5
7 1 1 1 1 2 0 0 0.5
8 1 0 0 1 0 0 2 1
9 1 0 0 1 0 0 2 1
10 1 1 1 1 2 0 0 0.5
R 1 0 0

« The sequence, number, and coverage of executing failed
test cases.

« The importance of each failed test case in the used test
suit.

o The importance of each element in the target program.
For example, the statements that directly have an impact
on the program’s output should be given more impor-
tance than others.

« Using various software metrics (e.g., the complexity of
functions, relationships, elements types, etc.) to group
the elements sharing similar metrics into different cate-
gories and then relate them to the faulty element.

o All the elements near the faulty element may be given
more importance than others when being ranked.

o Using the union of dynamic slices of failed test cases
to reduce the number of elements included in the
ranking list.

2) THE RANKED LIST OF ELEMENTS IS PRACTICALLY
ARBITRARY

In SBFL, the ranked list of program elements is formed as
follows: you can get a statement from function a(), then

10627

IEEE Access

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

Region 1 Region 2

another one from function b(), and so forth. As a result, the
ranking list suggested by SBFL is not followed linearly by
developers [66] because they have trouble understanding the
context of the bug, since they are only given each bug loca-
tion in isolation [67]. Instead, they examine the statements
that were ranked high in the ranking list and then look for
the location of the actual fault in the surrounding function,
class, or file. This suggests that pointing developers towards
good starting points with SBFL is more important than only
improving the ranking of program elements in the ranking
list.

In [67], the authors proposed a technique that reports the
most suspicious program regions instead of a single pro-
gram element which is likely to be faulty. In other words,
each faulty element is reported together with its context.
This is useful because the contexts can assist developers in
identifying and comprehending the infection flow of each
faulty program element. This is performed by extracting the
execution traces of each program element in different failed
and passing runs. Then, a final execution sequence for each
element is formed as a graph that represents the faulty element
and its context. Figure 9 shows what the hierarchical ranked
list of program elements looks like.

Recently, the authors in [68] proposed a hierarchical
ranked list of elements to solve this issue as well. This is
achieved by putting all the statements of each function under
the corresponding function’s name and then putting all the
functions of each class under the corresponding class’s name.
Thus, each function will have its own set of statements, and
each class its own set of functions including the statements.
Afterward, the classes are sorted based on their suspicious-
ness scores, then the functions, and finally the statements.
For example, the statement at line 37 will not be examined
before the statement at line 11 because the latter belongs to a
function of higher rank in the ranking list. This hierarchical
grouping of program elements gives additional useful infor-
mation about the suspiciousness scores on all layers to the
user. They can exclude whole methods or even classes from
the list. Figure 10 shows how the Hierarchical ranked list of
program elements looks like.

FIGURE 9. Suspicious program regions.

10628

Element Line Score Rank
ProductsClass 1 0.58 1.0
addToCart 8 0.5 1.0
main.py 10 1.0 1.0

main.py 11 048 20

main.py 12048 20

removeFromCart 34 047 2.0
main.py 37 065 1.0
main.py 38 045 20
main.py 39 0.0 3.0

getProductCount 50 0.41 3.0
main.py 51 1.0 1.0
main.py 52 048 2.0
main.py 53 048 2.0

FIGURE 10. Hierarchical ranked list of elements.

I. LIMITATIONS OF SBFL TOOLS

SBFL techniques require suitable tools to automatically
collect spectra data and testing information from the tar-
get programs [29]. However, the currently available tools
[17], [69]-[76] suffer from some limitations as follows [77]:

o Mostly, they only collect abstract and trivial testing
information, such as whether a program element is exe-
cuted by a specific test case or not.

« Some of them collect more and different types of infor-
mation (e.g., control flow and data flow) that may be
time-consuming, not well scalable for large-scale target
programs, and cannot be used in practice.

o Most of them are developed for programs written in Java
or C/C++ programming languages. This is because these
languages have been used widely in the past decades
compared to other languages. Another possible reason
is that the choice of programming languages represents
the target industries of each company. For example,
companies providing tools for embedded and real-time
software vendors; focus more on supporting C/C++ [26].
Tools for helping Python developers in their debugging
process have not been proposed by the researchers pre-
viously. Therefore, tools that target programs written in
Python, which is considered one of the most popular
programming languages, are extremely required to be
proposed and developed.

o They have the issue of inaccuracies in their results.
The inaccuracy of a tool’s recorded coverage data can
lead to various problems. For example, false trust in
the result may be introduced by a code element that is
falsely reported as covered in a tool and not covered
in another tool. Therefore, to guide how to avoid the
inaccuracies of the tools, further studies are needed. This
can then help testers to determine the degree of risk of
measurement inaccuracies on the performance of fault
localization [78].

« Proposing and developing tools or plug-ins for specific
IDEs is considered as a practical limitation of usage as
not all the developers use the same IDE and many devel-
opers use more than one IDE. Developers do the debug-
ging during/within the development phase itself but this
is not always true and it is not a preferred practice.

VOLUME 10, 2022

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

IEEE Access

Therefore, developing standalone software tools that do
not depend on a specific IDE is a good option in this
respect. Perhaps the best option is to have some generic
tool that can be invoked from the command-line or to use
some APIs and then develop different plugins for various
IDEs that are calling this generic tool.

In order to make SBFL tools more useful and practical,
they should be developed with some important features as
follows [26]:

o A user-friendly graphical interface is a crucial fea-
ture for the users nowadays as such interfaces act
as the gates into using software systems interactively
and efficiently [79]. Thus, a proposed fault localiza-
tion tool should also be run in a GUI mode besides a
command-line mode to meet the requirements of differ-
ent users. For example, developers usually like to use the
GUI mode but the integrators usually like the command-
line mode.

o The results generated from a tool should be stored into
various file formats according to the user’s needs (e.g.,
XML, CSV, XLS, or JSON). As a result, the results will
be useful for further processing or even for other testing
tools.

o A tool should provide control to the user to change
the settings and configurations of its functionality
such as where to store the results, which task should
be automated, which results should be displayed
first, etc.

J. BUGS DUE TO MISSING CODE

Generally, software bugs appear due to wrong written code
(e.g., using a wrong variable instead of another one or using
a wrong arithmetic operator instead of another one) or due to
missing code (e.g., missing an element that performs a specif-
ically required operation or missing a required conditional
element) [12]. In some open source projects, it has been found
that missing code faults form the majority of the total faults
in these projects [80].

Locating a bug that is introduced by a missing code is a
challenging task in SBFL. This is due to the fact that the code
responsible for the bug is not in the program and SBFL is
designed to locate a faulty element, the execution of which
triggers failure [81]. However, a missing code will have an
impact on some other elements in the target program. For
example, some elements pose undesired behavior, get exe-
cuted before other program elements, or get executed where
they should not be. This issue could be addressed by analyz-
ing the undesired behavior or the unexpected execution of the
elements impacted by a missing code. Such elements could be
identified by their high suspiciousness scores. Thus, the high
scores of some elements may indicate that some elements in
their neighborhood (i.e., preceding or succeeding elements)
are missing [52], [82]. However, more work is needed to
propose techniques to address the issue of bugs caused by
missing code.

VOLUME 10, 2022

K. SIMULATION OF SBFL

Implementing and using SBFL requires target programs, test
cases, and different types of coverage data. Providing these
requirements is challenging for many reasons as follows:

« Executing tests cases on the collected target programs
requires that all the programs be provided with proper
execution environments. Some programs depend on
external libraries to be executed properly. Many others
require some configuration settings to be set.

o There is a lack of tools that extract various spectra data
from the target programs.

Therefore, advanced SBFL simulation tools are very useful
to be proposed and implemented to support researchers in
this respect [83]. They should be able to simulate various
program structures and their behaviours, relationships among
elements, different coverage types and test cases, different
numbers and types of faults, and calculate suspicion scores
using various ranking formulas. Such tools can be used to
validate new ideas or concepts before starting the actual and
concrete experiment and development.

L. TEST FLAKINESS

SBFL depends on the results of executing several test cases.
Sometimes, a test case may pose an issue called ““test flak-
iness”’, which refers to a test case with a non-deterministic
result. In other words, sometimes it passes and sometimes
it fails on the same code depending on unknown circum-
stances [84]. This issue negatively impacts the effectiveness
of SBFL techniques as it provides misleading signals during
the fault localization process [85]. It has been found that the
flakiness of individual test cases influences fault localization
scores and ranks, and that some SBFL spectra formulas (e.g.,
Tarantula) are more sensitive to this issue than others (e.g.,
Ochiai and DStar).

The dominant approach when addressing this issue is to
detect and then remove all the identified flaky test cases from
the test cases execution. However, it has been found that the
number of flaky test cases is sometimes so high that removing
them is not considered a practical solution [86]. Therefore,
proposing new approaches which give good performance
even with the existence of flaky test cases is preferable. Flaky
test cases can be detected in many ways as follows:

« Re-run atest case several times after it has failed. If some
re-runs pass, then the test case is considered a flaky one.
One issue here is how many times a failed test case has to
be re-run. Different studies used different numbers. For
example, in [87], each test case has been re-run 10 times.
In [88], 30 times. In [84], 100 times. In [89], 4000 times.
In [90], 10000 times and even with this huge number of
re-runs, the authors interestingly found that some of the
previously identified flaky tests were still not detected.
The re-run approach suffers from several issues [91]
such as: (a) flaky test cases are non-deterministic. There-
fore, there is no guarantee that re-running a flaky test
case will change its outcome. (b) there is no guidance

10629

IEEE Access

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

for how many times a failed test case has to be re-run
to maximize the likelihood of considering it flaky. (c) it
may also inject a delay between each re-run to allow the
cause of failure (e.g., a network outage) to occur. (d) the
performance overhead of re-runs scales with the number
of failed tests.

e Monitor only the coverage of the most recent code
changes rather than the entire target program, and mark
as flaky any newly failed test case that did not execute
any of the changes without re-running and with minimal
runtime overhead. In other words, a test case is consid-
ered flaky if it passes in the previous version of the code
but fails in the current version [91].

M. SEEDED AND REAL BUGS

Artificial faults (also called seeded faults) are made when a
researcher intentionally seeds a fault in a program source code
to intentionally break its functionality. This is performed with
the hope that the SBFL techniques under study will be able to
identify the location of the seeded fault in the modified source
code.

Seeded faults are often used to replicate real fault behavior,
especially when the real faults can not be reproduced due to
many reasons including technical ones or because they are
not available for programs written in certain programming
languages. Also, they can be used to solve the issue of unbal-
anced test suits in real fault datasets such as Defects4] [92]
for Java programs, BugsJS [93] for JavaScript programs, and
BugsInPy [94] for Python programs, where the passed test
cases are much more common than the failed test cases. It is
worth mentioning that they are widely used in multiple fault
localization studies with about 70.91% of the selected studies
utilizing them. However, the issues with these faults are as
follows:

o They may be picked arbitrarily.
o There is a potential for bias in the selection of the faults.
« They may not be representative of real industry faults.

To overcome these issues, it is recommended to use real
faults, such as the faults presented in Defects4] and BugsInPy
datasets, or to seed faults in well-known and complex soft-
ware systems and provide all the created faulty versions
publicly online, which legitimizes the experimental results by
reducing bias and enhancing result generalization [31].

N. SPECTRA FORMULAS SELECTION

There are many SBFL formulas proposed in the literature.
However, still, there is a lack of guidance on how to select the
right formula for a specific purpose. In [95], SBFL formulas
were divided into three groups based on how the formulas
of each group are affected by the number of failed test
cases. It has been found that some formulas (e.g., Ochiai and
Tarantula) are more sensitive to the number of failed test cases
than others. In [96], several formulas generated by genetic
algorithms have been evaluated, and it has been found that
the GP13 formula is one of the best performing formulas of

10630

its kind. In [84], it has been found that some SBFL spectra
formulas (e.g., Tarantula) are more sensitive to the issue of
test flakiness than others.

However, many other aspects are not yet evaluated, for
example, which formula is more sensitive to the tie issue or
which formula performs better with a specific type of fault.
It is worth mentioning that multiple spectra formulas can be
combined into a single new formula. The resulting formula is
called a hybrid formula; which combines the advantages of
other existing formulas that have been used in the combina-
tion. As a result, a hybrid formula should outperform other
existing formulas as in [20].

To produce an effective hybrid formula, more experimental
studies are required to be conducted to understand the behav-
ior and characteristics of each existing formula, as each has
its strengths and weaknesses at the same time. Thus, provid-
ing a detailed guideline with experimental evidence to help
researchers select the right formulas for the combination will
help a lot in this respect. Also, the computed suspiciousness
is different for every formula according to its peculiarity for
the same target program. Thus, it would be interesting to
investigate the relationship between the used formula and the
target program. This may lead to the introduction of some
improvements in the combination process. All the aforemen-
tioned issues are possible avenues worthy further exploration.

0. NO INTERACTIVITY

Often, SBFL techniques compute the suspiciousness scores
of program elements without involving the user. In other
words, only the statistical analysis of program spectra is
used for this purpose. Thus, the user’s previous knowledge
about the program under testing is not utilized to improve
the fault localization performance [97]. This issue can be
addressed by involving user interactivity. Involving the user
and considering his/her feedback on the suspicious elements
and their ranks can help to re-rank them, thus improving the
fault localization process.

Figure 11, which is adopted from [98], shows the differ-
ence between the static SBFL (i.e., without user interactivity)
and the interactive SBFL (i.e., with user interactivity).

In [99], the authors proposed and implemented an approach
called Interactive Fault Localization (iFL) to support user
interactivity in the SBFL process. Their approach allows the
user to interact with the output of the SBFL process based
on his/her understanding of the system elements and their
contexts by considering the following three feedback actions:
(a) the user decides that a proposed suspicious element is
really faulty. Thus, the SBFL process will stop as the faulty
element is found. (b) the user decides that a proposed suspi-
cious element and its context are not faulty. Thus, it can be
given low importance and then moved lower in the ranking
list. (c) the user decides that a proposed suspicious element is
not faulty but its context is suspicious. Thus, it can be given
high importance and then moved higher in the ranking list.

In [71], [98], the authors also proposed an interactive fault
localization approach that leverages simple user feedback.

VOLUME 10, 2022

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

IEEE Access

Program spectra
(test coverage & test

Program spectra
(test coverage & test

results) results)

Static Interactive

SBFL SBFL | [
Static list of Interactive list of

Feedback

suspicious elements suspicious elements

A

Developer Developer

FIGURE 11. Static vs. interactive SBFL.

The user can interact with their approach by labeling a sug-
gested suspicious element as faulty or not. Following that,
the proposed approach utilizes such simple user feedback and
re-orders the rest of the suspicious program elements based
on that, intending to put truly faulty elements higher in the
ranking list.

In [100], the authors proposed an approach called
“Enlighten” which is similar to the previous approach except
that it uses dynamic program slicing to form a Dynamic
Dependence Graph (DDG) for every failed test in the test
suite. In the DDG, nodes represent occurrences of statements
in the program, whereas edges represent dynamic (data or
control) dependencies between these statements. This infor-
mation will then be used to create queries for the user to
interact with. Each query consists of a method invocation,
together with its input and output values, which the user can
mark as correct or not. This approach is also iterative and in
each iteration, it updates the debugging data and the ranking
list based on the user feedback until the fault is found.

In [101], the authors proposed an interactive approach
to use the user feedback about the correctness of a set of
statements to estimate the number of coincidentally correct
test cases (those that execute faulty statements but do not
cause failures).

Despite the attempts to propose and improve interac-
tive fault localization approaches, many issues are still not
addressed comprehensively in the literature. For example,
more studies are required to investigate the effectiveness of
different proposed approaches and the comparison among
them. Performing user studies to evaluate the usability of the
tools implemented in this context is also required. It would be
interesting to also investigate cases when developers or users
make the wrong estimation and give incorrect feedback due
to mistakes or them not being quite familiar with the faulty
program as they are not the actual developers of it. This could
be addressed by proposing new methods to allow users to roll
back their feedback if they made mistakes. Enabling users

VOLUME 10, 2022

to provide multiple feedback at the same time rather than
one by one following the recommended list, especially in the
scenarios where multiple bugs exist is also recommended.

P. TOP-N RANKING

Several studies including [102], [103] report that developers
think that inspecting the first 5 program elements in the rank-
ing list produced by an SBFL technique is acceptable, and that
the first 10 elements are the upper bound for inspection before
ignoring the ranking list. Therefore, the performance of SBFL
can also be evaluated by focusing on these rank positions,
collectively called Top-N, as follows:

o Top-1: When the rank of a faulty element is the first in
the ranking list.

o Top-3: When the rank of a faulty element is less or equal
to three in the ranking list.

o Top-5: When the rank of a faulty element is less or equal
to five in the ranking list.

o Top-10: When the rank of a faulty element is less or
equal to ten in the ranking list.

o Other: When the rank of a faulty element is more than
ten in the ranking list.

Also, there is a special non-accumulating variant of Top-N
categories, in which the cases where the bug fell into
non-overlapping intervals of [1], (1,3], (3,5], (5, 10] or
(10, ...] are counted. These categories show in how many
cases an SBFL approach moves a bug into a better (for
example, from (5, 10] to (1, 3]) or a worse (for example,
from [1] to (1, 3]) category. In other words, in how many
cases do the bugs get into a higher-rank category (this kind of
improvement is also known as enabling improvement [43])
and in how many cases do they downgrade the category.
Thus, an SBFL approach that achieves improvements in all
categories by moving many bugs to higher ranked categories
has better performance.

However, due to the nature of SBFL, the faulty element
cannot always be ranked at higher-ranked Top-N categories.
This issue is the biggest obstacle to the usefulness of SBFL in
practice [22]. It is worth mentioning that many SBFL studies
published in the literature specifically addressed this crucial
issue compared to the other issues. Therefore, we will list
them in Table 8 with a brief description of each proposed
solution.

Q. RESULTS VISUALIZATION
During testing a program, software developers gather a large
amount of testing data. These data can be used for the follow-
ing two main purposes [17]:
o To identify failures and to help developers locate the
faults causing these failures.
o To identify program elements that were not executed by
the used test suite. As a result, more test cases can be
added to cover these elements.

SBFL uses such data to compute the suspiciousness of
program elements under test and often displays them in a

10631

IEEE Access

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

TABLE 8. Proposed solutions to address the Top-N issue.

“unsuspicious group”. Under such
categorization, we only need to cal-
culate the risks for suspicious state-
ments, and simply to assign the risks
of unsuspicious statements as the
lowest value.

Solution Description Reference
Removing non- | Improving fault absolute ranking for [22], [104]
faulty elements | SBFL if some non-faulty elements

ranked higher were excluded from the

ranking list of a target program based

on the failed test cases.
Categorizing The ranking list of SBFL can be im- [105]
program proved if program elements get cat-
elements egorized into “suspicious group” and

Using program
slicing

Deleting program elements that have
no dependence on faulty elements
to improve the precision of locating
faults.

1061 [112]

Introducing new
ranking formulas

Proposing new risk evaluation formu-
las that outperform the existing ones.

(23], [113][123]

Combining
existing ranking
formulas

Combining multiple formulas into a
single formula. The resulting formula
is called a hybrid formula that has the
advantages of the formulas used in
the combination.

[20], [124], [125]

Optimizing test
cases

Optimization methods can maximize
SBFL performance using a minimum
(e.g., by removing redundant test
cases) or balanced number of test
cases used by SBFL formulas.

[126]-[134]

Weighting and
prioritizing test
cases

The performance of SBFL can be im-
proved by differentiating the impor-
tance of different test cases. In other
words, not all test cases have the same
importance (e.g., some test cases are
more important than others).

[1357[139]

Mitigating

the impact of
coincidental
correctness

Coincidentally correct test cases exe-
cute faulty program elements but do
not cause failures. Such test cases
reduce the effectiveness of SBFL.
Therefore, removing or reducing such
cases can improve the SBFL.

[140]

Increasing failed
test cases

Some SBFL formulas may become
less accurate if there are very few
failed test cases. Therefore, cloning
the whole set of failed test cases or
adding some more to enlarge them
can improve their performance.

[T41T-[144]

TABLE 9. Traditional output of SBFL.

Element

Source file | Line number

Score

Rank

1

Processing.py 100

0.98 1

Processing.py 150

0.98

Processing.py 200 0.5

2
3
q

Processing.py 500 0.3

W NI —

table of many fields as in Table 9. This form of output helps
the users know which program elements are suspicious, their
locations in the source files, their suspiciousness scores, and
their ranks.

However, there are two main issues with this approach of
displaying the results of SBFL, as follows:

o The huge amount of displayed results is not attractive
and difficult to interpret when large-scale programs and
test suites are used.

« Itcauses developers to focus their attention locally rather
than providing a global view of the target program.

10632

Therefore, there is a need for different approaches that
provide users with a global view of the program under
test, while still giving access to the local view. This can
be achieved by visualizing the whole source code of
the program in which each program element is colored
according to its state (i.e., executed or not) in the passed
and failed test cases.

To address the aforementioned issues, two main visualiza-
tion approaches for the results of SBFL have been proposed
in the literature, as follows:

o The discrete coloring scheme. In this simple scheme,
if a program element is only executed by failed test
cases, then its color will be red. If a program element
is only executed by passed test cases, then its color
will be green. If a program element is executed by
both the passed and failed test cases, its color will be
yellow. The problem with this approach is that it is
not considered very informative because the majority of
program elements are in yellow color, and the developer
is not provided with helpful hints about the location of
faults. The red, green, and yellow colors were selected
because they are the most natural and the best for
viewing [17].

o The continuous coloring scheme. This scheme uses
colors and brightness to denote how program elements
participate in the passed and failed test cases. It colors
the elements according to their suspiciousness scores,
from higher (red) to middle (yellow) to lower (green)
scores. Thus, an element’s color can range from red to
yellow to green. Then, it presents different brightness
levels according to the frequency in which an element
is executed by the test cases. Elements more frequently
executed are the brightest ones. If a greater proportion
of failed test cases execute an element, the element turns
red (i.e., highly suspicious as being faulty). The element
appears more green (i.e., not likely to be faulty) if a
greater proportion of passed test cases execute it. Ele-
ments are colored in yellow (i.e., not suspicion nor not
safety) when they are executed by nearly equal percent-
ages of passed and failed test cases. The visualization
based on this scheme can be displayed to the user in
many forms as shown in Figure 12: (a) coloring program
elements in the source code itself [17], [72], [75], [76].
(b) visualizing the results as a Sunburst [73], [145],
[146]. (c) visualizing the results as a Treemap [73],
[145]. (d) visualizing the results as a Bubble
Hierarchy [145].

However, more studies are required to propose new
approaches or to improve the usability and effectiveness
of the existing approaches alongside many directions. For
example, providing a zoomable user interface that lets the
user view the results at various abstraction levels is essential,
especially for large-scale software systems. Also, providing
the users with interactive visualization filtering options is an
interesting area to be investigated.

VOLUME 10, 2022

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

IEEE Access

protected void addSpecialSequence(TokenizerProperty prop) {
int arrayldx;
int flags = prop.getFlags();

if ((flags & Tokenizer.F_NO_CASE) == 8) {
(a) if (sequences[8] == null) {

sequences[@] = new SortedArray(this, flags);

}
arrayldx = 0;
} else {
if (_sequences[1] == null) {
sequences[1] = new SortedArray(this, flags);

(c)

|
1
N

FIGURE 12. Different visualization schemes. (a) Code coloring
(b) Sunburst (c) Treemap (d) Bubble Hierarchy.

R. NO CONTEXTUAL INFORMATION

In SBFL, the ranking is performed only based on the sus-
piciousness score of each element. An element with a high
score will get positioned at the beginning of the ranking
list and vice versa. Thus, SBFL cannot distinguish between
program elements that exhibit the same execution patterns.
The reason behind this issue is that SBFL techniques leverage
hit spectra (i.e., whether an element is executed or not) only
as the abstraction for program executions without considering
any other useful contextual information [147]. In other words,
they represent a program’s behavior as an abstract hit spectra
model that cannot capture the semantics of each program
element individually [44].

Recently, the authors in [148] addressed this issue by using
method call frequency. The frequency of the investigated
methods occurring in call stack instances during the execution
of failed test cases is used to modify the standard SBFL
formulas. The basic idea is that if a method is called multiple
times in a failed test case, it is more likely to be faulty than
others. Thus, the ef of each formula was changed to the
frequency ef . Their experimental results showed that adding
this new information to the existing formulas can lead to
improvements in the effectiveness of SBFL. However, this
approach can only be applied to the formulas that have the ‘ef’
numerator. Also, it is considered heavy, as it requires tracing
the execution of each method call, as caller or callee, in the
failed test cases.

In [24], [149], the authors also utilized the relations of
software methods. Particularly, they investigated the fault
influence propagation implied in method calls. The basic idea
is that a caller method often calls several callee methods with

VOLUME 10, 2022

complex logical controls, making the complexity of the caller
method usually higher than the callee methods. According to
the complexity degree, fault influence may often propagate
from the callee method to the caller method. Also, the callee’s
influence is statistically the most crucial factor, and this influ-
ence can be utilized to improve the suspiciousness estimation.
From the caller’s perspective, the caller’s suspiciousness eval-
uation often contains multiple callees’ behaviors and influ-
ences. Also, propagating redundant fault influence reduces
the accuracy of the suspiciousness computation. Therefore,
the authors extended the basic intuition of SBFL (i.e., a pro-
gram element executed in more failed test cases is more likely
to be faulty) with a hypothesis that the method linked with
more and higher suspicious methods is more likely to be the
root cause. Based on such intuitions, a heuristic approach
called Fault Centrality was proposed in this paper to capture
the local faulty suspiciousness influence of the callee method
to the caller for boosting SBFL.

A method call sequence mining with a slide-window
method has been used in [150] to boost the performance of
SBFL. The authors achieved this by splitting each method call
sequence into different sub-sequences. Then, they computed
the hit-spectra for each sub-sequence. After that, they took
the maximum suspicion score of the sub-sequences that con-
tain the target method as its final score. In [151]-[154], the
method call sequences have also been employed to highlight
the methods that are more often related to other methods
in the failed executions of test cases. However, many such
studies and other contextual information can be considered
to improve the effectiveness of SBFL.

V1. THREATS TO VALIDITY

There are different threats that might affect the validity of
each survey study. For this study, different internal and exter-
nal threats were avoided by considering the following actions:

« Internal validity

— Finding related papers: There is no guarantee that
all the papers related to the topic of this study have
been found. Therefore, a search string containing
different term synonyms was applied to various
literature sources to obtain the related publications.
Despite that, there may be some important relevant
papers left. To address this threat, the snowballing
search technique was used in order to lower the
possibility of missing them.

— Paper inclusion/exclusion criteria: Applying paper
selection criteria can pose a threat of personal bias.
Thus, only after the authors reached an agreement
were the papers included or excluded in/from this
study.

« External validity

— Study reproducibility: Another threat to consider
is whether or not other researchers will be able
to replicate this study and obtain similar results.
This issue can be addressed by providing the details

10633

IEEE Access

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

TABLE 10. List of all papers included in this study.

No. Ref. Paper Title Year
1 [26] Survey of Coverage-Based Testing Tools 2009
2 [27] Threats to the validity and value of empirical assessments of the accuracy of coverage-based fault locators 2013
3 28 Fault-localization techniques for software systems: A Literature Review 2014
4 29 A Survey on Software Fault Localization 2016
5 12 Spectrum-based Software Fault Localization: A Survey of Techniques, Advances, and Challenge 2016
6 30 Challenges of Operationalizing Spectrum-Based Fault Localization from a Data-Centric Perspective 2017
7 31 Multiple fault localization of software programs: A systematic literature review 2020
8 32 Spectrum-based Fault Localization Techniques Application on Multiple-Fault Programs: A Review 2020
9 37 A practical evaluation of spectrum-based fault localization 2009
10 38 Validation of software testing experiments: A meta-analysis of icst 2013 2014
11 39 Traceability Challenge 2013: Statistical analysis for traceability experiments 2013
12 40 An evaluation of similarity coefficients for software fault localization 2006
13 41 Empirical evaluation of the tarantula automatic fault-localization technique 2005
14 42 Enhance fault localization using a 3d surface representation 2010
15 43 Leveraging Contextual Information from Function Call Chains to Improve Fault Localization 2020
16 44 Refining spectrum-based fault localization rankings 2009
17 46 On the accuracy of spectrum-based fault localization 2007
18 47 An empirical study of fault localization families and their combinations 2021
19 48 A learning-to-rank based fault localization approach using likely invariants 2016
20 51 Grouping-Based Strategy to Improve the Effectiveness of Fault Localization Techniques 2010
21 52 Effective fault localization using code coverage 2007
22 53 Ties within Fault Localization rankings: Exposing and Addressing the Problem 2011
23 55 An empirical study of the effects of test-suite reduction on fault localization 2008
24 56 Scalable statistical bug isolation 2005
25 57 Reduction-assisted fault localization:Don’t throw away the by-products! 2021
26 58 Duals in spectral fault localization 2013
27 7] Model for spectra-based software diagnosis 2011
28 66 Are automated debugging techniques actually helping programmers? 2011
29 68 Charmfl: A fault localization tool for python 2021
30 17 Visualization of test information to assist fault localization 2002
31 69 Crisp - A fault localization tool for Java programs, 2007

32 70 Debugging reinvented: Asking and answering why and why not questions about program behavior 2008
33 71 Interactive Fault Localization Using Test Information 2009
34 72 Zoltar: A spectrum-based fault localization tool 2009
35 73 Gzoltar: An eclipse plug-in for testing and debugging 2012
36 74 FLAVS: A fault localization add-in for visual studio 2015
37 75 UnitFL: A fault localization tool integrated with unit test 2016
38 76 Jaguar: A Spectrum-Based Fault Localization Tool for Real-World Software 2018
39 77 Exploring machine learning techniques for fault localization 2009
40 78 Code coverage differences of Java bytecode and source code instrumentation tools 2019
41 80 Emulation of software faults: A field data study and a practical approach 2006
42 84 Simulating the Effect of Test Flakiness on Fault Localization Effectiveness 2020
43 85 A study on the lifecycle of flaky tests 2020
44 86 Modeling and ranking flaky tests at apple 2020
45 87 Does refactoring of test smells induce fixing flaky tests? 2017
46 88 Wait, wait.no, tell me. analyzing selenium configuration effects on test flakiness 2019
47 89 Understanding reproducibility and characteristics of flaky tests through test reruns in java projects 2020
48 90 Flakeflagger: Predicting flakiness without rerunning tests 2021
49 91 DeFlaker: Automatically Detecting Flaky Tests 2018
50 92 Defects4J: a database of existing faults to enable controlled testing studies for Java programs 2014
51 93 BugsJS: a benchmark of javascript bugs 2019
52 94 BugsInPy: a database of existing bugs in Python programs to enable controlled testing and debugging studies 2020
53 95 Empirical evaluation of existing algorithms of spectrum based fault localization 2014
54 96 Evolving human competitive spectra-based fault localisation techniques 2012
55 20 A new hybrid algorithm for software fault localization 2015
56 97 Poster: Aiding Java Developers with Interactive Fault Localization in Eclipse IDE 2019
57 98 Interactive fault localization leveraging simple user feedback 2012
58 99 A New Interactive Fault Localization Method with Context Aware User Feedback 2019
59 100 Enlightened debugging 2018
60 101 Tester Feedback Driven Fault Localization 2012
61 102 Practitioners’ expectations on automated fault localization 2016
62 [103] Automated debugging considered harmful: A user study revisiting the usefulness of spectra-based fault localization techniques with | 2016

professionals using real bugs from large systems

63 22] Spectrum-Based Fault Localization via Enlarging Non-Fault Region to Improve Fault Absolute Ranking 2018
64 106] Software fault localization based on program slicing spectrum 2012
65 23] Evolving suspiciousness metrics from hybrid data set for boosting a spectrum based fault localization 2020
66 145 Using HTMLS visualizations in software fault localization 2017
67 146 Pangolin: An SFL-Based Toolset for Feature Localization 2019
68 148 Call frequency-based fault localization 2021
69 113 A Crosstab-based Statistical Method for Effective Fault Localization 2008
70 126 A New Spectrum-based Fault Localization With the Technique of Test Case Optimization 2016
71 127 A Test-Suite Diagnosability Metric for Spectrum-Based Fault Localization Approaches 2017
72 141 A theoretical analysis on cloning the failed test cases to improve spectrum-based fault localization 2017
73 124 An Approach to Generate Effective Fault Localization Methods for Programs 2019
74 128 An Effective Strategy to Build Up a Balanced Test Suite for Spectrum-Based Fault Localization 2016
75 114 An Efficient Software Faults Localization Method based on Program Spectrum 2020
76 115 Towards Better Fault Localization: A Crosstab-Based Statistical Approach 2012

10634

VOLUME 10, 2022

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

IEEE Access

TABLE 10. (Continued.) List of all papers included in this study.

77 142 The Impact of Rare Failures on Statistical Fault Localization: The Case of the Defects4J Suite 2019
78 107 Statistical Fault Localization via Semi-dynamic Program Slicing 2011
79 116 Statistical fault localization in decision support system based on probability distribution criterion 2013
80 117 Statistical Fault Localization Based on Importance Sampling 2015
81 129 Spectrum-Based Fault Localization Method with Test Case Reduction 2015
82 108 Demystifying the Combination of Dynamic Slicing and Spectrum-based Fault Localization 2019
83 130 Using Spectrum-Based Fault Localization for Test Case Grouping 2009
84 104 Spectrum-Based Fault Localization Using Fault Triggering Model to Refine Fault Ranking List 2018
85 131 Spectrum-based fault localization tool with test case preprocessor 2013
86 109 Slice-based statistical fault localization 2014
87 118 Research on improved the Tarantula spectrum fault localization algorithm 2014
88 132 Reduce Before You Localize: Delta-Debugging and Spectrum-Based Fault Localization 2018
89 110 On the analysis of spectrum based fault localization using hitting sets 2019
90 140 Mitigating the Effect of Coincidental Correctness in Spectrum Based Fault Localization 2012
91 119 Measuring the Odds of Statements Being Faulty 2013
92 105 Isolating Suspiciousness from Spectrum-Based Fault Localization Techniques 2010
93 143 Incremental spectrum cloning algorithm for optimization of spectrum-based fault localization 2014
94 133 Improving the Accuracy of Spectrum-Based Fault Localization for Automated Program Repair 2020
95 144 Improving spectrum-based fault-localization through spectra cloning for fail test cases beyond balanced test suite 2014
96 134] Improving Spectrum-Based Fault Localization using quality assessment and optimization of a test suite 2020
97 120] Human Competitiveness of Genetic Programming in Spectrum-Based Fault Localisation: Theoretical and Empirical Analysis 2017
98 111] HSFal: Effective fault localization using hybrid spectrum of full slices and execution slices 2014
99 121 Evaluation of Measures for Statistical Fault Localisation and an Optimising Scheme 2015
100 122 Evaluation and Analysis of Spectrum-Based Fault Localization with Modified Similarity Coefficients for Software Debugging 2013
101 112 Effective Statistical Fault Localization Using Program Slices 2012
102 54 A Critical Evaluation of Spectrum-Based Fault Localization Techniques on a Large-Scale Software System 2017
103 81 A Revisit of a Theoretical Analysis on Spectrum-Based Fault Localization 2015
104 82 A Theoretical Analysis of the Risk Evaluation Formulas for Spectrum-Based Fault Localization 2013
105 59 An Analysis on the Negative Effect of Multiple-Faults for Spectrum-Based Fault Localization 2018
106 147] An evaluation of pure spectrum-based fault localization techniques for large-scale software systems 2019
107 151 Contextualizing Spectrum-Based Fault Localization 2018
108 150 On the Use of Sequence Mining within Spectrum Based Fault Localisation 2018
109 152 Lightweight Defect Localization for Java 2005
110 [153] Leveraging Method Call Anomalies to Improve the Effectiveness of Spectrum-Based Fault Localization Techniques for Object-Oriented 2012
Programs
111 154] Fine-tuning spectrum based fault localisation with frequent method item sets 2016
112 24] Enhancing Spectrum-Based Fault Localization Using Fault Influence Propagation 2020
113 44] An Improvement to Fault Localization Technique Based on Branch-Coverage Spectra 2015
114 62 CLPS-MFL: Using Concept Lattice of Program Spectrum for Effective Multi-fault Localization 2013
115 60 Spectrum-based multi-fault localization using Chaotic Genetic Algorithm 2021
116 49 Spectrum-Based Fault Localization Framework to Support Fault Understanding 2019
117 [67] Software Fault Localization via Mining Execution Graphs 2011
118 [135] Proximity based weighting of test cases to improve spectrum based fault localization 2011
119 [136] On the Integration of Test Adequacy, Test Case Prioritization, and Statistical Fault Localization 2010
120 | [137] | Exploring the Triggering Modes of Spectrum-Based Fault Localization: An Industrial Case 2021
121 [138] Effects of Class Imbalance in Test Suites: An Empirical Study of Spectrum-Based Fault Localization 2012
122 [63] FTFL: A Fisher’s test-based approach for fault localization 2021
123 [64] Debugging in Parallel 2007
124 [61] Fault density, fault types, and spectra-based fault localization 2015
125 65] FATOC: Bug Isolation Based Multi-Fault Localization by Using OPTICS Clustering 2020
126 50] Evaluating data-flow coverage in spectrum-based fault localization 2019
127 149] Fault centrality: boosting spectrum-based fault localization via local influence calculation 2021
128 139 An empirical study of boosting spectrum-based fault localization via pagerank 2019
129 123 Simultaneous Localization of Software Faults Based on Complex Network Theory 2018
130 125 A Framework for Improving Fault Localization Effectiveness Based on Fuzzy Expert System 2021

of how this study has been conducted. Therefore,
Section IV thoroughly describes each step of the
research methodology that was used in this study.

VIl. CONCLUSION

Software cover many aspects of our day-to-day life and our
world cannot be imagined without different types of software
products that automate most of our activities. Therefore,
developing high-quality software is crucial. However, faults
are almost unavoidable in software products even with all
the current advancements in software development. Locating
faults in software is a difficult, time-consuming, tedious, and
costly task.

To overcome this issue, many fault localization techniques
have been proposed in the literature. Compared to other avail-
able techniques, the SBFL is considered the most prominent
technique. It computes the suspiciousness of each program

VOLUME 10, 2022

entity of being faulty based on information gathered from
test cases, their results, and their corresponding code cov-
erage. Several important issues and challenges have been
identified and categorized in this study. In each category, the
most important issues have been briefly presented with some
possible ideas to address them.

In conclusion, this survey aims to provide a clearer under-
standing of the most important challenges and issues in
spectrum based fault localization, such that additional stud-
ies can be carried out to overcome these issues or pos-
sible avenues can be suggested for further exploration.
Also, the results of this paper may be of great interest
to novice testers and researchers who would like to pro-
vide contributions to this interesting topic. We hope that
this paper will be regarded as a primary source of use-
ful and relevant information on the issues and challenges
in SBFL.

10635

IEEE Access

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

REFERENCES

(1]

[2]

3

[5]

(6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

10636

A. Maru, A. Dutta, K. V. Kumar, and D. P. Mohapatra, “Software fault
localization using BP neural network based on function and branch
coverage,” Evol. Intell., vol. 14, no. 1, pp. 87-104, Mar. 2021.

M. Golagha, A. Pretschner, and L. C. Briand, “Can we predict the quality
of spectrum-based fault localization?” in Proc. IEEE 13th Int. Conf.
Softw. Test., Validation Verification (ICST), Oct. 2020, pp. 4-15.

Y. Sasaki, Y. Higo, S. Matsumoto, and S. Kusumoto, “SBFL-suitability:
A software characteristic for fault localization,” in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), Sep. 2020, pp. 702-706.

A. Perez and R. Abreu, “A qualitative reasoning approach to spectrum-
based fault localization,” in Proc. 40th Int. Conf. Softw. Eng., May 2018,
pp. 372-373.

S. Tiwari, K. K. Mishra, A. Kumar, and A. K. Misra, *“Spectrum-based
fault localization in regression testing,” in Proc. 8th Int. Conf. Inf. Tech-
nol., Apr. 2011, pp. 191-195.

H. L. Ribeiro, P. A. R. de Araujo, M. L. Chaim, H. A. D. Souza, and
F. Kon, “Evaluating data-flow coverage in spectrum-based fault local-
ization,” in Proc. ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas.
(ESEM), Sep. 2019, pp. 1-11.

L. Naish, H. J. Lee, and K. Ramamohanarao, ““A model for spectra-based
software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3,
pp. 1-32, Aug. 2011.

Y. Xiaobo, L. Bin, and W. Shihai, “How negative effects a multiple-
fault program can do to spectrum-based fault localization,” in Proc. Syst.
Health Manage. Conf. (PHM-Qingdao), Oct. 2019, pp. 1-6.

M. Jia, Z. Cui, Y. Wu, R. Xie, and X. Liu, “SMFL integrating spectrum
and mutation for fault localization,” in Proc. 6th Int. Conf. Dependable
Syst. Appl. (DSA), Jan. 2020, pp. 511-512.

C. Ma, T. Tan, Y. Chen, and Y. Dong, “An if-while-if model-based
performance evaluation of ranking metrics for spectra-based fault local-
ization,” in Proc. IEEE 37th Annu. Comput. Softw. Appl. Conf., Jul. 2013,
pp. 609-618.

P.Li, M. Jiang, and Z. Ding, “‘Fault localization with weighted test model
in model transformations,” IEEE Access, vol. 8, pp. 14054-14064, 2020.
H. A.de Souza, M. L. Chaim, and F. Kon, “Spectrum-based software fault
localization: A survey of techniques, advances, and challenges,” 2016,
arXiv:1607.04347.

Z. Cui, M. Jia, X. Chen, L. Zheng, and X. Liu, “Improving software fault
localization by combining spectrum and mutation,” /EEE Access, vol. 8,
pp. 172296-172307, 2020.

Y. Lei, C. Wang, X. Mao, and Q. Wu, “Enhancing contexts for automated
debugging techniques,” in Proc. 7th Int. Conf. Softw. Eng. Adv. Enhancing
(ICSEA), 2012, pp. 1-7.

J. S. Collofello and L. Cousins, “Towards automatic software fault
location through decision-to-decision path analysis,” in Proc. Int. Work-
shop Manag. Requirements Knowl., Los Alamitos, CA, USA, 1987,
pp- 539-550.

T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling
for software maintenance with applications to the year 2000 problem,”
in Proc. 6th Eur. Softw. Eng. Conf. Held Jointly. Berlin, Germany:
Springer-Verlag, 1997, pp. 432-449.

J. A. Jones, M. J. Harrold, and J. Stasko, ‘‘Visualization of test infor-
mation to assist fault localization,” in Proc. 24th Int. Conf. Softw. Eng.
(ICSE), 2002, pp. 467-4717.

A. Ochiai, “Zoogeographical studies on the soleoid fishes found in Japan
and its neighhouring regions-II,” Bull. Jpn. Soc. Sci. Fisheries, vol. 22,
no. 9, pp. 526-530, 1957.

A. H. Cheetham and J. E. Hazel, “Binary (presence-absence) similarity,”
J. Paleontol., vol. 43, no. 5, pp. 1130-1136, 1969.

J. Kim, J. Park, and E. Lee, “A new hybrid algorithm for software fault
localization,” in Proc. 9th Int. Conf. Ubiquitous Inf. Manage. Commun.,
2015, pp. 1-8.

J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in Proc. 30th Int. Conf. Softw. Maintenance
Evol. (ICSME), 2014, pp. 191-200.

Y. Wang, Z. Huang, B. Fang, and Y. Li, “Spectrum-based fault localiza-
tion via enlarging non-fault region to improve fault absolute ranking,”
IEEE Access, vol. 6, pp. 8925-8933, 2018.

A. A. Ajibode, T. Shu, and Z. Ding, “Evolving suspiciousness metrics
from hybrid data set for boosting a spectrum based fault localization,”
IEEE Access, vol. 8, pp. 198451-198467, 2020.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

H. He, J. Ren, G. Zhao, and H. He, “Enhancing spectrum-based fault
localization using fault influence propagation,” IEEE Access, vol. 8,
pp. 18497-18513, 2020.

G. Laghari, K. Dabhri, and S. Demeyer, “Comparing spectrum based fault
localisation against test-to-code traceability links,” in Proc. Int. Conf.
Frontiers Inf. Technol. (FIT), Dec. 2018, pp. 152-157.

Q. Yang, J. J. Li, and D. M. Weiss, “A survey of coverage-based testing
tools,” Comput. J., vol. 52, no. 5, pp. 589-597, 2007.

F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” in Proc. Int. Symp. Softw. Test. Anal., Jul. 2013, pp. 314-324.
P. Agarwal and A. P. Agrawal, “‘Fault-localization techniques for software
systems: A literature review,” ACM SIGSOFT Softw. Eng. Notes, vol. 39,
no. 5, pp. 1-8, Sep. 2014.

W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Trans. Softw. Eng., vol. 42, no. 8,
pp. 707-740, Aug. 2016.

M. Golagha and A. Pretschner, “Challenges of operationalizing
spectrum-based fault localization from a data-centric perspective,” in
Proc. IEEE Int. Conf. Softw. Test., Verification Validation Workshops
(ICSTW), Mar. 2017, pp. 379-381.

A. Zakari, S. P. Lee, R. Abreu, B. H. Ahmed, and R. A. Rasheed,
“Multiple fault localization of software programs: A systematic literature
review,” Inf. Softw. Technol., vol. 124, pp. 106312-106332, Jan. 2020.
A. Zakari, S. Abdullahi, N. M. Shagari, A. B. Tambawal, N. M. Shanono,
J. Z. Maitama, R. A. Rasheed, A. Adamu, and S. M. Abdulrahman,
“Spectrum-based fault localization techniques application on multiple-
fault programs: A review,” Global J. Comput. Sci. Technol., vol. 4,
pp. 4148, Mar. 2020.

K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting
systematic mapping studies in software engineering: An update,” Inf.
Softw. Technol., vol. 64, pp. 1-18, Aug. 2015.

B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Softw. Eng. Group, School
Comput. Sci. Math., Keele Univ., U.K. Dept. Comput. Sci., Univ. Durham
EBSE, Mumbai, India, Tech. Rep. EBSE- 2007-01, 2007.

P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within
the software engineering domain,” J. Syst. Softw., vol. 80, no. 4,
pp. 571-583, 2007.

C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proc. 18th Int. Conf. Eval.
Assessment Softw. Eng., 2014, pp. 1-10.

R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. Van Gemund,
“A practical evaluation of spectrum-based fault localization,” J. Syst.
Softw., vol. 82, no. 11, pp. 1780-1792, 2009.

M. Hays, J. H. Hayes, and A. C. Bathke, ““Validation of software testing
experiments: A meta-analysis of icst 2013, in Proc. 7th Int. Conf. Softw.
Test., Verification Validation, 2014, pp. 333-342.

M. Hays, J. H. Hayes, A. J. Stromberg, and A. C. Bathke, “Traceability
Challenge 2013: Statistical analysis for traceability experiments: Soft-
ware verification and validation research laboratory (SVVRL) of the
University of Kentucky,” in Proc. 7th Int. Workshop Traceability Emerg.
Forms Softw. Eng. (TEFSE), 2013, pp. 90-94.

R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of sim-
ilarity coefficients for software fault localization,” in Proc. 12th Pacific
Rim Int. Symp. Dependable Comput., 2006, pp. 39-46.

J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proc. 20th IEEE/ACM Int.
Conf. Automated Softw. Eng., 2005, pp. 273-282.

Q. Shi, Z. Zhang, Z. Liu, and X. Gao, “Enhance fault localization
using a 3D surface representation,” in Proc. 2nd Int. Conf. Comput. Res.
Develop., 2010, pp. 720-724.

A. Beszedes, F. Horvath, M. Di Penta, and T. Gyimothy, “Leverag-
ing contextual information from function call chains to improve fault
localization,” in Proc. IEEE 27th Int. Conf. Softw. Anal., Evol. Reeng.
(SANER), Feb. 2020, pp. 468—479.

R. Abreu, W. Mayer, M. Stumptner, and A. J. C. Van Gemund, ‘‘Refining
spectrum-based fault localization rankings,” in Proc. ACM Symp. Appl.
Comput., 2009, pp. 409-414.

S. Xu, J. Xu, H. Yang, J. Yang, C. Guo, L. Yuan, W. Song, and G. Si, “An
improvement to fault localization technique based on branch-coverage
spectra,” in Proc. IEEE 39th Annu. Comput. Softw. Appl. Conf., 2015,
pp. 282-287.

VOLUME 10, 2022

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

IEEE Access

[46]

[47]

[48]

[49]

[50]

[51

[52]

[53]

[54

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Proc. Ind. Conf. Pract. Res. Techn.,
2007, pp. 89-98.

D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE Trans.
Softw. Eng., vol. 47, no. 2, pp. 332-347, Feb. 2021.

T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in Proc. 25th
Int. Symp. Softw. Test. Anal., Jul. 2016, pp. 177-188.

Y. WANG, Z. HUANG, Y. LI, R. WANG, and Q. YU, “Spectrum-based
fault localization framework to support fault understanding,” IEICE
Trans. Inf. Syst., vol. E102-D, no. 4, pp. 863-866, 2019.

H. L. Ribeiro, P. A. Roberto de Araujo, M. L. Chaim, H. A. D. Souza,
and F. Kon, “Evaluating data-flow coverage in spectrum-based fault
localization,” in Proc. ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas.
(ESEM), Sep. 2019, pp. 1-11.

V. Debroy, W. E. Wong, X. Xu, and B. Choi, “A grouping-based strategy
to improve the effectiveness of fault localization techniques,” in Proc.
10th Int. Conf. Qual. Softw., Jul. 2010, pp. 13-22.

W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault localization
using code coverage,” in Proc. 31st Annu. Int. Comput. Softw. Appl. Conf.,
Jul. 2007, pp. 449-456.

X. Xu, V. Debroy, W. Eric Wong, and D. Guo, ““Ties within fault localiza-
tion rankings: Exposing and addressing the problem,” Int. J. Softw. Eng.
Knowl. Eng., vol. 21, no. 6, pp. 803-827, Sep. 2011.

F. Keller, L. Grunske, S. Heiden, A. Filieri, A. Van Hoorn, and D. Lo,
“A critical evaluation of spectrum-based fault localization techniques on
alarge-scale software system,” in Proc. IEEE Int. Conf. Softw. Qual., Rel.
Secur. (ORS), Jul. 2017, pp. 114-125.

Y. Yu, J. A. Jones, and M. J. Harrold, “An empirical study of the effects of
test-suite reduction on fault localization,” in Proc. 13th Int. Conf. Softw.
Eng. (ICSE), 2008, pp. 201-210.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, ““Scalable sta-
tistical bug isolation,” ACM SIGPLAN Notices, vol. 40, no. 6, pp. 15-26,
2005.

D. Vince, R. Hodovan, and A. Kiss, “Reduction-assisted fault localiza-
tion: Don’t throw away the by-products!” in Proc. 16th Int. Conf. Softw.
Technol., 2021, pp. 196-206.

L. Naish and H. J. Lee, “Duals in spectral fault localization,” in Proc.
22nd Austral. Softw. Eng. Conf., 2013, pp. 51-59.

Y. Xiaobo, B. Liu, and W. Shihai, “An analysis on the negative effect
of multiple-faults for spectrum-based fault localization,” IEEE Access,
vol. 7, pp. 2327-2347, 2018.

D. Ghosh and J. Singh, “Spectrum-based multi-fault localization using
chaotic genetic algorithm,” Inf. Softw. Technol., vol. 133, pp. 1-16,
Jan. 2021.

N. DiGiuseppe and J. A. Jones, “Fault density, fault types, and
spectra-based fault localization,” Empirical Softw. Eng., vol. 20, no. 4,
pp. 928-967, 2015.

X. Sun, B. Li, and W. Wen, “CLPS-MFL: Using concept lattice of
program spectrum for effective multi-fault localization,” in Proc. 13th
Int. Conf. Qual. Softw., Jul. 2013, pp. 204-207.

A. Dutta, K. Kunal, S. S. Srivastava, S. Shankar, and R. Mall, “FTFL:
A Fisher’s test-based approach for fault localization,” Innov. Syst. Softw.
Eng., vol. 4, pp. 1-25, Jun. 2021.

J. A. Jones, J. F. Bowring, and M. J. Harrold, ““Debugging in parallel,” in
Proc. Int. Symp. Softw. Test. Anal., 2007, pp. 16-26.

Y.-H. Wu, Z. Li, Y. Liu, and X. Chen, “FATOC: Bug isolation based
multi-fault localization by using OPTICS clustering,” J. Comput. Sci.
Technol., vol. 35, no. 5, pp. 979-998, Oct. 2020.

C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proc. Int. Symp. Softw. Test. Anal., New York,
NY, USA, 2011, pp. 199-209.

S. Parsa, S. Arabi, and N. E. Koopaei, ““Software fault localization via
mining execution graphs,” in Proc. Int. Conf. Comput. Sci. Appl. (ICCSA),
2011, pp. 610-623.

Q. Idrees Sarhan, A. Szatmari, R. Toth, and A. Beszedes, ‘“CharmFL:
A fault localization tool for Python,” in Proc. IEEE 21st Int. Work. Conf.
Source Code Anal. Manipulation (SCAM), Sep. 2021, pp. 114-119.

0. C. Chesley, X. Ren, B. G. Ryder, and F. Tip, “Crisp—A fault localiza-
tion tool for Java programs,” in Proc. 29th Int. Conf. Softw. Eng. (ICSE),
May 2007, pp. 775-778.

VOLUME 10, 2022

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

A.J.Koand B. A. Myers, “Debugging reinvented: Asking and answering
why and why not questions about program behavior,” in Proc. Int. Conf.
Softw. Eng., 2008, pp. 301-310.

D. Hao, L. Zhang, T. Xie, H. Mei, and J.-S. Sun, “Interactive fault
localization using test information,” J. Comput. Sci. Technol., vol. 24,
no. 5, pp. 962-974, Sep. 2009.

T. Janssen, R. Abreu, and A. J. Van Gemund, “Zoltar: A spectrum-based
fault localization tool,” in Proc. ESEC/FSE Workshop Softw. Integr. Evol.
Runtime, 2009, pp. 23-29.

J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: An eclipse plug-
in for testing and debugging,” in Proc. 27th IEEE/ACM Int. Conf. Autom.
Softw. Eng. (ASE), 2012, pp. 378-381.

N. Wang, Z. Zheng, Z. Zhang, and C. Chen, “FLAVS: A fault localization
add-in for visual studio,” in Proc. IEEE/ACM st Int. Workshop Complex
Faults Failures Large Softw. Syst. (COUFLESS), May 2015, pp. 1-6.

C. Chen and N. Wang, “UnitFL: A fault localization tool integrated with
unit test,” in Proc. 5th Int. Conf. Comput. Sci. Netw. Technol. (ICCSNT),
Dec. 2016, pp. 136-142.

H. L. Ribeiro, R. P. A. de Araujo, M. L. Chaim, H. A. de Souza,
and F. Kon, “Jaguar: A spectrum-based fault localization tool for real-
world software,” in Proc. IEEE 11th Int. Conf. Softw. Test., Verification
Validation (ICST), Apr. 2018, pp. 404-409.

L. C. Ascari, L. Y. Araki, A. R. T. Pozo, and S. R. Vergilio, “Exploring
machine learning techniques for fault localization,” in Proc. 10th Latin
Amer. Test Workshop, Mar. 2009, pp. 1-6.

F. Horvéath, T. Gergely, A. Beszédes, D. Tengeri, G. Balogh, and
T. Gyiméthy, “Code coverage differences of Java bytecode and source
code instrumentation tools,” Softw. Qual. J., vol. 27, no. 1, pp. 79-123,
Mar. 2019.

H. B. Hassan and Q. I. Sarhan, ‘‘Performance evaluation of graphical user
interfaces in Java and C#,” in Proc. Int. Conf. Comput. Sci. Softw. Eng.
(CSASE), Apr. 2020, pp. 290-295.

J. A. Duraes and H. S. Madeira, “Emulation of software faults: A field
data study and a practical approach,” IEEE Trans. Softw. Eng., vol. 32,
no. 11, pp. 849-867, Nov. 2006.

T. Y. Chen, X. Xie, F.-C. Kuo, and B. Xu, “A revisit of a theoretical
analysis on spectrum-based fault localization,” in Proc. IEEE 39th Annu.
Comput. Softw. Appl. Conf., Jul. 2015, pp. 17-22.

X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 4, pp. 1-40, 2013.
Spectrum-Based Fault Localization (SFL) Simulator. Accessed:
Oct. 1, 2021. [Online]. Available: https://github.com/SERG-Delft/sfl-
simulator/

B. Vancsics, T. Gergely, and A. Beszedes, “Simulating the effect of test
flakiness on fault localization effectiveness,” in Proc. IEEE Workshop
Validation, Anal. Evol. Softw. Tests (VST), Feb. 2020, pp. 28-35.

W. Lam, K. Mudlu, H. Sajnani, and S. Thummalapenta, ““A study on the
lifecycle of flaky tests,” in Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng.,
Jun. 2020, pp. 1471-1482.

E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon,
“Modeling and ranking flaky tests at apple,” in Proc. ACM/IEEE 42nd
Int. Conf. Softw. Engineering: Softw. Eng. Pract., Jun. 2020, pp. 110-119.
F. Palomba and A. Zaidman, “Does refactoring of test smells induce
fixing flaky tests?”” in Proc. Int. Conf. Softw. Maintenance Evol. (ICSME),
2017, pp. 1-12.

K. Presler-Marshall, E. Horton, S. Heckman, and K. Stolee, ““Wait, wait.
No, tell Me. Analyzing selenium configuration effects on test flaki-
ness,” in Proc. IEEE/ACM 14th Int. Workshop Autom. Softw. Test (AST),
May 2019, pp. 7-13.

W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov, “Under-
standing reproducibility and characteristics of flaky tests through test
reruns in Java projects,” in Proc. IEEE 31st Int. Symp. Softw. Rel. Eng.
(ISSRE), Oct. 2020, pp. 403-413.

A. Alshammari, C. Morris, M. Hilton, and J. Bell, “FlakeFlagger: Pre-
dicting flakiness without rerunning tests,” in Proc. 43rd Int. Conf. Softw.
Eng. (ICSE), 2021, pp. 1572-1584.

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically detecting flaky tests,” in Proc. 40th Int. Conf.
Softw. Eng. (ICSE), 2018, pp. 433-444.

R. Just, D. Jalali, and M. D. Ernst, “Defects4]: A database of existing
faults to enable controlled testing studies for Java programs,” in Proc.
Int. Symp. Softw. Test. Anal., New York, NY, USA, 2014, pp. 437-440.

10637

IEEE Access

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

[93]

[94]

[95]

[96]

[97]

[98]

[99

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108

[109]

[110]

[111]

[112]

[113]

[114]

[115]

10638

P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian, A. Beszedes,
R. Ferenc, and A. Mesbah, “BugsJS: A benchmark of Javascript bugs,”
in Proc. 12th IEEE Conf. Softw. Test., Validation Verification (ICST),
Apr. 2019, pp. 90-101.

R. Widyasari, S. Q. Sim, C. Lok, H. Qi, and J. Phan, “BugsInPy:
A database of existing bugs in Python programs to enable controlled
testing and debugging studies,” in Proc. 28th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., 2020, pp. 1556-1560.

J. Kim and E. Lee, “Empirical evaluation of existing algorithms of
spectrum based fault localization,” in Proc. Int. Conf. Inf. Netw. (ICOIN),
Feb. 2014, pp. 346-351.

S. Yoo, “Evolving human competitive spectra-based fault localisation
techniques,” in Search Based Software Engineering (Lecture Notes in
Computer Science), vol. 7515. 2012, pp. 244-258.

G. Balogh, F. Horvath, and A. Beszedes, ‘“‘Poster: Aiding Java developers
with interactive fault localization in eclipse IDE,” in Proc. 12th IEEE
Conf. Softw. Test., Validation Verification (ICST), Apr. 2019, pp. 371-374.
L. Gong, D. Lo, L. Jiang, and H. Zhang, “Interactive fault localization
leveraging simple user feedback,” in Proc. 28th IEEE Int. Conf. Softw.
Maintenance (ICSM), Sep. 2012, pp. 67-76.

F. Horvath, V. S. Lacerda, A. Beszedes, L. Vidacs, and T. Gyimothy,
“A new interactive fault localization method with context aware user
feedback,” in Proc. IEEE Ist Int. Workshop Intell. Bug Fixing (IBF),
Feb. 2019, pp. 23-28.

X. Li, S. Zhu, M. d’Amorim, and A. Orso, “Enlightened debugging,” in
Proc. 40th Int. Conf. Softw. Eng., May 2018, pp. 82-92.

A. Bandyopadhyay and S. Ghosh, “Tester feedback driven fault localiza-
tion,” in Proc. IEEE 5th Int. Conf. Softw. Test., Verification Validation,
Apr. 2012, pp. 41-50.

P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proc. 25th Int. Symp. Softw. Test. Anal.,
New York, NY, USA, Jul. 2016, pp. 165-176.

X. Xia, L. Bao, D. Lo, and S. Li, “‘Automated debugging considered
harmful’ considered harmful: A user study revisiting the usefulness of
spectra-based fault localization techniques with professionals using real
bugs from large systems,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol. (ICSME), Oct. 2016, pp. 267-278.

Y. Wang, Z. Huang, R. Wang, Q. Yu, and Q. Yu, “Spectrum-based fault
localization using fault triggering model to refine fault ranking list,”
IEICE Trans. Inf. Syst., vol. E101-D, no. 10, pp. 2436-2446, 2018.

X. Xie, T. Y. Chen, and B. Xu, “Isolating suspiciousness from spectrum-
based fault localization techniques,” in Proc. 10th Int. Conf. Qual. Softw.,
Jul. 2010, pp. 385-392.

W. Wen, “Software fault localization based on program slicing spec-
trum,” in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012,
pp. 1511-1514.

R. Yu, L. Zhao, L. Wang, and X. Yin, “Statistical fault localization via
semi-dynamic program slicing,” in Proc. IEEE 10th Int. Conf. Trust,
Secur. Privacy Comput. Commun., Nov. 2011, pp. 695-700.

S. Reis, R. Abreu, and M. d’Amorim, “Demystifying the combination of
dynamic slicing and spectrum-based fault localization,” in Proc. 28th Int.
Joint Conf. Artif. Intell., Aug. 2019, pp. 4760-4766.

X.Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang, ““Slice-based statistical fault
localization,” J. Syst. Softw., vol. 89, pp. 51-62, Mar. 2014.

J. Tu, X. Xie, T. Y. Chen, and B. Xu, “On the analysis of spectrum based
fault localization using hitting sets,” J. Syst. Softw., vol. 147, pp. 106123,
Jan. 2019.

X. Ju, S. Jiang, X. Chen, X. Wang, Y. Zhang, and H. Cao, ‘““HSFal: Effec-
tive fault localization using hybrid spectrum of full slices and execution
slices,” J. Syst. Softw., vol. 90, pp. 3—17, Apr. 2014.

Y. Lei, X. Mao, Z. Dai, and C. Wang, “Effective statistical fault local-
ization using program slices,” in Proc. IEEE 36th Annu. Comput. Softw.
Appl. Conf., Jul. 2012, pp. 1-10.

E. Wong, T. Wei, Y. Qi, and L. Zhao, “A crosstab-based statistical
method for effective fault localization,” in Proc. Int. Conf. Softw. Test.,
Verification, Validation, Apr. 2008, pp. 42-51.

X. Yu, H. Tang, J. Zou, and F. Yu, “An efficient software faults
localization method based on program spectrum,” in Proc. IEEE Int.
Conf. Inf. Technol., Big Data Artif. Intell. (ICIBA), vol. 1, Oct. 2020,
pp. 88-93.

W. E. Wong, V. Debroy, and D. Xu, “Towards better fault localiza-
tion: A crosstab-based statistical approach,” IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 42, no. 3, pp. 378-396, May 2012.

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

P. Hao, Z. Zheng, Y. Gao, and Z. Zhang, *“Statistical fault localization in
decision support system based on probability distribution criterion,” in
Proc. Joint IFSA World Congr. NAFIPS Annu. Meeting (IFSA/NAFIPS),
Jun. 2013, pp. 878-883.

A. S. Namin, “Statistical fault localization based on importance sam-
pling,” in Proc. IEEE 14th Int. Conf. Mach. Learn. Appl. (ICMLA),
Dec. 2015, pp. 58-63.

X. Liang, L. Mao, and M. Huang, “Research on improved the tarantula
spectrum fault localization algorithm,” in Proc. 2nd Int. Conf. Inf. Tech-
nol. Electron. Commerce, Dec. 2014, pp. 60-63.

X. Xue and A. S. Namin, “Measuring the odds of statements being
faulty,” in Proc. Int. Conf. Reliable Softw. Technol., 2013, pp. 109-126.
S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman, ‘““‘Human compet-
itiveness of genetic programming in spectrum-based fault localisation:
Theoretical and empirical analysis,” ACM Trans. Softw. Eng. Methodol.,
vol. 26, no. 1, pp. 1-30, 2017.

D. Landsberg, H. Chockler, D. Kroening, and M. Lewis, ‘‘Evaluation of
measures for statistical fault localisation and an optimising scheme,” in
Proc. Int. Conf. Fundam. Approaches Softw. Eng., 2015, pp. 115-129.
Y.-S. You, C.-Y. Huang, K.-L. Peng, and C.-J. Hsu, “Evaluation and
analysis of spectrum-based fault localization with modified similarity
coefficients for software debugging,” in Proc. 37th Annu. Comput. Softw.
Appl. Conf., 2013, pp. 180-189.

A. Zakari, S. P. Lee, and C. Y. Chong, “Simultaneous localization of
software faults based on complex network theory,” IEEE Access, vol. 6,
pp- 23990-24002, 2018.

B. Bagheri, M. Rezaalipour, and M. Vahidi-Asl, “An approach to generate
effective fault localization methods for programs,” in Proc. Int. Conf.
Fundamentals Softw. Eng., 2019, pp. 244-259.

C.-T. Lin, W.-Y. Chen, and J. Intasara, “A framework for improving fault
localization effectiveness based on fuzzy expert system,” IEEE Access,
vol. 9, pp. 82577-82596, 2021.

J. Kim, J. Park, and E. Lee, ‘A new spectrum-based fault localization with
the technique of test case optimization,” J. Inf. Sci. Eng., vol. 32, no. 1,
pp. 177-196, 2016.

A. Perez, R. Abreu, and A. Van Deursen, “A test-suite diagnosabil-
ity metric for spectrum-based fault localization approaches,” in Proc.
IEEE/ACM 39th Int. Conf. Softw. Eng. (ICSE), May 2017, pp. 654-664.
N. Li, R. Wang, Y. Tian, and W. Zheng, “An effective strategy to build
up a balanced test suite for spectrum-based fault localization,” Math.
Problems Eng., vol. 2016, Apr. 2016, Art. no. 5813490.

X. Zhang, Z. Wang, W. Zhang, H. Ding, and L. Chen, ““Spectrum-based
fault localization method with test case reduction,” in Proc. IEEE 39th
Annu. Comput. Softw. Appl. Conf., Jul. 2015, pp. 548-549.

M. Weiglhofer, G. Fraser, and F. Wotawa, ““Using spectrum-based fault
localization for test case grouping,” in Proc. IEEE/ACM Int. Conf. Auto-
mated Softw. Eng., Nov. 2009, pp. 630-634.

P. Daniel and K. Y. Sim, “Spectrum-based fault localization tool with test
case preprocessor,” in Proc. IEEE Conf. Open Syst. (ICOS), Dec. 2013,
pp. 162-167.

A. Christi, M. L. Olson, M. A. Alipour, and A. Groce, ‘“‘Reduce before
you localize: Delta-debugging and spectrum-based fault localization,” in
Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops (ISSREW), Oct. 2018,
pp. 184-191.

T. Kuma, Y. Higo, S. Matsumoto, and S. Kusumoto, “Improving the
accuracy of spectrum-based fault localization for automated program
repair,” in Proc. 28th Int. Conf. Program. Comprehension, Jul. 2020,
pp. 376-380.

C. Liu, C. Ma, and T. Zhang, “Improving spectrum-based fault local-
ization using quality assessment and optimization of a test suite,” in
Proc. IEEE 20th Int. Conf. Softw. Qual., Rel. Secur. Companion (QRS-
C), Oct. 2020, pp. 72-78.

A. Bandyopadhyay and S. Ghosh, “Proximity based weighting of
test cases to improve spectrum based fault localization,” in Proc.
26th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2011,
pp. 420-423.

B. Jiang and W. K. Chan, “On the integration of test adequacy, test case
prioritization, and statistical fault localization,” in Proc. 10th Int. Conf.
Qual. Softw., Jul. 2010, pp. 377-384.

T. Dao, M. Wang, and N. Meng, “Exploring the triggering modes of
spectrum-based fault localization: An industrial case,” in Proc. 14th
IEEE Conf. Softw. Test., Verification Validation (ICST), Apr. 2021,
pp. 406-416.

VOLUME 10, 2022

Q. I. Sarhan, A. Beszédes: Survey of Challenges in Spectrum-Based Software Fault Localization

IEEE Access

[138]

[139]

[140

[141]

[142]

[143

[144

[145]

[146]

[147]

[148]

[149]

[150]

[151]

C. Gong, Z. Zheng, W. Li, and P. Hao, “Effects of class imbalance in
test suites: An empirical study of spectrum-based fault localization,” in
Proc. IEEE 36th Annu. Comput. Softw. Appl. Conf. Workshops, Jul. 2012,
pp. 470-475.

M. Zhang, Y. Li, X. Li, L. Chen, Y. Zhang, L. Zhang, and S. Khurshid,
“An empirical study of boosting spectrum-based fault localization via
PageRank,” IEEE Trans. Softw. Eng., vol. 47, no. 6, pp. 1089-1113,
Jun. 2021.

A. Bandyopadhyay, “Mitigating the effect of coincidental correctness in
spectrum based fault localization,” in Proc. IEEE 5th Int. Conf. Softw.
Test., Verification Validation, Apr. 2012, pp. 479—482.

L. Zhang, L. Yan, Z. Zhang, J. Zhang, W. K. Chan, and Z. Zheng,
“A theoretical analysis on cloning the failed test cases to improve
spectrum-based fault localization,” J. Syst. Softw., vol. 129, pp. 35-57,
Jul. 2017.

Y. Kucuk, T. A. D. Henderson, and A. Podgurski, “The impact of rare
failures on statistical fault localization: The case of the Defects4J suite,”
in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2019,
pp. 24-28.

P. Daniel, K. Y. Sim, and S. Seol, “Incremental spectrum cloning algo-
rithm for optimization of spectrum-based fault localization,” Contemp.
Eng. Sci., vol. 7, pp. 1649-1655, 2014.

P. Daniel, K. Y. Sim, and S. Seol, “Improving spectrum-based fault-
localization through spectra cloning for fail test cases beyond balanced
test suite,” Contemp. Eng. Sci., vol. 7, pp. 677-682, Jan. 2014.

C. Gouveia, J. Campos, and R. Abreu, “Using HTMLS5 visualizations in
software fault localization,” in Proc. Ist IEEE Work. Conf. Softw. Vis.
(VISSOFT), 2013, pp. 1-10.

B. Castro, A. Perez, and R. Abreu, “Pangolin: An SFL-based toolset for
feature localization,” in Proc. 34th IEEE/ACM Int. Conf. Autom. Softw.
Eng. (ASE), Nov. 2019, pp. 1130-1133.

S. Heiden, L. Grunske, T. Kehrer, F. Keller, A. Hoorn, A. Filieri, and
D. Lo, “An evaluation of pure spectrum-based fault localization tech-
niques for large-scale software systems,” Softw. Pract. Exper., vol. 49,
no. 8, pp. 1197-1224, Aug. 2019.

B. Vancsics, F. Horvath, A. Szatmari, and A. Beszedes, “Call frequency-
based fault localization,” in Proc. IEEE Int. Conf. Softw. Anal., Evol.
Reeng. (SANER), Mar. 2021, pp. 365-376.

G. Zhao, H. He, and Y. Huang, “Fault centrality: Boosting spectrum-
based fault localization via local influence calculation,” Appl. Intell.,
vol. 5, pp. 1-23, Oct. 2021.

G. Laghari and S. Demeyer, “On the use of sequence mining within
spectrum based fault localisation,” in Proc. 33rd Annu. ACM Symp. Appl.
Comput., Apr. 2018, pp. 1916-1924.

H. A. de Souza, D. Mutti, M. L. Chaim, and F. Kon, “Contextual-
izing spectrum-based fault localization,” Inf. Softw. Technol., vol. 94,
pp. 245-261, Oct. 2018.

VOLUME 10, 2022

[152]

[153]

[154]

V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight defect localiza-
tion for java,” in Proc. Eur. Conf. Object-Oriented Program., 2005,
pp. 528-550.

J. Tu, L. Chen, Y. Zhou, J. Zhao, and B. Xu, “Leveraging method call
anomalies to improve the effectiveness of spectrum-based fault localiza-
tion techniques for object-oriented programs,” in Proc. 12th Int. Conf.
Qual. Softw., 2012, pp. 1-8.

G. Laghari, A. Murgia, and S. Demeyer, “‘Fine-tuning spectrum based
fault localisation with frequent method item sets,” in Proc. 3Ist
IEEE/ACM Int. Conf. Automated Softw. Eng., Aug. 2016, pp. 274-285.

QUSAY IDREES SARHAN received the B.Sc.
degree in software engineering from the University
of Mosul, Iraq, in 2007, and the M.Tech. degree in
software engineering from Jawaharlal Nehru Tech-
nological University, India, in 2011. Since 2012,
he has been a Lecturer at the University of Duhok,
Iraq. He is currently working at the Department
of Software Engineering, University of Szeged,
Hungary. He has a couple of national and interna-
tional publications. His research interests include

software engineering, the Internet of Things, and embedded systems.

ARPAD BESZEDES received the Ph.D. degree in
computer science from the University of Szeged,
in 2005. He is currently an Associate Professor at
the University of Szeged. He has over 100 publi-
cations. His research interests include static and
dynamic program analysis with special emphasis
on software testing and debugging applications.
He is regularly invited to serve in the program
committees for various software engineering con-
ferences, and as a Reviewer and an Editor for

Software Engineering and Computer Science journals.

10639

