
Received December 9, 2021, accepted January 9, 2022, date of publication January 18, 2022, date of current version February 1, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3144015

Energy-Aware and Trust-Based Secure Routing
Protocol for Wireless Sensor Networks
Using Adaptive Genetic Algorithm
YOUJIA HAN 1, HUANGSHUI HU1,2, AND YUXIN GUO1
1College of Computer Science and Engineering, Changchun University of Technology, Jilin 130012, China
2School of Artificial Intelligence, The Tourism College of Changchun University, Jilin 130607, China

Corresponding author: Huangshui Hu (huhs08@163.com)

This work was supported in part by the Science and Technology Development Project of Jilin Province under Grant 20200201009JC and
Grant 20210201051GX.

ABSTRACT Due to their working environments, limited resources and communication characteristics,
wireless sensor networks face some challenges including energy optimization and security enhancement to
extend the network lifetime and guarantee the network security. Therefore, an energy-aware and trust-based
routing protocol for wireless sensor networks using adaptive genetic algorithm called TAGA is proposed to
not only resist common routing attacks and special trust attacks, but also minimize the energy consumption
caused by data transmission. To this end, TAGA constructs the nodes’ comprehensive trust values based on
their direct trust values considering the volatilization and adaptive penalty factors, and indirect trust values
with the filtering mechanisms. In addition, a novel threshold function is presented to select the optimal
cluster heads, which considers the dynamic changes of the nodes’ comprehensive trust values and residual
energy. Finally, a genetic algorithm with adaptive crossover probability and mutation probability is applied
to find the optimal secure routing for the cluster heads. The simulation results show that TAGA can reduce
the number of packets discarded by malicious nodes when facing common attacks and special trust attacks,
and effectively improve the energy efficiency compared to the relative secure routing protocols EOSR and
IASR.

INDEX TERMS Wireless sensor networks, secure routing, comprehensive trust, direct trust.

I. INTRODUCTION
Wireless sensor networks (WSNs) are comprised of multi-
tudinous sensor nodes that are low-priced, low-power and
miniature characteristics [1]–[3]. These nodes are data-
centric responsible for collecting relevant data in the target
area and transmitting the data to the sink node (base station or
control center) in a single-hop or multi-hop manner [4], [5].
In recent years, wireless sensor networks have been widely
spread in aerospace, industry, home, battlefield, and many
other fields [6]–[8]. Usually, sensor nodes are deployed in
harsh environments or unattended areas, which makes their
routing protocols susceptible to all kinds of attacks [9]. Such
attacks can be classified as external and internal attacks
[10], [36]. To enableWSNs to operate in a healthy and secure
environment, the securitymechanisms based on cryptography
and identity verification are proposed to resist external attacks
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onWSNs. However, such defense mechanisms cannot defend
against attacks inside the network [11], [12]. This is because
it is a prerequisite for realising these schemes that nodes in
a network are cooperative and fully reliable [13]. Moreover,
they require sophisticated calculations and large amounts of
memory, which can incur higher energy overhead. There-
fore, security mechanisms using trust have been proposed
to solve internal attacks on WSNs have been shown to be
feasible [14], [15].

Trust-based security mechanisms predict the behavior of
the node in the next moment based on its historical behavior
[16], [17]. They quantify the behavior of nodes by building
models. The more good behaviors a node has, the higher the
trust value and security will be. However, traditional trust-
based security mechanisms also have some drawbacks, such
as not being able to defend against multiple types of attacks
simultaneously, not being fast enough to identify mali-
ciousness, and high energy consumption. More importantly,
there is a spear and a shield, and trust attacks (on-off and
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bad-mouth attacks) are designed to target trust-based security
mechanisms. Its purpose is to destroy the trust evaluation
mechanism, thereby paralyzing these defense mechanisms.
Therefore, normal nodes will also be evaluated as malicious
nodes. Therefore, how to resist both common attacks and trust
attacks, as well as to find a secure and energy-saving route
for the network, is one of the important issues that many
researchers explore.

The routing protocol based on trust and adaptive genetic
algorithm proposed in this paper resists common routing
attacks and special trust attacks by building a trust model.
For example, common attacks include black hole, selective
forwarding, sinkhole and hello flooding attacks [18], [19];
trust attacks include on-off and bad-mouth attacks [20].
TAGA design the fitness function of an adaptive genetic
algorithm (AGA) according to node comprehensive trust
value, energy trust value and hop count as parameters to
find secure and energy-saving routes. In addition, adaptive
crossover probability, adaptive variation probability and ran-
dom crossover mapping method are introduced in the AGA to
enhance the diversity of the population, so as to accelerate the
convergence of chromosomes and avoid the local optimum
phenomenon.

The main contributions of this paper are as follows:
TAGA is developed by integrating trust security mecha-

nism and AGA so that routing can take into account both
security and energy saving.

TAGA is improving security by building an adaptive trust
model to evaluate the comprehensive trust value of each node
to resist common attacks and special trust attacks.

The cluster heads (CHs) selection threshold is improved
according to the dynamic changes of trust value and energy,
so as to avoid malicious nodes acting as CHs.

The rest of the paper is organized as follows: Section 2
presents the past work of many researchers; Section 3
describes the improved trust proposed in this paper;
Section 4 presents the energy model of TAGA; Section 5
describes the pathfinding process of TAGA in detail;
Section 6 verifies the performance of TAGA through simu-
lation experiments; Section 7 concludes the paper.

II. RELATED WORK
In [21], a security and trust-aware routing scheme is pro-
posed, which differs from other methods in that it acquires
trust by using fuzzy logic. The fuzzy logic contains two
inputs and one output. The source and destination are used
as input to the fuzzy logic, and TU (trust and untrust) is used
as output. The fuzzy logic is used to distinguish between
normal and unnatural sensors, where unnatural sensors can be
considered as internal attacks. For the routing of this scheme,
they utilize the MDS-MAP (multidimensional scaling map-
ping) algorithm to decide the best path with less error. But
this scheme requires the support of fuzzy system, Dijkstra
algorithm, MDS-MAP algorithm, so the complexity is high.
In [22], a trust-based secure directed diffusion routing pro-
tocol (TSDDR) is proposed to guarantee the confidentiality
of data during transmission. The trust model of TSDDR

considers two factors: direct trust value and energy consump-
tion. In constructing the direct trust value, they use the Beta
model with penalty function (1− β

/
W ) and tuning function

(1 − 1
/
(α + δ)) to help construct the direct trust. Although

the penalty function and tuning function are introduced in the
direct trust model, the burden from the historical evaluation
is not considered. In [5], an algorithm based on ant and trust
called MPASR is proposed to alleviate the burden caused
by historical evaluation by introducing η (weakening factor),
as well as to save energy. The trust type ofMPASR ismodeled
as Beta distribution, and the comprehensive trust value is cal-
culated with direct and indirect trust values. Unlike previous
studies, MPASR filters out unnecessary third-party nodes in
order to save energy when calculating indirect trust values.
Then in the route establishment phase, MPASR integrates
the trust value, residual energy and delay to obtain a com-
prehensive pheromone that is an important factor to improve
the traditional ant colony algorithm, which in turn finds the
most appropriate transmission route for each node in the
network.

In [23], a hybrid optimization algorithm called Monarch-
Cat Swarm Optimization (M-CSO) is proposed to ensure the
effective security of the network. Nodes are identified as
secure or not by calculating the tolerance constant according
to trust, connectivity and Quality of Service. The oppor-
tunity routing of M-CSO is done by integrating the MBO
(Monarch Butterfly Optimization) and the CSO (Cat Swarm
Optimization), which balances the advantages and disad-
vantages of both algorithms. However, in the establishment
of the trust model, the consideration is not comprehensive
enough, which makes the evaluation not accurate enough.
In [24], the Secure Quality of Service (QoS) aware Energy
Efficient Routing (SQEER) protocol is proposed, which is
designed based on trust and energy models. SQEER cal-
culates three types of trust values to improve the security
of network communication and the accuracy of evaluation.
The protocol calculates the total trust value from direct and
indirect trust values. QoS and trust are then applied together
in an integratedway to the security CHs selectionmechanism.
Finally, the optimal path is selected based on path trust,
energy and hop count. In [25], an algorithm combining trust
and opportunistic routing called ETOR is proposed, which
consists of two components. One uses tolerance constants to
carefully select safety nodes, and the other selects some of
these nodes to form a route. In the routing phase, a new hybrid
fitness function is designed to select the optimal secure route.
This function specifically involves parameters such as energy,
trust, QoS, connectivity, distance, hop count and network
traffic. ETOR is superior to M-CSO and SQEER in terms of
energy efficiency and trust model design. In [37], an effec-
tive fuzzy path selection approach is proposed to reduce
the impact of selective forwarding attacks. This approach is
roughly divided into two phases: the first phase is when the
compromised node is monitored; the second phase is when a
new secure route is selected using fuzzy rules. This method
takes the average link residual energy and hop count as inputs
for fuzzy control and then obtains the candidate chance values
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for a particular route. Finally, a new disjoint secure route is
selected to resist selective forwarding attacks.

In [26], base station (BS) controlled secure routing pro-
tocol (BSCSRP) is proposed. The CH selection mechanism
of BSCSRP is based on the classical LEACH (Low Energy
Adaptive Clustering Hierarchy) protocol. However, the CHs
election threshold of BSCSRP only considers the residual
energy of nodes. BSCSRP considers direct trust, indirect
trust, packet drop trust and attribute trust when construct-
ing a comprehensive trust model. The energy, distance and
delay parameters in communication are used as the basis
for path selection. But BSCSRP does not consider whether
this CH is secure or not when selecting the CH. In [27],
a multidimensional secure cluster routing scheme (MSCR) in
hierarchical WSNs is proposed to participate in the selection
of CHs based on several factors, including security. MSCR
first constructs the trust synthesis, the environmental factors,
and the security domain. Then, MSCR also takes LEACH
protocol as the basic framework to improve the CHs election
thresholds by introducing the energy domain, the distance
domain, the environment domain and the security domain.
Although MSCR contributes in the CHs election phase, all
CHs of the network transmit their collected data to the BS
in a single-hop manner. Therefore, applying MSCR to large-
scale networks shows poor performance. In [28], a trust-based
dynamic slicing mechanism (TDSM) is proposed to improve
the performance of WSNs. This mechanism evaluates the
corresponding trust degree based on data forwarding, latency
and packet loss and then averages these three values. The
node with the largest communication trust value is used as
the CHs in the CHs selection phase; the node with a com-
munication trust value less than 4 is the discard node; the
rest are the member nodes. Finally, each node splits its data
into different pieces and sends them to the corresponding
nodes. The corresponding nodes mix the received slices with
their own sensed data and sends them to the corresponding
multi-hop link.

None of the above schemes can resist trust attacks. Once
a malicious node launches a trust attack, many normal
nodes with trust-based security mechanisms will be para-
lyzed. In [29], an energy-optimized secure routing algorithm
(EOSR) is proposed, which is designed as a multi-factor
routing method. The comprehensive trust of EOSR is a com-
bination of direct and indirect trust values. In constructing
the direct trust model, EOSR considers that the uncoopera-
tive behavior may be from malicious or normal nodes. Thus
EOSR corrects the accuracy of the direct trust model. In addi-
tion, the deviation degree is introduced to filter false recom-
mendations when calculating the indirect trust value. Finally,
EOSR combines the AODV (Ad hoc On-demand Distance
Vector Routing) protocol, trust, residual energy and hop count
to calculate the combined path cost. Thus, the path with the
smallest combined path cost is selected as the optimal route.
In [30], Information-Aware Secure Routing in WSNs (IASR)
is proposed. IASR calculates the direct attack probability
based on the communication behavior of nodes and then cal-
culates the indirect attack probability and filters the malicious

evaluation value according to the direct attack probability.
Finally, direct and indirect trust are simply integrated to get
the integrated trust. Using the Dijkstra algorithm as the basis
of pathfinding, the total state value of nodes in the whole
path is calculated based on the trust value (attack probability)
associated with the state (remaining energy and distance to
the sink). Therefore, the optimal route withminimum cost can
be found. Although these two schemes consider the impact
of trust attacks, they do not consider the negative impact of
historical evaluation on the current evaluation. In addition, the
node with bad behavior is not penalized to speed them up to
be identified. Therefore, these two schemes will lose a large
number of packets when attacked.

All the acronyms mentioned in this paper are listed in
Table 1.

TABLE 1. Definition of acronyms.

III. TRUST MODEL
Since a normal node is captured as a malicious node, security
schemes based on cryptographic mechanisms cannot defend
it. Therefore, human-to-human trust relationships are applied
to WSNs to evaluate whether or not each node is captured
as a malicious node. The higher a node is trusted, the higher
its security. The watchdog mechanism is used for recon-
naissance to obtain the data source of trust evaluation [19]
and mainly monitors the nodes in the route for sending and
receiving packets. In TAGA, hierarchical trust values are used
to maintain the dynamic behavior of trust.

A. DIRECT TRUST VALUE
The direct trust value is meant to be obtained by the nodes
that personallymonitor the behavior of their neighbors. In this
paper, The direct trust model is constructed by monitoring the
status of neighbor nodes receiving and sending data pack-
ets. The direct trust of node i evaluating neighbor node j
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can be expressed as:

Dtij = ψ ∗ PT
t
ij + (1− ψ) ∗ NT tij (1)

where PT tij denotes trust values that node i has evaluated
node j in the past, i.e., historical trust values. It aims to limit
the high trust values evaluated long time ago, thus improv-
ing the security, accuracy and speeding up identification in
WSNs. NT tij indicates the trust value of node j evaluated by
node i in the current evaluation cycle, and satisfies NT tij =
Rtj + S

t
j . ψ and 1 − ψ are the measuring factor of historical

and current trust values, 0 < ψ < 1, whose values are set
in terms of the specific circumstances. For fairness, the value
of ψ is usually set to 0.5. Rj and Sj denote under the penalty
mechanism the ratio of the number of data received and sent
by node j to the total number of packets, respectively, and are
expressed as follows:

Rj =
γ ∗ rej − rjj

mej
(2)

Sj =
γ ∗ sej − usj

mej
(3)

where, rej and sej respectively represent the number of pack-
ets that j received and sent. rjj and usj denote the number of
data that j rejected to received and sent, respectively. Message
denotes the total number of packets received and sent by
node j. γ is the adaptive penalty factor. It serves to speed up
the decline of trust value of malicious nodes. The expression
formula of γ is as follows:

γ =
−a

1+ e−b∗(BPj+c)
+ 1 (4)

BPj =
ABj
NBj

(5)

where BPj is the ratio of abnormal behavior ABj to normal
behavior NBj in the last five trust evaluation cycles. a, b and
c represent changeable parameters of γ , respectively, and
control the strength of the penalty to node j. Their magni-
tudes depend on the specifics of the network. When node j
is successfully caught at some point, ABj increases sharply,
which leads to a decrease in BPj. Under the action of BPj,
γ decreases Correspondingly, which results in fast dropping
current values. Therefore, the adaptive penalty factor γ is
helpful to improve the recognition speed.

In the perfect case, when a node becomes amalicious node,
it can be identified immediately enough. However, in reality,
it takes a period of evaluation cycle to identify it as a mali-
cious node. Therefore, how to shorten the evaluation cycle is
one of the issues discussed by many researchers. Malicious
nodes are normal nodes with high trust value before they
are captured, so the high historical trust value acts as a hin-
drance to the current evaluation. Therefore, the introduction
of volatilization factor ρ to reduce the effect of historical trust
value is helpful to speed up the recognition speed. Its value is
taken in the range of [0, 0.5]. The expression formula for the
historical trust value is as follows.

PT tij = ρ ∗ (D
t−1
ij + PT

t−1
ij ) (6)

B. INDIRECT TRUST VALUE
Although nodes can be evaluated by direct trust, if the level
of information interaction between nodes is not enough or is
affected by the channel, direct trust is not accurate enough to
measure the trustworthiness of a node [30]. Therefore, it is
necessary to introduce indirect trust to enhance the accuracy
of trust assessment. The indirect trust value is the trust value
provided by the common nodes between the node and the
target node. In other words, the direct trust value provided
by the common trusted neighbor nodes of node i and node j is
used to calculate the indirect trust value of node j. The indirect
trust value of node i to node j is expressed as:

I tij =
∑

k∈PBh

(
φk ∗ Dtik ∗ D

t
kj

)
(7)

where PBh stands for the set of trusted nodes that are jointly
owned by i and j. The common neighbor nodes of i and j may
be trusted or untrusted. Therefore it is necessary to filter the
neighbor nodes. Moreover, if a third-party node k launches
bad-mouth attacks, the trust mechanism can suffer a devastat-
ing disaster due tomalicious evaluations. To avoid bad-mouth
attacks and enhance the security of the trust mechanism, this
paper uses Equation 8 to filter the false evaluations.

d tk =

√√√√∑
Bx∈B

(
D− DtkBx

)2
l

(8)

where D represents the median that i evaluates node Bx .
As shown in Figure 1, Bx stands for the node jointly owned by
i and third-party node k, Bx ∈ B = [B1,B2 · · ·Bl], and l is the
number of common neighbor nodes. d tk is related to whether
the value recommended by k is reliable. Therefore, the rec-
ommendation threshold is set to guarantee the authenticity of
the recommended values. If d tk is greater than the threshold ε,
the value recommended by node k is not adopted by node i
and the abnormal behavior of k increases by l. Instead, node k
is added to PBh. The size of the threshold value ε depends on
the specific application; in this paper, ε is set to 0.5. Note
that the direct trust values recommended by the nodes in the
set PBh are trusted, but it does not mean that these nodes are
trusted themselves.

FIGURE 1. Common neighbors of node i and third-party node k.

In order to improve the accuracy of trust evaluation, the
weight of node k is set as follows:

φk =
Dtik∑

k∈PBh D
t
ik

(9)
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where node k is from PBh to avoid malicious destruction of
the weights.

C. COMPREHENSIVE TRUST VALUE
The comprehensive trust value combines the direct and the
indirect to ultimately express the basis of whether a node
is trusted or not. The higher the comprehensive trust value,
as shown in formula 10, the higher the security level and
trustworthiness of the node.

C t
ij =

{
(1− η) ∗ Dtij + η ∗ I

t
ij if j 6= k

(1− η) ∗ I tij + η ∗ D
t
ij else j = k

(10)

η =

{
0.5 if d tk < ε∣∣∣Dtij − I tij∣∣∣/Dtij else d tk ≥ ε

(11)

where η is their weight coefficient. According to Equation 11,
if node k, the common neighbor of node i and node j, ini-
tiates bad-mouth attack, the calculation prefers the direct
value. Conversely, for fairness, the weight coefficients for
both direct and indirect are 0.5. The node that initiates the
bad-mouth attack may be either a third-party node k or the
evaluated. If it is the former, the calculation of the comprehen-
sive trust value focuses more on the result of the evaluator’s
assessment. On the contrary, the direct and indirect trust
values are considered in combination.

IV. ENERGY MODEL
Usually, the nodes in WSNs are deployed in harsh and unat-
tended environments, which prevents the nodes from replen-
ishing their energy. Therefore, it is important to consider
the energy consumption while enhancing the security of the
network to avoid rapid energy depletion of the nodes. In this
paper, we use a similar energymodel as used in [30], [34]. The
energy consumed by node i to send s-bits of data to node j at
a distance d is as follows:

Esj =

{
s ∗ Eelec + s ∗ εfs ∗ d2 d < d0
s ∗ Eelec + s ∗ εmp ∗ d4 d ≥ d0

(12)

The energy consumed by node j to receive the s-bits data
sent by node i is as follows:

Erj = s ∗ Eelec (13)

where Eelec denotes the energy cost of transmitting 1 bit
by the transmitter; εfs and εmp denotes the energy cost of
the free-space and multi-path fading models, respectively;
Additionally, d0 is the threshold value for an amplifier to
adjust its power.

d0 =
√
εfs
/
εmp (14)

The energy consumption of s-bits data aggregation is:

EDA = s ∗ Epb (15)

The energy cost to fuse 1 bit of data is Epb.
Assuming that the initial energy of each node is E0, the

remaining energy of each node is

REj = REj − Erj − Esj − EDA (16)

Thus, for j, the energy trust value is:

Ej =
REj
E0

(17)

V. SECURE ROUTING
The third section describes the trust evaluation mechanism of
TAGA, which aims to evaluate the security level of individual
nodes. This section, on the other hand, aims at finding the
safest and most energy-efficient route through an AGA to
achieve secure routing in WSNs.

A. SELECTION OF CHs
TAGA is a hierarchical routing protocol that first selects the
nodes with the highest combined capability as the CHs based
on the comprehensive trust value and the remaining energy.
Since the main function of the CHs are to receive and forward
the data sent by the nodes in the cluster and to forward the data
from other CHs, the node with high overall quality must be
selected as the CH. In traditional trust-based secure routing
protocols, only nodes with high security are considered as
CHs, which is deficient. Because if a node does not have
much-remaining energy but has a high-security level, then
this node is bound to take the role of CH. So, in this case,
these nodes are always selected as CHs, and then his energy
decreases very quickly.

The secure routing in this paper is in terms of the frame-
work of classical LEACH protocol, a hierarchical network
topology with operational phases including cluster construc-
tion phase and stable data transmission phase. However,
in these two phases, the selection of CHs and data transmis-
sion on the path make the WSNs full of crisis and energy
wastage. Therefore, it is necessary to improve the CHs selec-
tion mechanism and path planning method. The improved
CHs selection mechanism is shown in the following equation.

T (j) =


p

1− p(rmod(1/p))
∗ ((1− ϕ) ∗ C t

j + ϕ∗E
′
j)

j ∈ G
0 j /∈ G

(18)

where, p is the percentage of the number of CHs in the
network to the total number of nodes, r is the number of
rounds the network is running, and G is the set of nodes that
were not selected as CHs in the previous round and have
residual energy greater than the average. In order to select
high quality CHs with high security and sufficient energy,
the average of the comprehensive trust value C t

j and the min-
max normalization of energy trust value E ′j are introduced.
ϕ is adaptive weight. Traditional trust-based security schemes
use fixed weights, which makes them inadequate to adapt to
changes in the network. Since in the early stage of network
operation, the comprehensive trust value of nodes has not
yet reached the state of convergence, the comprehensive trust
value is relatively volatile, which makes it poor to judge
the security of nodes. Therefore, in the early stages of the
network, energy trust should be favoredmore compared to the
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comprehensive trust. After the initial stage of the network,
the assessed value of the nodes is stable and the energy in
the network gradually decreases with the operation of the
network. Therefore gradually focus on the role played by the
comprehensive trust value in CHs selection. The formula for
the weighting factor is as follows.

ϕ =


Q if r ≤ r1
1−

√
1+ 0.75 ∗ (ξ (r)− 2)2

ξ (r)− 2
else r > r1

(19)

where Q is a constant, which takes values between 0.5 and 1.
r1 indicates the number of rounds the network is running
when the standard deviation of the comprehensive trust value
of the nodes is less than a specific threshold χ . ξ (r) indicates
the total energy consumed by the network as it runs.

ξ (r) =
n∑
j=1

E ′′j −
n∑
j=1

Ej (20)

where E ′′j denotes the energy trust value of j when the number
of running rounds is r1.

B. ROUTING BASED ON AGA
Since the single-hop approach is used in the stable phase of
LEACH protocol, but this approach is not suitable for large-
scale networks. However, if the multi-hop approach is used,
the CHs need to forward the collected data through multiple
nodes to the BS, which will also have a crisis. So the paths
sought by the CHs must be safe and energy-efficient.

Currently, the research of AGA has been relatively mature
and extensive [31], but few of them have been combined
with trust mechanisms. Genetic manipulation involves four
main processes: coding, selection, crossover, and mutation.
In TAGA, real number coding is used instead of binary cod-
ing to represent chromosomes, and a new fitness function
is designed to determine the quality of chromosomes [35].
In addition, random crossover and dynamic mutation meth-
ods from the literature [32], [33] are used to enhance the
population diversity and improve the algorithm convergence.

1) ENCODING
The AGA uses different coding methods will produce the
effect, so the AGA is first faced with how to use the appro-
priate chromosome codingmethod. Themost commonly used
encodingmethods are binary encoding and real encoding, and
real encoding has the advantage of higher accuracy. Assum-
ing that the network consists of N nodes, then each node is
given a unique positive integer (or ID) between 1 and N, and
the BS is denoted as N+1. Thus when nh nodes are selected
as CH, then the genes of this chromosome are composed of
their respective codes, and the chromosome length is nh.
To expedite the aggregation of the AGA and obtain an

efficient solution, the gene position of each source CH has its
own corresponding set gi, as shown in Figure 2. OnlyCH j that
satisfies the following three conditions at the same time can
be added to the set gene gi of source CH i: (i) CH j is within
the communication range of CH i; (ii) the distance from CH i

to the BS should be greater than the distance from CH j to the
BS; (iii) the distance betweenCH i andCH j should be smaller
than the distance from CH i to the BS.

FIGURE 2. Chromosome structure diagram.

2) SELECTION OPERATOR
The reproduction of species in nature is a process of survival
of the fittest. Similarly, in AGA, the operation of selecting
high quality individuals and eliminating low quality individ-
uals from a large number of individuals is called selection
operator. At present, the roulette wheel selection method is
the most common and simplest method of selection operator
in AGA. The expression formula for the probability of each
individual being selected is as follows:

P(x) =
f (x)

x=M∑
x=1

f (x)

(21)

where x and f (x) represent individual x and the fitness value
of individual x, respectively. M represents the size of the
population.

3) CROSSOVER OPERATOR
The crossover operator means that two-parent individuals
exchange corresponding genes to form the next generation.
Its purpose is to enhance population diversity and pro-
mote population evolution. The traditional crossover opera-
tor randomly selects two individuals based on the crossover
probability and randomly generates crossover positions for
exchanging some genes.

To further enhance the population diversity and the search
range, the random cross mapping method is introduced to
break the limitation of the number of fixed crossover points
in traditional genetic algorithms [32]. The random cross map-
ping method means that the crossover length is fixed as half
of the chromosome length, but the crossover start point and
endpoint are not fixed. Suppose the chromosome length is L
and the crossover length is:

L ′ =
⌊
L
2

⌋
(22)

First, a starting crossover position is randomly selected,
and then the end crossover point is extended L ′ units back-
wards along the chromosome from the starting point. For
example, two chromosomes A and B of length 7 (shown in
Figure 3), then a crossover segment of crossover length 3 is
generated under the random crossover mapping method.
Figure 3 shows the three cases generated under this method.
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FIGURE 3. The random crossover mapping method.

In addition to the above random cross mapping method,
crossover probability and mutation probability can also
increase population diversity. However, the fixed crossover
probability preset by traditional genetic algorithms may lead
to low population diversity in the early stages of the algo-
rithm, which may lead to an early convergence situation.
In the process of population evolution, different individu-
als behave differently, then the crossover probability of the
population should also vary according to the fitness of each
individual. The adaptive crossover probability [33] involving
the number of evolutionary generations and the fitness values
of the corresponding generations are shown below.

pc =

pcmin−
(pcmax − pcmin)

1+ e−it
∗

f − f itavg
f itmax − f itavg

, if f ≥ f itavg

pcmax, otherwise
(23)

where, pcmin and pcmax represents the maximum and mini-
mum values of crossover probability, respectively; f itavg and
f itmax denote the mean and maximum of fitness values for all
individuals in the itth generation, respectively. f denotes the
fitness value.

4) MUTATION OPERATOR
When the population diversity is low, all individuals tend
to be optimal, which is likely to fall into local optimization
in advance. So the mutation probability should be increased
to break through the convergence state of individuals. The
formula for adaptive mutation is as follows:

pm =


pmmax −

(pmmax − pmmin)
1+ eit

∗
f − f itavg
f itmax − f itavg

,

if f ≥ f itavg
pmmax, otherwise

(24)

where pmmin and pmmax represents the maximum and mini-
mum values of mutation probability, respectively.

To avoid invalid mutations, the variant code at each gene
position must be chosen randomly from the corresponding set
gi. Table 2 shows the set corresponding to each gene position,
for example the set corresponding to position 5 is g5 = [4,
1, 3]. Figure 4(a) represents the effective mutation that the
gene code at position 5 is mutated from 4 to 1. Figure 4(b)
indicates the invalid mutation that 4 mutates to 6 at gene
position 5.

FIGURE 4. Gene mutation.

TABLE 2. Gene set.

5) FITNESS FUNCTION
Each chromosome is potentially the optimal solution, but the
chromosome with the highest fitness value at the end of the
iteration is the optimal route. As shown in Figure 5, assuming
that the third row represents the chromosome with the highest
fitness, the optimal route for the source cluster head CH1 is
OR1 = {1, 3, 101}. Similarly, the optimal path for source
cluster head CH7 is OR7 = {7, 6, 2, 101}.

FIGURE 5. Routing path represented by chromosome.

TAGA mainly uses two dimensions, the average compre-
hensive trust value on the link and the energy consumed by
CH, to compose the fitness function so as to find a path
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with high security and small energy cost at the same time.
The fitness function for the kth gene position in a certain
chromosome is as follows:

f (ORk) =

Hk−1∑
CH i∈ORk ,i=1

C t
CH iCH i+1

Hk − 1

+ 1−
E ′ORk − E′OR_min

E ′OR_max − E
′

OR_min
(25)

where ORk represents the link of the CH k that occupies
the k-th gene position; Hk is the number of hops of this
link; C t

CH iCH i+1
denotes the comprehensive trust value that

the previous hop CH i evaluates the next hop CH i+1 on
this link; E ′ORk denotes the energy consumption on the link
ORk ; E ′OR_max and E ′OR_min represent the maximum and
minimum energy consumption of all links in all chromo-
somes, respectively. Therefore, the fitness function of the
chromosome is:

f =
nh∑
k=1

f (ORk) (26)

where nh is the length of the chromosome.

C. THE PSEUDO-CODE OF TAGA
The pseudo-code of TAGA is as follows:

D. TIME COMPLEXITY OF TAGA
The proposed TAGA uses comprehensive trust values to eval-
uate the security of individual nodes and adaptive genetic
algorithms to evaluate the security of links, thus improving
the network’s ability to cope with attacks. Therefore its time
complexity can be expressed as O(TAGA) = O(time com-
plexity of the trust model + time complexity of AGA). The
trust model of TAGA is to construct the comprehensive trust
by combining direct and indirect trust values. Assuming that
the network has n nodes, the time complexity of constructing
direct trust is O(n∗s), where s is the number of neighbor
nodes. Since indirect trust is obtained by multiplying the
corresponding direct trust, the time complexity of indirect
trust is O (n ∗ s). Similarly, the time complexity of com-
prehensive trust is O(n∗s). So, O(time complexity of the
trust model)=O(n∗s). Encoding chromosomes with length
k during the execution of the adaptive genetic algorithm
produces a time complexity of O(k). The time complexity
that AGA generates the initial population is O(k∗p),where
p is the population size. The average time complexity of
computing the fitness value is O(p∗k2), while it is O(p∗k)
and O(p∗k2) in the best and worst cases, respectively. The
time complexity of the crossover and variation operations are
O(p/2) and O(p), respectively. After performing I iterations,
the time complexity of AGA is O(k+k∗p+I∗(k2+3/2)∗p),
which is O(I∗p∗k2). The number of CHs in the network is
much less than the number of nodes, so the time complexity
of AGA can be simplified to O(n2). Therefore the overall time
complexity is O(TAGA)=O(n∗s+n2). Since s is less than n,
O(TAGA)=O(n2).

FIGURE 6. The pseudo-code of TAGA.

VI. SIMULATION
This section focuses on verifying the performance of TAGA
by MTALB in the face of different attacks and comparing
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it with IASR and EOSR. We randomly deploy 100 nodes
in an area of 100∗100m2. The trust threshold is set to
0.35. The simulation time is in rounds. It is assumed
that some internal nodes are caught as malicious nodes
and then launch the attacks, when the network is running
to the 100th round. Other simulation parameters are set
in Table 3.

TABLE 3. Simulation parameters.

A. STANDARD DEVIATION THRESHOLD
Figure 7(a) shows the standard deviation of the comprehen-
sive trust values of the 100 nodes in the network as the
network runs. Figure 7(b) shows the integrated trust value
variation curve for all normal nodes and the convergence
after the 20th round. From Figure 7(a), it can be seen that
at 20 rounds, the maximum standard deviation is 0.1125, and
theminimum standard deviation is 0.090994. So in this paper,
the threshold χ is set at 0.08.

B. RESIST COMMON ROUTING ATTACKS
1) PACKETS LOST BY MALICIOUS NODES (UNDER BLACK
HOLE ATTACKS)
Figure 8 shows that with the increase of malicious nodes, the
number of packets discarded by malicious nodes in the net-
work gradually increases. The black hole attack is a malicious
node tricking the nodes in the network to establish routing
connections with it, resulting in the packets to be forwarded
being discarded maliciously. As the malicious nodes discard
all the received packets. Therefore, according to Equation (3),
when TAGA evaluates the trust value of the malicious nodes,
the current trust value will decrease rapidly. Thereby, com-
pared with IASR and EOSR, the trust value of the malicious
node quickly drops below the trust threshold. It speeds up the
speed of identifying malicious nodes and reduces the number
of malicious dropped packets as much as possible. As can
be seen in Figure 8, the number of packet loss for TAGA is
reduced by an average of 16.96% and 25.48% compared to
IASR and EOSR, respectively.

FIGURE 7. Determination of threshold.

FIGURE 8. Packets lost by malicious nodes (under black hole attacks).

2) PACKETS LOST BY MALICIOUS NODES (UNDER HELLO
FLOOD ATTACKS)
Figure 9 shows that as the number of malicious nodes
launching hello flood attacks increases, the number of
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FIGURE 9. Packets lost by malicious nodes (under hello flood attacks).

discarded packets by malicious nodes in the network gradu-
ally increases. The hello flood attack means that a malicious
node broadcasts hello packets using a signal with enough
energy to make more distant nodes mistake it as its direct
neighbor. As a result, a large number of packets are rejected
by the malicious node. TAGA based on equation (2) can
make the current trust value decrease quickly for malicious
nodes. As can be seen in Figure 9, the number of discarded
packets in TAGA is much lower than that of IASR and EOSR.
The number of lost packets in TAGA is reduced by 19.83%
and 33.13% on average compared with IASR and EOSR,
respectively.

3) PACKETS LOST BY MALICIOUS NODES (UNDER
SELECTIVE FORWARDING ATTACKS)
Figure 10(a) shows that as the number of malicious nodes
launching selective forwarding attacks increases, the num-
ber of discarded packets by malicious nodes in the network
gradually increases. The selective forwarding attack means
that the malicious node forwards or discards important pack-
ets with a certain probability, and the black hole attack is
formed when the packets are discarded with a 100% proba-
bility. In this paper, the malicious node discards the received
packets with a probability of 70%. From the combination
of Figure 10(a) and Figure 8, it is clear that the malicious
nodes that initiate the selective forwarding attacks discard
more packets than the malicious nodes that initiate the black
hole attacks. This is because the malicious nodes both send
certain packets and discard some packets, making it more
difficult to identify the malicious nodes. As can be seen in
Figure 10(a), the number of lost packets for TAGA is reduced
by 10.11% and 21.54% on average compared with IASR and
EOSR, respectively.

Figure 10(b) shows that the number of discarded packets
by malicious nodes in the network gradually decreases as
the drop probability increases when there are 30% malicious

nodes in the network. This experiment was conducted to
verify the impact of the difference in the discard probability
on the network. As can be seen from Figure 10(b), the smaller
the probability of malicious drops, the greater the damage
to the network and the greater the difficulty in identifying
malicious nodes.

FIGURE 10. (a) Packets lost by malicious nodes (under selective
forwarding attacks). (b) Number of discarded packets with different
discard probabilities.

4) PACKETS LOST BY MALICIOUS NODES (UNDER
SINKHOLE ATTACKS)
Figure 11 shows that as the number of malicious nodes
launching sinkhole attacks increases, the number of pack-
ets discarded by malicious nodes in the network gradually
increases. The sinkhole attack means that the malicious node
creates a black hole centered on itself that attracts all nodes
in a specific area to send packets to it. It can be seen from
Figure 11 that the number of lost packets for TAGA decrease
on average by 20.83% and 36.2% compared to IASR and
EOSR, respectively.
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FIGURE 11. Packets lost by malicious nodes (under sinkhole attacks).

C. RESIST SPECIAL TRUST ATTACKS
1) PACKETS LOST BY MALICIOUS NODES (UNDER ON-OFF
ATTACKS)
Figure 12 shows that with the increase of malicious nodes
launching on-off attacks, the number of packets discarded
by malicious nodes in the network gradually increases. The
on-off attacks mean that malicious nodes periodically per-
form both good and malicious behaviors, which brings great
challenges to the trust evaluation mechanisms. As can be seen
from Figure 12, on-off attacks are more destructive compared
to the above attacks. Since TAGA uses the penalty mech-
anism, TAGA is able to identify malicious nodes quickly
and minimize the damage caused by malicious nodes to the
network. The number of lost packets in TAGA is reduced
by 26.72% and 35.45% on average compared to IASR and
EOSR, respectively.

FIGURE 12. Packets lost by malicious nodes (under on-off attacks).

2) MALICIOUS RECOMMENDATION (BAD-MOUTH ATTACKS)
Figure 13 shows that with the increase of malicious nodes
launching bad-mouth attacks, the number of false trust values

FIGURE 13. Malicious recommendation (bad-mouth attacks).

spread bymalicious nodes in the network gradually increases.
The bad-mouth attack is when the evaluator evaluates the
target nodes, the malicious node provides false trust value
to the evaluator, which causes the evaluator to incorrectly
evaluate the trust value of the target nodes, making the trust
value of the target nodes decrease. When IASR computes the
indirect values, it uses the weighting coefficient αm, which
can effectively avoid the influence of malicious recommen-
dations. EOSR uses the deviation degree of indirect trust to
filter each false recommendation. However, the trust models
of both schemes cannot make the trust value of the adverse
nodes that launch the bad-mouth attacks lower. So in both
schemes, malicious nodes will continue to spread false rec-
ommendations. While the adaptive penalty factor in TAGA
can effectively reduce the trust of the adverse nodes, and the
credibility constructed by using the median of direct trust can
effectively filter the false recommendation values.

FIGURE 14. Energy consumption of network.

D. ENERGY CONSUMPTION OF NETWORK
Figure 14 shows that the energy consumption in the net-
work increases with the number of rounds. First, TAGA uses
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LEACH as the basic framework to improve the CH election
threshold based on the trust value and residual energy of
nodes, so that nodes with high security and high energy as
CHs. Second, TAGA uses AGA to select secure routes for
CHs. In constructing the fitness function of theAGA, the opti-
mal path selection is controlled using the comprehensive trust
value within each hop and energy consumption. IASR jointly
controls the path selection based on the energy consumption
from the node to the BS, the remaining energy of the relay
node and the trust value. Therefore, the relay nodewhich is far
away may be selected. While EOSRmay select the node with
less hops but less residual energy as a relay node based on the
path evaluation formula. Therefore the energy cost of TAGA
is lower than that of IASR and EOSR. Compared with IASR
and EOSR, the energy efficiency of TAGA has increased by
4.97% and 14.84%.

E. LARGE-SCALE NETWORK
Table 4 shows the simulation results that 1000 nodes ran-
domly distributed in a 1000m∗1000m area, where 30% of the
nodes are captured as malicious nodes. IASR and EOSR do
not identify malicious nodes since the malicious nodes that
launch bad-mouth attacks only spread false trust values and
do not participate in discarding packets. Performance gener-
ated by TAGA defense black hole attacks, hello flood attacks,
selective forwarding attacks, sinkhole attacks, and on-off
attacks is improved by 28.27%, 24.15%, 24.95%, 24.86%
and 26.29%when compared with IASR, by 31.08%, 26.47%,
28.03%, 27.58% and 28.08% when compared with EOSR.

TABLE 4. Simulation results under large-scale network.

F. SUMMARY TABLE
After the above simulations for different scenarios, we sum-
marize the proposed TAGA scheme in Table 5. The total
discards in Table 5 shows that the nodes that initiate the on-off
attacks drop the most packets and the sinkhole attacks drop
the least packets. Both black hole attacks and sinkhole attacks
discard all received packets; selective forwarding attacks and
on-off attacks discard some packets. This shows that it is eas-
ier to defend malicious nodes with a large number of dropped
packets and harder to defend malicious nodes with partially
dropped packets. It can be seen from the average discards
in Table 5 that the average number of packets discarded by
malicious nodes in the scenario of 1000m∗1000m is less than
100m∗100m. This is because the number of packets dropped
by each malicious node in each evaluation cycle increases

significantly leading to the rapid identification of malicious
nodes. When TAGA faces black hole attacks, Hello flood
attacks, selective forwarding attacks, sinkhole attacks, and
on-off attacks in the 1000m∗1000m scenario, the average
number of packet loss is 36.48%, 63.6%, 47.49%, 44.09%
and 39.09% lower than that in the 100m∗100m scenario,
respectively.

TABLE 5. Summary tables.

VII. CONCLUSION
In this paper, an energy-aware and trust-based routing pro-
tocol for wireless sensor networks using adaptive genetic
algorithm called TAGA is presented to resist common routing
attacks and special trust attacks so as to resist multiple attacks,
improve the speed of identifying the attackers, and select
secure and energy efficient routes. In TAGA, adaptive penalty
factors, volatilization factors and filtering mechanisms are
designed to construct the comprehensive trust values, which
are used to evaluate the security performance of the nodes.
Then an improved adaptive genetic algorithm with a novel
CH election threshold is applied to select the secure and high-
energy nodes as CHs. Finally, an adaptive genetic algorithm is
adopted to find the optimal path for each CH. The simulation
results verify the effectiveness of TAGA, and indicate that it
can effectively decrease the impact of the malicious nodes,
reduce the number of lost packets, and improve the network
energy utilization.
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