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ABSTRACT Tensor models have been used extensively in signal processing applications to design different
types of communication systems. This paper proposes, for the first time, the use of tensor models for
optical communications. The signals of an optical dual-core coupler network are modeled as a multiway
array (tensor), which satisfies a generalized Tucker train decomposition. This tensor model is then used
to develop an estimation algorithm that enables the network parameters to be estimated from the input and
output signals. The performance of this algorithm was evaluated by means of computer simulations, in terms
of NMSE of the estimated parameters and convergence speed. For the tested configurations, good levels of
NMSE with fast convergence were obtained, demonstrating the effectiveness of the proposed method as a
promising tool for studying and designing optical devices, with a wide range of applications in the context
of lightwave systems.

INDEX TERMS Alternating least squares, multidimensional signal processing, multilinear algebra, optical
arrays, optical directional coupler, optical fiber devices, optical switches, parameter estimation, systems
modeling, tensor analysis.

I. INTRODUCTION
Over the last three decades, communications based on
lightwave systems have developed rapidly. The worldwide
demand for information technology has been increasing con-
stantly and requires a continuous growth in connectivity of
data center networks (DCNs). The scalability of a DCN is
limited by the total capacity of the switching andmultiplexing
devices it uses. Since the fourth generation of lightwave sys-
tems, wavelength division multiplexing (WDM) techniques
have been widely used to increase the bit rate [1].

The most common optical devices used in power switch-
ing are optical couplers. These are devices that function
as optical beam splitters, and are used to design interfer-
ometric systems such as Mach-Zehnder (MZI) and Sagnac
interferometers, as considered in several works [2]–[5].
The combination of several optical couplers in an arranged
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network provides the design of devices such as star couplers,
routers, switches, in addition to the interferometers already
mentioned.

Recently, new topologies using (star) couplers have been
presented targeting gains in transmission rates compared to
conventional architectures. The works [6], [7] designed flex-
ible high port count stars for optical circuit switches (OCS).
In [7], the authors presented the design of a flexible optical
star by adding reconfigurable switching elements to the core
of the topology, without significantly increasing the power
consumption. The results showed an increase of 26–40% in
the transmission rate per node. In [6], a WDM star coupler
architecture was proposed for the construction of high-radius
optical switches to improve DCN scalability.

To study such optical devices, it is necessary to solve
the nonlinear Schroedinger’s equations (NLS), since they
govern the signal propagation in optical fibers and in fiber-
based devices. However, NLS equations only have possible
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analytical solutions in very particular situations; therefore,
simulations based on numerical methods are an essential
tool to study in order to gain improvements in optical
systems. In the literature, there are many works involving
couplers and other fiber-based devices, where it is quite
common to use numerical methods such as the fourth-
order Runge-Kutta (RK4) [2], [3], [8], [9], the split-step
Fourier Method (SSFM) [10]–[12] and the finite-difference-
time-domain (FDTD) [4], [13]–[15]. However, such methods
require extensive simulations and a large amount of data to be
analyzed, which may hinder the interpretation of the obtained
results.

High order tensors (i.e., multiway arrays) and tensor
decompositions [16] have become an important tool for
designing different types of systems and applications that
involve multidimensional data from areas such as chemo-
metrics, psychometrics, numerical analysis, computer vision
and telecommunications. During the last decade, new tensor
decompositions have been proposed with the aim to alleviate
the curse of dimensionality encountered with large-scale
tensors, and also to design new wireless communication sys-
tems. Recently, tensor approaches have gained considerable
space in signal processing [17], communication sys-
tems [18], machine learning [19], [20] and blind source
separation [21].

Furthermore, tensor decompositions have some advantages
over conventional matrix-based methods, like the unique-
ness property of certain tensor models under milder condi-
tions than those required by matrix approaches. However,
to the best authors’ knowledge, tensor models have not been
applied in the context of optical communication systems
until now.

This work proposes a novel tensor-based approach applied
to optical communication systems. The main goal of this
work is to consider tensor analysis as a new tool to study
and model optical devices and to solve problems related to
the design and signal processing of optical communication
systems. The first scenario to be considered consists of an
optical network composed of linear directional couplers that
are interconnected in such a way that the input signals are
switched along the network, providing output signals that
depend on the system parameters. The signals at the end of
the network form a third-order tensor with the dimensions
number of ports in a coupler × number of couplers × time
(bit slot) arranged as rows, columns, and tubes of the tensor,
respectively. The proposed tensor model represents the output
signals as a function of the input signals. The steps of the
transmission throughout the network are represented by a
fourth-order tensor that can be viewed as a generalization of
a tensor train decomposition [22], whose the wagons (tensors
that compose the train) satisfy a known tensor model, namely
a generalized Tucker decomposition [23], [24]. However, the
model that will be exploited in this paper differs from that
introduced in [23] due to the presence of structural tensor
factors, and our proposal exploits these structural constraints
to estimate the system parameters.

From the proposed model, we derive cost functions to
be minimized using an iterative algorithm to estimate the
network parameters from input and output signals. The
parameter estimation points to the possibility of designing
optical devices/networks in such a way that they take as
their starting point the expected response, like for an inverse
design problem. Examples of devices that can be designed
from the expected outputs include optical logic gates, routers,
multiplexers, and power splitters. In this study, synthetic data
are used to validate the proposed tensor model.

The main contributions of this work can be summarized as
follows:
• this is a novel tensor modeling of optical devices. The
main approach considers an array of optical couplers
performing a 4× 4 star coupler;

• the output signals of the network proposed here are
described using a tensor train structure, which is com-
posed of blocks that satisfy a generalized Tucker
decomposition;

• the proposed tensor structure is extended to model the
signals of a generic optical coupler network with various
configurations;

• the proposed tensor model is used to develop an iter-
ative estimation algorithm to estimate unknown net-
work parameters from the input and output signals. This
parameter estimation algorithm can be applied to design
optical devices according to the expected outputs for a
given application;

• the effectiveness and accuracy of the proposed algorithm
to estimate the parameters of a generic coupler network
are illustrated by means of computer simulations.

The rest of the paper is organized as follows. In Section II,
we provide a theoretical background on tensor notations,
basic operations involving matrices and tensors and some
tensor decompositions. In Section III, the optical coupler and
some applications are described. The mathematical model
is presented for the low-power continuous wave signal.
In Section IV, we propose the use of tensors for optical
communications as a new tool to model and study opti-
cal devices. Section V introduces an estimation algorithm,
based on the model proposed in Section IV; this algorithm
provides estimates of the main parameters of the coupler
networks under consideration. Numerical simulation results,
perspectives and conclusions are presented respectively in
Sections VI, VII and VIII.

II. FUNDAMENTALS OF TENSORS
The theory of tensors is a branch of multilinear algebra. High
order tensors can be viewed as a generalization of matrices,
and they are represented as multi-dimensional arrays of order
higher than two. Over the last two decades, tensor models
have been extensively used for designing different types
of communication systems. The main motivation for using
tensor-based approaches is related to their ability to model
multimodal data, with essential uniqueness properties under
mild conditions.
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TABLE 1. Tensor notations.

In this section, we provide a brief overview of the math-
ematical background useful for this work, concerning basic
tensor operations, and some tensor decompositions.

A. NOTATION AND MAIN OPERATIONS
Table 1 summarizes the notation that will be used throughout
this manuscript. Following, we discuss some details of the
main concepts and operations.

1) VECTORIZATION AND DIAGONALIZATION
The operator vec(·) transforms a matrix into a column vector
by stacking the columns of its matrix argument. The operator
diag(·) forms a diagonal matrix from its vector argument.
Similarly, the operator bdiag(A1, . . . ,AK ) , bdiag(Ak )
forms a block-diagonal matrix composed of the K matrices
Ak , with k = 1, . . . ,K , on the diagonal.

2) KRONECKER PRODUCT
The Kronecker product of two matrices A ∈ CI×J and B ∈
CM×N is defined asC = A⊗B ∈ CIM×JN , whose entries are
c(i−1)M+m,(j−1)N+n = ai,jbm,n. Given a set S = {1, . . . ,N }
and the matricesA(n)

∈ CIn×Jn , a multiple Kronecker product
is denoted as ⊗

n∈S
A(n) , A(1)

⊗ A(2)
⊗ · · · ⊗ A(N )

∈

CI1···IN×J1···JN .

3) FIBERS AND SLICES
Fibers are vectors obtained by fixing the indices of all
modes of a tensor, except one. For example, a third-
order tensor X ∈ CI×J×K has three kinds of fibers:

FIGURE 1. Tensor structure: (a) column, row and tube fibers of a
third-order tensor; (b) frontal, lateral and horizontal matrix slices of a
third-order tensor.

(i) columns (x·jk ∈ CI ) obtained by fixing the indices j and k;
(ii) rows (xi·k ∈ CJ ) obtained by fixing the indices i and k;
(iii) tubes (xij· ∈ CK ) obtained by fixing the indices i and j.
Analogously, matrix slices are obtained by varying the

indices of two modes and fixing all the others. For a third-
order tensor X , the three kinds of matrix slices are: (i) frontal
slices (X··k ∈ CI×J ); (ii) lateral slices (X·j· ∈ CI×K );
(iii) horizontal slices (Xi·· ∈ CJ×K ).
Fig. 1 illustrates the fibers and matrix slices for a third-

order tensor. For a given N -th order tensor A ∈ CI1×···×IN ,
tensor slices of order higher than 2 are obtained by varying
N1 indices, with 3 ≤ N1 < N , while the other N −N1 indices
remain fixed, resulting in aN1-th order tensor slice. Note that,
if we assumeN1 = 1, we get fibers, and if we assumeN1 = 2,
we get matrix slices.

4) MATRIX UNFOLDING
Also called matricization, it is a matrix representation of a
high-order tensor. The tall (or flat) mode-n unfolding of A ∈
CI1×···×IN is obtained by mapping its elements into a matrix
AIn+1···IN I1···In−1×In (or AIn×In+1···IN I1···In−1), whose entries are
[AIn+1···IN I1···In−1×In ]ī,in , with

ī = (in+1 − 1)In+2 · · · IN I1 · · · In−1
+ · · · + (in−2 − 1)In−1 + in−1. (1)

From the above definition, we can see a mode-n unfolding
as a rearrangement of the elements of A obtained by varying
index in and keeping the other indices fixed, in such a way
that the fibers of the n-th mode are placed along the rows (tall
unfolding) or columns (flat unfolding). For example, let us
consider a third-order tensor X ∈ CI×J×K . There are two
flat mode-1 unfoldings, XI×KJ and XI×JK , which consist of
column fibers placed side by side, according to the order
of combination of the last two modes. Here, we consider
that the index that varies the fastest is the one associated
with the last dimension, i.e., [XI×KJ ]i,(k−1)J+j = [X ]i,j,k
and [XI×JK ]i,(j−1)K+k = [X ]i,j,k . Equivalently, an unfolded
matrix can be obtained by stacking the slices of a given mode,
as shown in Fig. 2. Note that, in our notation, the subscript in
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FIGURE 2. Matrix representation of the third-order tensor X ∈ CI×J×K .
The second and third dimensions of X are combined to form the
columns, yielding the matrix unfolding XI×KJ .

the unfolded matrix indicates the order in which the modes
are combined and, consequently, the size of the unfolded
matrix.

Unlike the mode-n unfolding, which combines all modes
of a tensor in rows (or columns) except for the n-th mode,
it is possible to define a matrix unfolding where multiple
modes are combined along the rows and columns of the
resulting matrix. For this unfolding, let us define the set
S = {1, · · · ,N } and the representations IS, ĪS and iS, which
denote, respectively, short forms for the dimension, product
of dimensions and the set of indices associated to the modes
of the set S. For instance, forN = 3, we have IS = I1×I2×I3,
ĪS = I1I2I3 and iS = {i1, i2, i3}. Thus, defining S1 and S2 as
ordered subsets of the set S, such that S1 ∪ S2 = S, we have
for A ∈ CIS [25]

AĪS1×ĪS2
=

I1∑
i1=1

· · ·

IN∑
iN=1

ai1,··· ,iN

(
⊗
n∈S1

e(In)in

)(
⊗
n∈S2

e(In)in

)T
,

(2)

with ĪS1 and ĪS2 being any ordered combination of the dimen-
sions of the tensor A.

5) TENSOR-MATRIX MODE-n PRODUCT
Given a N -th order tensor A ∈ CI1×···×IN , let us consider a
matrix U ∈ CRn×In , whose number of columns is equal to
the dimension of the n-th mode of A. The mode-n product
of A with U yields a N -th order tensor C = A ×n U ∈
CI1×···×In−1×Rn×In+1×···×IN defined as

ci1,··· ,in−1,rn,in+1,··· ,iN

=

In∑
in=1

ai1,··· ,in−1,in,in+1,··· ,iN urn,in . (3)

6) TENSOR-TENSOR MODE-n PRODUCT
Given a set S = {1, · · · ,N }, let St be an ordered subset of
S−{n}, with 1 ≤ n ≤ N . Let us consider anNt -th order tensor
T ∈ CRn×In×ISt , with 3 ≤ Nt ≤ N + 1. The mode-n product
of the tensors A ∈ CI1×···×IN and T , denoted by A ×n T ,
gives a tensor C ∈ CI1×···×In−1×Rn×In+1×···×IN defined as

ci1,··· ,in−1,rn,in+1,··· ,iN

=

In∑
in=1

ai1,··· ,in−1,in,in+1,··· ,iN trn,in,iSt . (4)

Note that, by convention, the two above operations assume
that the second mode of U (or T ) is equal to the n-th mode of
A. In both cases, the mode-n product does not change the size
of the resulting tensor, but provides a linear transformation on
the mode-n space of A.

7) CONTRACTION OPERATION
Let us consider the tensors A ∈ CI1×···×IN and B ∈

CJ1×···×JM sharing a common dimension (Ip = Jq = K , with
1 ≤ p ≤ N and 1 ≤ q ≤ M ). The contraction of A with B,
denoted by A ∗qp B, is defined as the following sum over the
common mode (ip = jq = k) [26]

ci1,··· ,ip−1,j1,··· ,jq−1,jq+1,··· ,jM ,ip+1,··· ,iN

=

K∑
k=1

ai1,··· ,ip−1,k,ip+1,··· ,iN bj1,··· ,jq−1,k,jq+1··· ,jM , (5)

which results in a (N + M − 2)-th order tensor C ∈

CI1×···×Ip−1×J1×···×Jq−1×Jq+1×···×JM×Ip+1×···×IN . Note that the
contraction operation, unlike the mode-n product, preserves
all the modes of both involved tensors, except the common
mode.

Contraction involving multiple modes of compatible
dimensions is also possible [27]. For instance, a double con-
traction (along two modes) ofA and B is denoted asA∗q,lp,k B,
where 1 ≤ p, k ≤ N and 1 ≤ q, l ≤ M , with Ip = Jq
and Ik = Jl .

B. TENSOR DECOMPOSITIONS
Factorization (or decomposition) of a tensor is an impor-
tant tool for system modeling and solving problems such
as parameter estimation, information recovering and missing
data estimation for incomplete tensors, i.e. the completion
problem. In some applications, tensor decompositions can
be viewed as generalizations of matrix decompositions such
as the singular value decomposition (SVD) for higher order
tensors. In addition to enabling multidimensional data pro-
cessing, some tensor decompositions are characterized by
uniqueness properties that allow undetermined problems to
be solved under conditions that are more relaxed than the
conventional matrix approaches [16], [18], [28].

Among the most popular tensor decompositions,
Tucker [29] and parallel factors analysis (PARAFAC) [30]
are commonly used in signal processing applications. Sev-
eral variants and generalizations such as PARATUCK [31],
nested PARAFAC [32], coupled PARAFAC [33], generalized
PARATUCK [23], nested Tucker [28] and coupled nested
Tucker [24] have been derived in the context of wireless
communication systems.

PARAFAC models have the important property of being
essentially unique. By essential uniqueness we mean that
the decompositions are unique up to arbitrary scaling and
permutation of the columns of the factor matrices. On the
other hand, Tucker models are not essentially unique, except
under certain conditions like a priori knowledge of the core
tensor. Despite this, Tucker model is one of the most flexible
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tensor decompositions. Below, we recall some decomposi-
tions, focusing on Tucker-type ones.

1) TUCKER DECOMPOSITION
In 1966, L. Tucker [29] introduced the Tucker decomposition
that consists of the factorization of a tensor into a core tensor
of the same order that interacts with factor matrices. For a
N -th order tensor X ∈ CI1×···×IN , the Tucker decomposition
is defined as

X = C ×1 A(1)
×2 A(2)

· · · ×N A(N ), (6)

where C ∈ CR1×···×RN is the core tensor and A(n)
∈ CIn×Rn ,

with n = 1, . . . ,N , are the factor matrices. The scalar form
is written as

xi1,··· ,iN =
R1∑
r1=1

· · ·

RN∑
rN=1

cr1,··· ,rN

N∏
n=1

a(n)in,rn . (7)

Note that each factor A(n) interacts with the core C by chang-
ing the dimension associated with the mode-n product.

Special cases where a N -th order tensor has only N1 factor
matrices, with N > N1, are called Tucker–(N1,N ) mod-
els [25] and correspond toX = C×N1

n=1A
(n). For the caseX ∈

CI1×I2×I3 , with the core tensor C ∈ CR1×R2×R3 and the factors
A(1)
∈ CI1×R1 , A(2)

∈ CI2×R2 and A(3)
∈ CI3×R3 , the third-

order Tucker decomposition X = C ×1 A(1)
×2 A(2)

×3 A(3)

is illustrated in Fig. 3.
Some authors use the nomenclature Tucker-3 for the third-

order Tucker decomposition. When one of the matrix factors
of this decomposition is equal to the identity matrix, for
example A(1)

= II1 , we say that we have a Tucker-2 model
given by X = C ×2 A(2)

×3 A(3), which is equivalent
to a Tucker-(2, 3) decomposition. Similarly, when two of
the matrix factors are equal to identity matrices, for exam-
ple A(1)

= II1 and A(2)
= II2 , we have a Tucker-1, or

Tucker-(1, 3) decomposition, andX becomesX = C×3A(3).
The matrix representation of a decomposition can be

deduced from (2). The Tucker decomposition defined in (6)
has the following tall mode-n matrix unfolding

Xn = XIn+1···IN I1···In−1×In

= (A(n+1)
⊗· · ·⊗A(N )

⊗A(1)
⊗· · · ⊗ A(n−1))CnA(n)T ,

(8)

where Cn ∈ CRn+1···RNR1···Rn−1×Rn is the corresponding tall
mode-n unfolding of C. The flat mode-n unfolding is obtained
by transposing (8).

As previously mentioned, the Tucker model is not essen-
tially unique. That means, the factors can be replaced by
Ā(n)

= A(n)1n with 1n ∈ CRn×Rn nonsingular, and the
core tensor C replaced by C̄ = C ×Nn=1 (1n)−1, without
changing the tensor X . However, uniqueness of this model is
satisfied when the core tensor C is known. For more details,
consult [34].

FIGURE 3. Block-diagram of a Tucker decomposition for a third-order
tensor.

FIGURE 4. Tensor-train decomposition of an N-th order tensor.

Some recent works have extended the Tucker model to
represent high order tensors [23], [25], [28], [35]. The so-
called nested Tucker decomposition can be viewed as a spe-
cial case of a tensor-train (TT) decomposition defined in [22].
TT decomposition consists of a concatenation of third-order
tensors that form a train of tensors as shown in Fig. 4. Two
adjacent wagons (tensor factors) share an auxiliary mode.

The interaction between two neighbor factors relies on the
contraction over their common mode. The N -th order TT of
Fig. 4 is defined in scalar notation as

xi1,i2,...,in =
R1∑
r1=1

R2∑
r2=1

· · ·

RN−1∑
rN−1=1

a(1)i1,r1c
(1)
r1,i2,r2

c(2)r2,i3,r3 · · ·

· c(N−2)rN−2,iN−1,rN−1
a(N−1)iN ,rN−1

. (9)

2) GENERALIZED TUCKER DECOMPOSITION
Tucker models, as previously defined, are characterized by
matrix factors. A generalized Tucker decomposition corre-
sponds to a Tucker decomposition where some (or all) matrix
factors are replaced by tensors, i.e., A(n) in (6) is replaced by
A(n), resulting in tensor-tensor mode-n products. Similarly to
the Tucker model, a special case of the generalized Tucker
model was introduced in [23] with some factors equal to iden-
tity matrices. For a given N -th order tensor X ∈ CI1×···×IN ,
the generalized Tucker–(N1,N ) model, with 1 ≤ N1 < N ,
is written as

X = C ×1 A(1)
×2 A(2)

· · · ×N1 A
(N1), (10)

with core tensor C ∈ CR1×···×RN1×IN1+1×···×IN and tensor
factors A(n)

∈ CIn×Rn×ISn , where Sn is an ordered subset of
the set S = {N1+1, . . . ,N }. The tensor factorA(n) is a Nn-th
order tensor, with 3 ≤ Nn ≤ N − N1 + 2.
The generalized Tucker decomposition, like the Tucker

one, is also not essentially unique when the core tensor
is unknown, since its factors are unique up to nonsingular
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transformations. Nevertheless, under the condition of a priori
knowledge of the core tensor, the uniqueness can be satisfied.
For more details on uniqueness of generalized Tucker decom-
positions, see [24], [34].

The matrix representation of a generalized Tucker model
depends on the number of matrix and tensor factors, as well as
on the set Sn. Therefore, it is not possible to define a generic
formulation for its matrix unfoldings, as defined in (8) for
a Tucker model. However, these unfolding matrices can be
derived for some particular cases of generalized Tucker mod-
els. Below, we describe a generalized Tucker-(2, 4) model,
which will be useful in this paper. Let us take as an example
a fourth-order tensor X ∈ CI1×I2×I3×I4 , the core tensor
C ∈ CR1×I2×I3×R4 and the tensor factors A ∈ CI1×R1×I2

and B ∈ CI4×R4×I3 . A possible generalized Tucker-(2, 4)
decomposition of X is given by

X = C ×1 A×4 B (11)

or in scalar form

xi1,i2,i3,i4 =
R1∑
r1=1

R4∑
r4=1

cr1,i2,i3,r4ai1,r1,i2bi4,r4,i3 . (12)

Let us define two useful unfoldings of this tensor model.
The first one gives a matrix of dimension I2I3I4× I1 obtained
by combining the second, third and fourth modes of X as the
rows of the tall mode-1 unfolding given by

XI2I3I4×I1 =
[
II2 ⊗ bdiag

(
B··i3

)]
CI2I3R4×I2R1AI2R1×I1 ,

(13)

where AI2R1×I1 is a tall mode-1 unfolding of A,
bdiag

(
B··i3

)
results in a matrix of size I3I4 × I3R4 and

CI2I3R4×I2R1 is obtained from the transpose of the matrix
bdiag

(
C·i21· · · · C·i2I3·

)
∈ CI2R1×I2I3R4 , with C·i2i3· ∈

CR1×R4 . The second useful unfolding corresponds to a vec-
torization ofX with dimension I2I1I3I4, which is obtained by
stacking its fibers as follows

xI2I1I3I4 =
[
bdiag

(
A··i2

)
⊗ bdiag

(
B··i3

)]
cI2R1I3R4 , (14)

where bdiag
(
A··i2

)
results in a matrix of size I2I1× I2R1 and

cI2R1I3R4 denotes vec(C) ∈ CI2R1I3R4 . For details on the
demonstration of these unfoldings, see references [24], [34].

III. OPTICAL COUPLERS CHARACTERISTICS
Optical couplers, also called directional couplers, are devices
that have a wide range of applications in optical systems, due
to their ability to provide switching, routing and modulation
of optical signals, coherently splitting the pulse incident on
one of the input ports, and directing the split signals towards
the output ports [1], [9]. Fig. 5 shows a schematic of a dual-
core fiber coupler. Such device consists of making the cores
of two fibers close enough to allow a partial overlapping of
the fundamental propagation modes in the region between
the two cores. Thus, the coupling between the propagating
fields can lead to the transfer of optical energy from one core

FIGURE 5. Schematic of a dual-core optical coupler, representing the
division of the energy.

to another one. In this case, the spacing between the cores
should be comparable to their diameters [1].

An optical coupler can be seen as a device that plays the
role of a beam splitter, where the splitting ratio depends on the
coupler length Lc (coupling region between two cores).When
the optical power is equally divided between two output ports,
these devices are referred to as 50:50 or 3dB couplers.

The propagating pulses in optical fibers are affected by var-
ious linear and nonlinear effects, which depend on the system
characteristics such as peak power, propagating distances or
even the material with which the fiber is made of or doped
with. In general, linear effects are negligible for short prop-
agation distances, whereas nonlinear effects become quite
significant when higher power levels are applied [1], [9].
Although nonlinearity has beenwidely exploited in the design
of lightwave systems, in this first study on tensor-based opti-
cal systems, we have only considered configurations in which
these effects are negligible, for the sake of simplicity.

Thus, for a case where low-power continuous wave (CW)
beams are launched at the input ports of a dual-core coupler
with amplitudes x1(t) and x2(t) (the subscript identifies a
specific core and t denotes the time), the outputs of the two
ports at the coupler end are defined as [1], [36], [37][

y1(t)
y2(t)

]
=

[ √
ρ j

√
1− ρ

j
√
1− ρ

√
ρ

] [
x1(t)
x2(t)

]
, (15)

where ρ ∈ [0, 1] denotes the coupling constant of the cou-
pler (splitting ratio). For instance, the 50:50 couplers have
a coupling constant of ρ = 0.5. One can note that the
2× 2 transfer matrix on the right-side of (15) satisfies the
energy conservation and its determinant is equal to 1. Further-
more, a directional coupler introduces a phase shift between
the signals arriving at the two output ports, as evidenced by
the complex factor in the off-diagonal elements.

Studies and applications for optical systems composed of
one ormore directional couplers can be found in the literature.
Interferometric systems, such as Mach-Zehnder and Sagnac
interferometers [3], [5], [9], [11], [36], [37], are common
examples of devices with cascade couplers used to implement
Boolean functions and/or logic gates. In particular, the works
in [38]–[40] provide some applications under a linear regime.

In addition to the interferometric devices, the use of a
network of suitably arranged couplers is often employed to
implement new optical components in communication sys-
tems, such asWDM links [1]. Among them, we can quote the
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star couplers [6], [41], which have the function of combining
the signals coming from the transmitter and forwarding the
mixed signals towards multiple receivers. Originally, the role
of a star coupler is to divide the input signals equally between
its output ports. However, it is also possible to design a
suitable combination of couplers with different splitting ratios
to obtain specific signal intensities at each output port. This
can eventually be used to implement Boolean functions. The
simplest case is a 2 × 2 star coupler (two-input-two-output
ports) and it has the same functionality as a 50:50 direc-
tional coupler. Higher-order star couplers can be obtained by
combining several couplers. The complexity of such devices
increases hugely with the number of ports. In [6], [7], there
are some examples of star couplers applied to OCS-based
systems.

In some examples above mentioned, the presence of multi-
ple couplers can lead to signals with a multivariate nature.
Therefore, multiple influences of the network parameters
should be taken into account. In the next section, we intro-
duce a tensor-based modeling of a network of couplers,
by exploiting the multidimensional aspects of the involved
signals. As an example of coupler network, a 4 × 4 star
coupler yieldingmultidimensional signals is taken as a simple
scenario to motivate and describe the proposed modeling.

IV. TENSOR BASED OPTICAL COMMUNICATIONS:
LINEAR COUPLER NETWORK MODELING
In this section, we present all the aspects related to the coupler
network in question and propose a tensor model to represent
the signals at the output ports. We introduce the details of the
system parameters and the modeling adopted for the signal
transmission step by step.

The main idea is to represent the signals of an optical
couplers network, in a linear regime, as a multiway array
by considering the multidimensional nature of the signals,
i.e., using multiple modes, each one being associated with a
dimension of the array.

The following key assumptions are made throughout this
manuscript: (i) for all cases, linear dual-core couplers are
used; (ii) propagation distances are assumed to be very short;
(iii) propagation effects such as attenuation, dispersion and
nonlinearity are negligible. These assumptions are made for
the sake of simplicity and are reasonable since most couplers
are only a few centimeters long. Furthermore, our approach
is in accordance with the performance of star couplers in
a reduced optical power regime. The modeling of networks
under the presence of linear and non-linear effects based on
a tensor approach will be addressed in a future work.

A. PARAMETER DEFINITIONS
Fig. 6(a) illustrates the architecture of an optical network
composed of four couplers arranged in a two-by-two array,
which corresponds to a 4× 4 star coupler. The signals trans-
mitted through the input ports are combined by the couplers
of the first layer of the network and then are directed to the
couplers of the second layer. Thus, the transmission scheme is

composed of two ‘‘hops’’, corresponding to the two physical
layers of the network. In addition, due to the cross connection
between the couplers of the two hops, any input signal is
divided among all output ports with intensities that depend
on the combination of the coupling constants.

The presented scheme corresponds to the scenario used
to define the parameters and describe the signals. For more
complex cases (N × N star couplers with multiple layers
of N/2 couplers in each layer), the parameters must be cor-
rectly designed. The parameters characterizing the network
presented in Fig. 6(a) are defined below.

The number of hops is denoted by I and the number of cou-
plers at each hop is Ni, with i ∈ {1, . . . , I }. Although we con-
sider the same number of couplers at each hop (N1 = · · · =

NI = N/2, where N is the total number of network inputs
and outputs), the subscript i is used to identify the couplers
of a specific hop. Each dual-core coupler ni ∈ {1, . . . ,Ni}
has two input and two output ports. All the couplers have the
same number of ports, and we used the indices pi ∈ {1, 2} and
ji ∈ {1, 2} to identify the input and output ports, respectively.
In order to follow a consistent notation, Pi = Ji = 2 was
defined as the total number of input and output ports of each
coupler.

In the first hop (i = 1), the p1-th input port of the n1-th
coupler is activated by the input signals x(1)p1,n1 (t), with t =
1, . . . ,T , where T is the time dimension, denoting the size of
the bit stream. The input signals form the third-order tensor
X (1)
∈ CP1×N1×T .

Each coupler splits the incident power according to (15).
Considering that the ni-th coupler has a coupling constant
ρni,i, we define the transfer tensor K(i)

∈ CJi×Pi×Ni , cor-
responding to the i-th hop, whose mode-3 matrix slices are
given by

K(i)
··ni =

[ √
ρni,i j

√
1− ρni,i

j
√
1− ρni,i

√
ρni,i

]
. (16)

Fig. 6(b) illustrates the notation used for representing the
input and output ports and the transfer matrix for each
coupler.

The interconnection between the two layers of the network
is represented by means of a fourth-order binary tensor W
∈ CP2×N2×N1×J1 , which assigns each output (n1, j1) of the
first hop to an input (p2, n2) of the second hop. This tensor is
composed of 0’s and 1’s in such a way that the elements equal
to 1 determine the pairs (p2, n2)− (n1, j1) that are connected.
That means, for a given pair of couplers (n2, n1), the element
wp2,n2,n1,j1 is equal to 1 if the ports j1 of n1 and p2 of n2 are
connected. Otherwise, wp2,n2,n1,j1 is equal to 0. Furthermore,
the value 1 for the connection can be replaced by attenuation
factors to represent propagation losses in fiber when large
distances are considered. However, as previously mentioned,
we assumed negligible propagation effects in this paper.

One can note that, for each value of (n1, j1), the binary
slice W··n1j1 ∈ CP2×N2 is composed of 0’s, except for a
single element. Since each port has only one connection, the
positions of the elements equal to 1 in each slice must be
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FIGURE 6. Optical coupler network: (a) 4× 4 star coupler architecture, composed of four couplers
arranged in a two-by-two array (configuration parameters: I = Ni = Ji = Pi = 2 and i = 1, 2);
(b) transfer matrix dimensions for an individual dual-core coupler.

FIGURE 7. Didactic representation of the connection tensor W for the
case P2 = N2 = N1 = J1 = 2.

different. For the 4× 4 star coupler in Fig. 6(a), the topology
of the connections yields a binary tensorW with the elements
in the positions (p2, n2, n1, j1) = (1, 1, 1, 1), (1, 2, 1, 2),
(2, 1, 2, 1) and (2, 2, 2, 2) equal to 1. Fig. 7 illustrates this
tensor structure in a didactic way. For networks with multiple
hops, new tensors should be defined in order to represent the
link between two consecutive layers. Thus, analogous to the
previously defined tensorW , we can define, in a general way,
a connection tensor W (i)

∈ CPi+1,Ni+1,Ni,Ji associated to the
interconnection between the hops i and i+ 1.
Finally, the signals coming out of a given hop have the

same structure as the input signals X (1). Thus, the signals at
the ji-th port of the ni-th coupler are given by y(i)ji,ni (t) that
compose the third-order tensor Y (i)

∈ CJi×Ni×T . All the
parameters associated to the tensors defined in this section
and their dimensions are summarized in Tables 2 and 3.

B. TENSOR MODELING OF THE COUPLER NETWORK
In this subsection, we describe the power transmis-
sion throughout the coupler network under consideration,

TABLE 2. Parameters used in the model.

TABLE 3. Dimension of tensors used in the model.

detailing each step in order to obtain a model of the output
signals tensor. Although the tensors in the previous subsec-
tion were defined based on the 4× 4 star coupler as shown
in Fig. 6(a), the signal model proposed here is valid for any
N×N two-hop coupler network. Furthermore, later on in this
subsection, we provide an extension of the proposed tensor
model for an arbitrary value of I , which could be applied to
networks composed of multiple layers of couplers. Initially
we use a scalar notation to define the signals and, in the
following subsection, we introduce the tensor notation.

The global transmission can be viewed as a (2I − 1)-step
process. In the first step, corresponding to the first hop
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(i = 1), T symbols are transmitted by using the P1 ports
(p1 = 1, . . . ,P1) of the N1 couplers (n1 = 1, . . . ,N1),
composing the input signals tensor X (1). For a given coupler
n1, the entries of X (1) are defined as the time-dependent

vector x(1)·n1 (t) =

[
x(1)1,n1

(t) · · · x(1)P1,n1
(t)
]T

. These signals
are combined by the couplers in the first hop and then, by
applying the transfer tensor K(1), we write the signals at the
output of the first hop as

y(1)·n1 (t) = K(1)
··n1x

(1)
·n1 (t) ∈ CJ1 , (17)

which can be rewritten in scalar notation as a summation
over p1

y(1)j1,n1 (t) =
P1∑
p1=1

k (1)j1,p1,n1
x(1)p1,n1 (t). (18)

In the second step of the transmission, the signals coming
out of the first layer are directed to the input ports of the
second layer according to the connection tensorW (1). As the
role of this step is to allocate the outputs j1 to the appropriate
inputs p2, we get a simple change of indices by applying the
connection tensorW (1). Thus, the signals arriving at the n2-th
coupler are given by

x(2)p2,n2 (t) =
N1∑
n1=1

J1∑
j1=1

w(1)
p2,n2,n1,j1

y(1)j1,n1 (t)

=

N1∑
n1=1

J1∑
j1=1

P1∑
p1=1

w(1)
p2,n2,n1,j1

k (1)j1,p1,n1
x(1)p1,n1 (t).

(19)

Analogous to the first step, we consider the transfer tensor
K(2), which leads to a summation over p2. Then, the tensor
Y (2) of the output signals in the second hop, is defined as
follows

y(2)j2,n2 (t) =
P2∑
p2=1

k (2)j2,p2,n2
x(2)p2,n2 (t)

=

P2∑
p2=1

N1∑
n1=1

J1∑
j1=1

P1∑
p1=1

k (2)j2,p2,n2
w(1)
p2,n2,n1,j1

· k (1)j1,p1,n1
x(1)p1,n1 (t). (20)

The above equation shows that the output signals tensor
Y (2) results from the successive transformations of the input
signals X (1) performed by the tensor train {K(1),W (1),K(2)

},
which represents the three-step transmission of a two-hop
(I = 2) network.
Based on (20), let us define a fourth-order tensor G(2)

∈

CJ2×N2×N1×P1 given by

g(2)j2,n2,n1,p1 =
P2∑
p2=1

J1∑
j1=1

k (2)j2,p2,n2
w(1)
p2,n2,n1,j1

k (1)j1,p1,n1
, (21)

which represents the whole transformation performed by the
system over X (1). Thus, the signals in (20) can be rewritten
in the following compact way

y(2)j2,n2 (t) =
N1∑
n1=1

P1∑
p1=1

g(2)j2,n2,n1,p1x
(1)
p1,n1 (t). (22)

Equations (21)-(22) define in a scalar notation the model
proposed for the signals of aN×N two-hop coupler network.

In order to extend this modeling to the multi-hop
case (I > 2), we can exploit a standard structure for all trans-
mission steps. For instance, to describe a third hop (and so
on), a new tensor W (2)

∈ CP3×N3×N2×J2 , associated to the
connection topology between the couplers of the second and
third layers, and a new transfer tensor K(3)

∈ CJ3×P3×N3

are used. A straightforward reasoning from (20) leads to
the following output signals tensor Y (3) at the third layer of
couplers

y(3)j3,n3 (t) =
P3∑
p3=1

N2∑
n2=1

J2∑
j2=1

P2∑
p2=1

N1∑
n1=1

J1∑
j1=1

P1∑
p1=1

k (3)j3,p3,n3

·w(2)
p3,n3,n2,j2

k (2)j2,p2,n2
w(1)
p2,n2,n1,j1

· k (1)j1,p1,n1
x(1)p1,n1 (t). (23)

An extension to the general case with I hops is straightfor-
ward since any hop to be added after the first one follows the
same structure. In this way, for i = 1, . . . , I − 1, let us define
the following tensorH(i)

∈ CJi+1×Ni+1×Ni×Ji

h(i)ji+1,ni+1,ni,ji =
Pi+1∑
pi+1=1

k (i+1)ji+1,pi+1,ni+1
w(i)
pi+1,ni+1,ni,ji

. (24)

Then, the whole transformation performed by the system over
X (1) can be represented as the tensor G(I )

∈ CJI×NI×N1×P1

defined as

g(I )jI ,nI ,n1,p1 =
NI−1∑
nI−1=1

JI−1∑
jI−1=1

. . .

·

N2∑
n2=1

J2∑
j2=1

J1∑
j1=1

h(I−1)jI ,nI ,nI−1,jI−1
· · ·

· h(2)j3,n3,n2,j2h
(1)
j2,n2,n1,j1

k (1)j1,p1,n1
. (25)

Thus, the signals at the output of the I -th hop are given by

y(I )jI ,nI (t) =
N1∑
n1=1

P1∑
p1=1

g(I )jI ,nI ,n1,p1x
(1)
p1,n1 (t). (26)

In the case I = 3, using the definitions (24)–(26), the output
signals (23) can be rewritten in the following compact form

y(3)j3,n3 (t) =
N1∑
n1=1

P1∑
p1=1

g(3)j3,n3,n1,p1x
(1)
p1,n1 (t). (27)

Below, we present this model in a tensor notation, which
will be used later for developing the parameter estimation
algorithm.
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C. TENSOR NOTATION
The tensors in the previous subsection are defined by oper-
ations already discussed in Subsection II-A. In (22), as well
as in (26) and (27), the operation between G(i) and X (1) is a
double-contraction over the common modes n1 and p1. The
tensor notation can also be used to define the output signals
tensor Y (I ) of a multi-hop network as follows

Y (I )
= G(I )

∗
1,2
4,3 X

(1)
∈ CJI×NI×T , (28)

where ∗1,24,3 denotes a double-contraction carried out over the
fourth mode of G(I ) and first mode ofX (1), and the third mode
of G(I ) and second mode of X (1).

Thus, the tensor G(I ) accumulates all the steps of the trans-
mission scheme. The interaction betweenW (i) andK(i+1) can
be interpreted as a mode-1 product using (24). Then, H(i)

satisfies a generalized Tucker-(1, 4) decomposition given by

H(i)
=W (i)

×1 K(i+1)
∈ CJi+1×Ni+1×Ni×Ji . (29)

Similarly, (25) shows that the successive hops are denoted by
the interactions betweenH(i+1) andH(i) which are described
by double contractions over their common modes. Thus, G(I )

can be defined in a tensor notation as

G(I )
= H(I−1)

∗
1,2
4,3 H

(I−2)
∗
1,2
4,3 · · ·

∗
1,2
4,3H

(2)
∗
1,2
4,3 H

(1)
×4 K(1)′. (30)

The tensor K(1)′
∈ CP1×J1×N1 is defined from K(1)

∈

CJ1×P1×N1 by transposing its mode-3 slices, i.e. K(1)′
··n1 =

K(1)
··n1

T
, with n1 = 1, . . . ,N1. The above definition is made

to satisfy the convention of a mode-n product, in which the
second mode of a factor is equal to the n-th mode of the core.
The generic tensor G(I ), defined in (30), can be viewed

as a generalization of a TT decomposition, as defined
in Subsection II-B, whose wagons H(i) satisfy generalized
Tucker decompositions, in addition to sharing two common
modes between two consecutive wagons. Fig. 8 shows a
block-diagram of the tensor model of the output signals Y (I )

for a multi-hop coupler network, which can be viewed as a
TT structure similar to the one shown in Fig. 4. Since there
is no representation for arrays of order higher than three, the
fourth-order tensor W (i) is roughly represented as a bigger
block. The structure of W (i) has already been presented in
Fig. 7.

The present study aims to propose a method to estimate the
parameters of the model such as the tensors K(i) and W (i),
which are strongly linked to the network design. Estimation
of such parameters can be a very useful tool for some appli-
cations. Depending on the kind of device (switcher, router,
star coupler, logic gate, etc.) to be implemented, the unknown
parameters must be correctly designed using the input and
output signals. In the next section, the proposed tensor model
is exploited to develop an algorithm to estimate the design
parameters.

V. PARAMETER ESTIMATION ALGORITHM
In the previous section, a TT decomposition was highlighted
to model the output signals of anN×N coupler network com-
posed of multiple layers of optical couplers. By exploiting the
proposed model, an iterative algorithm can be developed to
estimate the tensor factors that contain the design parameters
of the network using the tensorsX (1) andY (I ) of the input and
output signals. Although we have developed a tensor model
for a generic I -hop coupler network, in this section, we will
consider a two-hop coupler network, as illustrated in Fig. 6.
Thus, for I = 2, (29) and (30) become

G(2)
= H(1)

×4 K(1)′

= W (1)
×1 K(2)

×4 K(1)′
∈ CJ2×N2×N1×P1 , (31)

where the connection tensor W (1)
∈ CP2×N2×N1×J1 and the

transfer tensors K(2)
∈ CJ2×P2×N2 and K(1)

∈ CJ1×P1×N1 are
to be estimated. The tensor (31) satisfies a structured general-
ized Tucker-(2, 4) decomposition, as introduced in (11), with
the following correspondences

(X , C,A,B) ←→
(
G(2),W (1),K(2),K(1)′

)
(I1, I2, I3, I4,R1,R4) ←→ (J2,N2,N1,P1,P2, J1). (32)

The decomposition (31) can be viewed as a special case
of (11), due to the constraints on the structure of the core
tensor W (1) and the factors K(2) and K(1), as discussed in
Subsection IV-A. These constraints play an important role for
the parameter estimation and they will be taken into account
in the estimation algorithm. For the sake of simplicity, wewill
denote (W (1),G(2),X (1),Y (2)) = (W,G,X ,Y).

A. ALS ESTIMATION
The proposed estimation algorithm has two stages. The first
one consists of estimating the tensor G by using an LS
estimator derived from the input-output relationship (28).
The second stage estimates the parameters W , K(2) and K(1)

from the estimated tensor G by using a three-step alternating
leas-squares (tri-ALS) method, derived from the generalized
Tucker model (31). The ALS estimation method [16], [30] is
based on an alternating minimization of LS cost functions,
in an iterative way. That means, starting from the initial
values, the estimates of unknown parameters are refined at
each iteration, until a convergence criterion is reached. The
steps of the proposed ALS algorithm are defined below.

A contracted form of the double contraction in (28) can be
obtained by combining the first two modes of X and the last
two modes of G, yielding the following mode-3 product

Y = GJ2×N2×P1N1 ×3 XT×P1N1 . (33)

Note that this rewriting of Y highlights a Tucker-(1, 3)
decomposition. The following matrix unfolding can be
deduced from (8)

YJ2N2×T = GJ2N2×P1N1XP1N1×T , (34)

which leads to the LS estimator

ĜJ2N2×P1N1 = YJ2N2×T
(
XP1N1×T

)†
. (35)
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FIGURE 8. Block-diagram of the tensor train structure of the signal model. Each wagon H(i ), composed of the tensors
W(i ) and K(i+1), is associated to a hop in the transmission scheme.

After obtaining the estimate Ĝ under the matrix form
ĜJ2N2×P1N1 , other unfolded versions of G can be obtained
by means of a reshaping operation (which corresponds to
other combinations of modes). As G satisfies a general-
ized Tucker-(2, 4) decomposition similar to (11), one can
exploit the unfoldings (13)–(14) to derive estimators for
W , K(2) and K(1).

Thus, from the unfolding (14) and the correspon-
dences (32), a vectorized form of G is given by

gN2J2N1P1

=

[
bdiag

(
K(2)
··n2

)
⊗ bdiag

(
K(1)
··n1

T
)]

wN2P2N1J1 . (36)

A tall mode-1 unfolding of G can be derived from (13) as

GN2N1P1×J2

=

[
IN2 ⊗ bdiag

(
K(1)
··n1

T
)]

WN2N1J1×N2P2K
(2)
N2P2×J2

.

(37)

In a similar way, from a simple permutation of modes, a tall
mode-4 unfolding of G is given by

GN1N2J2×P1

=

[
IN1 ⊗ bdiag

(
K(2)
··n2

)]
WN1N2P2×N1J1K

(1)
N1J1×P1

. (38)

The unfoldings (36)–(38) are used to define the following
LS cost functions to be alternately minimized with respect
to W , K(2) and K(1), respectively, while the other factors are
fixed with their previous estimated values

arg min
W

‖̂gN2J2N1P1 −

[
bdiag

(
K̂(2)
··n2

)
(it−1)

⊗ bdiag
(
K̂(1)
··n1

T
)
(it−1)

]
wN2P2N1J1‖

2
2, (39)

arg min
K(2)

‖ĜN2N1P1×J2 −

[
IN2 ⊗ bdiag

(
K̂(1)
··n1

T
)
(it−1)

]
· ŴN2N1J1×N2P2 (it)K

(2)
N2P2×J2

‖
2
F , (40)

arg min
K(1)

‖ĜN1N2J2×P1 −

[
IN1 ⊗ bdiag

(
K̂(2)
··n2

)
(it)

]
· ŴN1N2P2×N1J1 (it)K

(1)
N1J1×P1

‖
2
F , (41)

where it denotes the iteration number. The estimates of W ,
K(2) andK(1) are obtained by alternately minimizing the cost

functions (39)-(41). The three-step ALS algorithm is then
given by

ŵN2P2N1J1 (it) =

(
bdiag

(
K̂(2)
··n2

)
(it−1)

⊗ bdiag
(
K̂(1)
··n1

T
)
(it−1)

)†
ĝN2J2N1P1 ,

(42)

K̂(2)
N2P2×J2 (it)

=

([
IN2 ⊗ bdiag

(
K̂(1)
··n1

T
)
(it−1)

]
· ŴN2N1J1×N2P2 (it)

)†
ĜN2N1P1×J2 , (43)

K̂(1)
N1J1×P1 (it)

=

([
IN1 ⊗ bdiag

(
K̂(2)
··n2

)
(it)

]
· ŴN1N2P2×N1J1 (it)

)†
ĜN1N2J2×P1 . (44)

In this way, the unknown factors W , K(2) and K(1) are esti-
mated under their unfolded forms wN2P2N1J1 , K

(2)
N2P2×J2

and

K(1)
N1J1×P1

, respectively. At the end of each iteration, a stop
criterion is tested, allowing a refinement of the estimates
until reaching convergence. The stop criterion to decide the
convergence of the iterative estimation algorithm is based on
the reconstruction of the tensor G using the estimates Ŵ , K̂(1)

and K̂(2), and the difference of the Frobenius norm of the
estimation error between two successive iterations, i.e.(

‖Ĝ − Ḡ‖2F
)
it
−

(
‖Ĝ − Ḡ‖2F

)
it−1
≤ threshold, (45)

where Ĝ and Ḡ denote respectively the tensor estimated from
X and Y using (35) and the reconstructed tensor using (21)
with the estimates Ŵ , K̂(1) and K̂(2). The threshold value in
(45) is chosen according to the desired refinement.

The proposed algorithm, derived from a generalized
Tucker decomposition, allows to estimate the unknown
parameters, which can be affected by scaling ambiguities.
Indeed, no elements of K(1) and K(2), nor the core tensorW ,
are a priori known. On the other hand, these tensor factors
have a strong constraint on their structure as discussed in
Subsection IV-A. These constraints are exploited in order to
eliminate the ambiguities.

Thus, we propose that, at each iteration, the estimate Ŵ
has a structure similar to that of Fig. 7 and therefore its
elements are projected onto the binary set {0, 1}. To eliminate
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the ambiguities on the estimates K̂(1) and K̂(2), the structural
conditions of their slices are ensured by keeping the energy
conservation in the transfer matrices, i.e. the determinant of
each slice K̂(i)

··ni must be equal to 1. The operations used to
ensure the tensor structures as well as all steps of the proposed
ALS-based estimation algorithm are summarized in Table 4.

B. IDENTIFIABILITY CONDITIONS AND COMPLEXITY
ANALYSIS
The system parameter identifiability with the proposed algo-
rithm depends on the uniqueness of the LS solutions. Indeed,
for computing the pseudo-inverses in (42)-(44), as well as for
the computing Ĝ in (35), some conditions must be satisfied to
ensure the uniqueness of the left- or right-inverses. Necessary
conditions are directly linked to the rank of the matrices.
In (35), the argument of the pseudo-inverse operator has
dimensions P1N1×T and must be right-invertible, i.e. it must
be full row rank. In (42)-(44), the arguments have dimensions
N2J2N1P1×N2P2N1J1, N2N1P1×N2P2 and N1N2J2×N1J1,
respectively, and must be left-invertible, i.e. they must be full
column rank. This implies the following necessary (but not
sufficient) conditions

T ≥ P1N1,
P1
J1
≥
P2
J2
, N1 ≥

P2
P1
, N2 ≥

J1
J2
. (46)

These conditions lead to some constraints on the values of
the network parameters. The last three conditions are directly
satisfied for the values of Pi and Ji defined in Table 2 and
by considering at least one coupler at each hop. The first
condition gives a constraint on the number of time-slots. For
example, a 4× 4 star coupler leads to N1 = 2 and therefore a
minimum sequence of 4 bits must be considered.

The computational complexity of the proposed ALS algo-
rithm is essentially linked to the computation of pseudo-
inverses in (42)–(44). Since the terms within parentheses
are block-diagonals, the individual complexities are greatly
reduced, leading to non-dominant costs. Thus, we estab-
lish the computational complexity of the proposed algo-
rithm from the cost of matrix multiplications, which yields
O(N 2

1N
2
2P1P2J1J2) + O(N 2

2N1P1P2J2)+ O(N 2
1N2P1J1J2).

Assuming N1 = N2 = N and P1 = P2 = J1 = J2 = P,
it becomes O(N 4P4).

VI. NUMERICAL SIMULATION RESULTS
In this section, we present some numerical experimental
results to validate the proposed tensor model for coupler
networks, and to evaluate the effectiveness of the proposed
estimation algorithm. Signals from nonreturn-to-zero (NRZ)
CW beams with an on-off keying (OOK) modulation were
generated. The power P0 = 10 mW was used to trans-
mit each bit 1 in the data stream. In the next subsec-
tions, several configurations, defined in terms of bit stream
size, coupling constant and topology connection, are dis-
cussed. Details of each experiment are presented. As previ-
ously mentioned, linear and nonlinear propagation effects are
ignored.

A. TRANSMISSION EXPERIMENT FOR A 4× 4 STAR
COUPLER
Firstly, we present a transmission experiment for the pur-
pose of model validation. We plotted the output signals of a
4× 4 star coupler (see Fig. 6(a)) using two different methods.
In the first one, the signals are modeled with the proposed
tensor model in the scalar form (20). In the second one, for
comparison, we used an integrated optical circuit simulator
(OptiSystem from Optiwave Systems Inc.) to simulate the
same star coupler. The simulation setup used in the OptiSys-
tem software is shown in Fig. 9.

Fig. 10(a) shows the bit sequences transmitted from each
input port of the star coupler. A size T = 4 was used for the
streams, sending a single bit 1 from each port during each
time slot. The goal is to illustrate the power division at the
output ports. As mentioned earlier, a star coupler should split
any input power between all the output ports equally.

The signals intensity at each output depends on the combi-
nation of the splitting ratio of the couplers. Several configu-
rations were tested. Just for illustration, here are two different
configurations. Configuration 1: all the four couplers have
the same coupling constant and are 3dB couplers, i.e. ρ1,1 =
ρ2,1 = ρ1,2 = ρ2,2 = 0.5. This configuration results in a
balanced distribution (same intensity) of the incoming power
to all outputs. Configuration 2: each coupler has a different
coupling constant (unbalanced distribution). The values of
the coupling constants applied were {ρ1,1, ρ2,1, ρ1,2, ρ2,2} =
{0.2, 0.4, 0.7, 0.9}.
Fig. 10(b) and 10(c) show the normalized transmission

power |yj2,n2 (t)/xp1,n1 (t)|
2 for the two configurations. The

balanced star coupler (configuration 1) (Fig. 10(b)) shows
that the output powers correspond to 25% of the input
power, regardless of the port to which the signal was
transmitted. With an unbalanced star coupler (configura-
tion 2, Fig. 10(c)), a different power fraction is directed
to each output port and depends on where the signal is
sent from.

In Fig. 10(b) and 10(c), the output signals simulated using
the proposed tensor model were similar to the signals pro-
vided by the OptiSystem software, thus validating the pro-
posed model.

B. PERFORMANCE EVALUATION OF THE ESTIMATION
ALGORITHM
The proposed ALS-based estimation algorithmwas also eval-
uated. The tensors W , K(1) and K(2) were estimated using
the input and output tensors X and Y . To show the effec-
tiveness and applicability of the proposed algorithm to design
optical networks, several configuration schemes were tested
by means of Monte Carlo simulations. The performance of
the estimations was evaluated using the normalized mean
squared error (NMSE) of the estimated parameters, defined
as

NMSE = 10 log10

(
1
MC

MC∑
mc=1

‖Tmc − T̂mc‖2F
‖Tmc‖2F

)
, (47)
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TABLE 4. ALS-based estimation algorithm.

FIGURE 9. Simulation setup for a 4× 4 star coupler.

with MC = 5 × 103 denoting the number of Monte Carlo
runs. Tmc and T̂mc represent, respectively, the simulated and
estimated tensors at the mc-th Monte Carlo run. The speed
of convergence was also evaluated. The convergence is con-
firmed when the criterion defined in (45) is less than or equal
to 1.0× 10−5.
First, we applied the ALS-based algorithm to estimate

the transfer tensors K(1) and K(2) in the two configura-
tions described in Subsection VI-A. The cross connection

between the layers of the 4 × 4 star coupler in both cases
are the same. Hence, in this first test, the tensor W was
considered known by the algorithm and the Steps 4 and 5
in Table 4 were suppressed. The NMSE results are plot-
ted as a function of T in order to analyze the impact of
the size of the transmitted bit sequences on the estimation.
Moreover, T must take values greater than or equal to 4 for
the 4 × 4 star coupler in order to fulfill the identifiability
condition (46).
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FIGURE 10. Transmission experiment result. (a) Input bit sequence; (b) output signals for the balanced star
coupler—configuration 1; and (c) output signals for an unbalanced star coupler—configuration 2.

FIGURE 11. NMSE of the transfer tensors versus T for (a) the balanced
and (b) unbalanced 4× 4 star coupler.

Fig. 11 shows the NMSE of K(1), K(2) and G versus T ,
for T ∈ {4, 8, 12, 16}. At each Monte Carlo run, new bit
sequences are randomly generated. Generally speaking, the
NMSE levels obtained were quite low for the configurations
used here, indicating a good approximation of the estimated
parameters. Furthermore, there is a decrease in NMSE when
larger bit stream sizes were used, pointing to a better approx-
imation of the unknown parameters for greater values of T .
Although the estimation of the tensorsK(1) andK(2) with (44)
and (43) do not depend directly on T , the estimation of
G depends on T and, as demonstrated by the blue curve
in Fig. 11, this improves when more input-output signals
measurements are used in (35).

Fig. 12 shows the number of iterations needed to achieve
the convergence versus T averaged along all the Monte Carlo
samples. As expected, since K(1) and K(2) are independent

FIGURE 12. Number of iterations versus T for 4× 4 star coupler.

of T , the results show that the size of the bit sequence
does not impact the convergence speed of the algorithm, i.e.
the required number of iterations remains constant with an
increase of T . This can be seen as an advantage, since better
performances are obtained with a higher value of T , without
degrading the convergence rate.

C. PERFORMANCE COMPARISON FOR N × N COUPLER
NETWORKS
In the following results, we evaluate the performance of the
algorithm for more complex cases, by estimating the param-
eters of larger coupler networks. Fig. 13 illustrates a generic
structure forN×N coupler networks composed of two layers,
with N = 2Ni, where Ni ≥ 2 denotes the number of couplers
in the i-th layer. Configurations with Ni = 2, 3, 4 and
5 couplers in each layer are considered, leading to the analysis
of 4 × 4, 6 × 6, 8 × 8 and 10 × 10 networks. The proposed
tensor model, initially described for a 4× 4 star coupler, was
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FIGURE 13. Schematic of an N × N coupler network.

FIGURE 14. NMSE of the transfer tensors versus N for an N × N coupler
network.

extended to the coupler networks under consideration. With a
greater number of couplers in each layer, the possibilities of
connections between the couplers increase. Each output port
of a given coupler n1 in the first layer can connect to any input
of any coupler n2 in the second layer. Remembering that the
output signals depend on the connection between the couplers
and it is impossible to obtain star coupler configurations for
cases where Ni > 2 when only two layers are used.
The connection topology was randomly drawn at each

Monte Carlo run of the simulations and the coupling con-
stants ρni,i were also randomly chosen within the range [0, 1],
thus allowing several configurations to be analyzed. Since
K(1), K(2) and W have random entries, we estimate these
three tensors without knowledge of the connection topology
(W), unlike the experiments carried out in Subsection VI-B.
We used random bit sequences with T = 16, in order to
satisfy the condition (46) for all the cases.

Fig. 14 shows the NMSE of K(1) and K(2) versus N
(number of input and output ports). First of all, the NMSE,
averaged throughout the random configurations, is notice-
ably degraded comparatively to the one in Fig. 11, where
fixed configurations were used in all Monte Carlo runs.
This increase of NMSE can be explained by the fact that
local minima can be reached, since some combinations of

FIGURE 15. Error rate of topology connection versus N for an N × N
coupler network.

network parameters can lead to similar output signals. How-
ever, an improvement in the estimation performance is seen
when the number of ports (and couplers) is increased. A larger
and more complex network reduces the possibilities of con-
figurations with similar outputs, leading to estimates with
greater accuracy.

Still in Fig. 14, the estimation performance for the case
where the random tensorW is known is plotted in comparison
with the case of joint estimation of the three tensors. Notably,
the lack of knowledge of the topologyW does not impact the
performance of the algorithm.

At eachMC run, the estimate Ŵ is compared to the original
tensor W . Furthermore, each frontal matrix slice of W has
only one entry equal to 1. Thus, connections incorrectly
estimated are counted and then the error rate is defined as

error rate =
1
MC

MC∑
mc=1

ωmc

P2N2N1J1
, (48)

where ωmc denotes the number of incorrect estimations at
each MC run, i.e. ŵp2,n2,n1,j1 6= wp2,n2,n1,j1 , ∀(p2, n2, n1, j1).
Fig. 15 shows the error rate ofW versus N . As expected, the
results follow the same trend of improvement as observed in
Fig. 14 when N is increased, illustrating the effectiveness of
the estimation algorithm.

The proposed iterative algorithm was also evaluated in
terms of convergence speed. Fig. 16 shows the NMSE ofK(1)

and K(2) versus the number of iterations. The results show
that, for all values of N , the convergence is achieved in a few
iterations. One can also note that with an increase of N , the
NMSE decreases, corroborating the results shown in Fig. 14.
On the other hand, it is possible to notice that the slope of
the curve increases more slowly for greater values of N , indi-
cating the need for more iterations to achieve convergence in
more complex networks. On average, the number of iterations
increases when N is increased, with a faster convergence for
less complex networks. However, the variation between con-
vergence speeds is small (few iterations) when N increases,
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FIGURE 16. Speed convergence for different configurations with respect to the NMSE of the transfer tensors.

FIGURE 17. NMSE of the transfer tensors versus OSNR for an N × N coupler network.

demonstrating the robustness of the proposed algorithmwhen
considering the complexity of the network.

D. PERFORMANCE EVALUATION IN THE PRESENCE OF
ADDITIVE NOISE
In this subsection, we evaluate the accuracy and convergence
of the ALS algorithm in the presence of additive noise. The
purpose of this experiment is to analyze the behavior of the
estimation algorithm in a noisy environment corresponding
to a modification of (28) as

Ỹ = G ∗1,24,3 X +N , (49)

where Ỹ denotes the noisy version ofY andN ∈ CJ2×N2×T is
a Gaussian noise tensor added at the end node of the network
with a noise power ofN0. At each run,N0 was fixed according
to the desired value of optical signal-to-noise ratio (OSNR),
i.e. N0 = P0/OSNR, where OSNR levels from 0 dB to
30 dB were used. The results in Fig. 17, 18 and 19 show,

respectively, the NMSE of K(1) and K(2), the error rate ofW
and the number of iterations versus OSNR for the different
networks discussed in the previous subsection.

As expected, Fig. 17 and 18 show a degradation in the accu-
racy of the estimates of K(1), K(2) and W for low values of
OSNR, which corresponds to noisier situations. Fig. 19 indi-
cates that there is a fast convergence for these levels of OSNR.
This leads us to conclude that in adverse situations, the con-
vergence criterion adopted is quickly reached due to the exis-
tence of local minima as mentioned in Subsection VI-C. In
addition, the estimation of the unknown parameters improves
significantly when the OSNR level increases, at the cost
of an increase in the number of iterations. Higher OSNR
values show a trend of improvement in estimates and speed
of convergence for all tested cases. Regarding the perfor-
mance comparison between the different tested networks,
the results in Fig. 17, 18 and 19 show a better perfor-
mance when N is increased, as discussed in the previous
subsection.

VOLUME 10, 2022 9921



D. S. Rocha et al.: Optical Coupler Network Modeling and Parameter Estimation Based on Generalized Tucker Train Decomposition

FIGURE 18. Error rate of W versus OSNR for N × N coupler network.

FIGURE 19. Number of iterations versus OSNR for N ×N coupler network.

VII. PERSPECTIVES
The present work is as an original approach for the study
and modeling of optical devices. In this section, we briefly
point out some perspectives for future works exploiting tensor
modeling in the field of optical communications.

Although we proposed a tensor model for a generic cou-
pler network in Section IV, numerical experiments were
performed only for two-hop coupler networks. We aim to
extend the applications of tensor models to more complex
optical networks in order to address higher-order star couplers
and/or interferometric devices by associating several couplers
in cascade.

The application of tensor methods for modeling multi-core
couplers is also a possible future work. With a multi-core
coupler, the interactions between adjacent cores can occur in
different ways depending on the number of cores and their
arrangement.

In signal processing for optical communications such as
WDM and DWDM systems, tensor decompositions promise
to be an interesting tool to develop receiver algorithms that

yield good performances for channel estimation and trans-
mitted symbols recovery, surpassing the results obtained by
conventional methods. As can be seen in the works [17],
[18], [24], among others, tensor-based approaches are already
widely applied to solve signal processing tasks in the context
of wireless communications.

The study of the mentioned devices and networks with
nonlinear effects is also considered as a perspective. For this,
tensor models must be appropriate to represent nonlinear
systems. Tensor models have already been applied to model
non-linear systems, such as the references [42]–[44], which
exploit Volterra models to model nonlinear channels in com-
munication systems. These works can be considered as a way
for future studies.

VIII. CONCLUSION
In this paper, we have proposed the use of tensor tools as
a new method to study and design optical networks. The
scenario considered for this first study is based on a 4×4 star
coupler, which can be extended to more complex networks
composed of cascaded optical couplers. A tensor model was
developed to describe the signals transmitted throughout the
network under a linear regime. After modeling the signals for
a 4 × 4 star coupler, the proposed model was extended to
a generic coupler network. The signals were modeled as a
third-order tensor that follows a tensor train structure com-
posed of wagons that satisfy a structured generalized Tucker
decomposition. With the knowledge of the input and output
data, the proposed tensor model of a two-hop coupler network
was applied to develop an iterative estimation algorithm to
estimate the unknown parameters of the network. A study
of the estimation performance in the presence of an additive
Gaussian noise was also carried out. Tensor models appear to
be a promising approach to study and design optical network
structures. As a perspective, real data will be processed for
validating our approach.
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