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ABSTRACT This work provides a provably safe feedback control for nonholonomic vehicles that
autonomously operate in an obstacle field. A barrier function with a tunable, exponential decay rate is used to
obtain a safe steering envelope for the vehicle. The safe steering envelope adapts, in real-time, to the vehicle’s
velocity and its distance to the static obstacles. The safety control corrects steering commands provided
by a nominal tracking control and prevents collisions between the vehicle and the obstacles. The safety
and stability of the algorithm are proved analytically and verified via multiple experiments. The resulting
safety control is modular and can work well with obstacles of different footprints. Since quick steering
control is essential for successful vehicle navigation, a two-layer predictor is proposed to compensate for the
time-delay in the vehicle dynamics. The two-layer predictor improves the control response time by as much
as a factor of four. The safety and tracking control act on the vehicle kinematics, and the two-layer predictor
improves the vehicle’s dynamic performance. The proposed control structure has a closed-form with eight
tunable parameters, which facilitates control calibration and tuning in large systems of vehicles. Extensive
experiments are carried out on a nonholonomic vehicle to verify the effectiveness of the proposed algorithm.

INDEX TERMS Collision avoidance, vehicle safety, unmanned autonomous vehicles.

I. INTRODUCTION
Collision-free navigation algorithms have been studied for
nonholonomic vehicles, self-driving cars, unmanned aerial
vehicles, and surface vehicles [1]–[5]. Safe navigation of
a vehicle inside an obstacle field forms a multi-objective
control problem with analytic solutions that are computable
only for some of the simplest cases [6]. Therefore, this work
focuses on utilizing feedback control for the safe navigation
of nonholonomic vehicles. Path planning algorithms, such
as the works by Fareh et al. [7] and Chu et al. [8], are not in
the scope of this work. Hoy et al. give a comprehensive sur-
vey of collision-free navigation algorithms for nonholonomic
vehicles [9].

A. OBJECTIVES
This work aims to design a steering control with a closed-
form structure, where safety and stability are analyti-
cally proved. Also, it is intended to augment the safety
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feature as a specific control module that can be conveniently
tuned. The proposed algorithm needs to be flexible and
expandable to advanced vehicle models. To this end, this
research develops a safety control based on barrier functions.
The result is an adaptive safe steering module, which cor-
rects the steering command produced by a nominal tracking
control. Moreover, the analytical complications associated
with the stability of a multi-objective control are circum-
vented. The performance of the avoidance maneuver is cal-
ibrated by enforcing an exponential decay rate on a barrier
function.

Recent developments of barrier functions [10], [11]
have opened new avenues to construct and incorpo-
rate safety conditions in control algorithms for robotic
applications [12]–[17]. Safety guarantees, however, may con-
flict with other control objectives such as trajectory track-
ing or output regulation. Hence, control Lyapunov function
and control barrier function based quadratic programs
(CLF-CBF-QPs) have been proposed to guarantee safety and
stability simultaneously [18]. Jankovic has proposed a robust
version of the CLF-CBF-QP [19].
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The CLF-CBF-QP calculates optimal control commands
by solving a quadratic program under constraints obtained
from the control Lyapunov function (CLF) and control barrier
function (CBF). Unlikemodel predictive control methods, the
CLF-CBF-QP does not require predictions of future states
to calculate the control input, so the control command is
calculated at a relatively high speed. Hence, this method is
suitable for real-time implementation [20].

However, new developments show that the quadratic pro-
gram methods may produce undesirable local equilibria [21],
[22] because of confliction between the CLF and CBF, which
may lead to control failure. For example, when the vehicle
tracks a reference trajectory in an obstacle field, undesirable
equilibria may cause extreme variation in vehicle velocity,
which may deteriorate obstacle avoidance performance.

B. BARRIER FUNCTIONS FOR SAFE STEERING
Multiple obstacles with different shapes and arrangements
can be modeled using a distance-based barrier function,
which divides the state-space into safe and unsafe sets. The
barrier function value is zero on the avoidance border of
the obstacle. An exponential decay rate is enforced on the
barrier function, which determines the safe steering envelope
in real-time. The safety control obtained from the barrier
function is implemented as an adaptive steering module. The
proposed module is independent of the count and footprint of
the obstacles. The vehicle is steered away from the obstacle as
soon as the safety control detects an unsafe maneuver. When
the vehicle is far enough from the obstacle, the safety control
is inactive. Explicit relations are derived for the safe bounds
of the steering angle. Since the safety control modifies the
tracking control outputs and linear velocity is kept close to
the reference velocity, the proposed safety control maintains
a smooth ride.

C. IMPROVED DYNAMIC PERFORMANCE
Quick steering is essential in satisfying desirable safety and
stability performance criteria. However, in practical appli-
cations, actuator time-delay causes prolonged transients and
delayed avoidance maneuvers, which limits the vehicle’s
ability to avoid obstacles safely and quickly. Therefore, tech-
niques such as receding horizon optimal control [23], non-
linear predictor-based control [24], adaptive sliding mode
control [25], and nonlinear tracking algorithm [26] have been
used to compensate time-delay for nonholonomic vehicles.
Actuator time-delay deteriorates the vehicle’s kinematic per-
formance by slowing down the vehicle’s dynamic response.
Hence, unlike the existing research, this work proposes a
two-layer predictor, where any trace of actuator time-delay
is compensated at the dynamic and kinematic levels.

D. ACHIEVEMENTS
This work presents a provably safe steering algorithm for
collision-free navigation of nonholonomic vehicles in obsta-
cle fields. The explicit structure of the proposed design facil-
itates control implementation and calibration. Note that the
proposed control only has eight parameters, and the barrier

function is scalable to the count of obstacles. Therefore,
design modularity and control scalability is improved. The
proposed two-layer predictor reduces the response time of the
control algorithm by asmuch as a factor of four, and improves
the tracking precision above 98%. The control structure is
independent of the obstacle count and footprint.

E. NOVELTIES AND CONTRIBUTIONS
This work addresses the problem of safe navigation for a
nonholonomic vehicle using feedback control. Safety and
stability objectives are addressed at the kinematic level and
transient performance is improved at the dynamic level. The
contributions of this work are threefold.
i) A feedback control approach is proposed to guaran-

tee the safety of nonholonomic vehicles operating in
static obstacle fields, where an exponential barrier func-
tion adaptively modifies the safe steering envelope in
real-time.

ii) Formal proof of safety and stability are provided. The
decoupled safety and stability components not only
facilitate the control design but also simplify proof
of safety and stability. The proofs are summarized in
Proposition 1 and 2.

iii) Dynamic performance of the vehicle is improved using a
two-layer predictor, which compensates for any trace of
actuator time-delay in the dynamic and kinematic levels.

To the best of the authors’ knowledge, the proposed safety
control and two-later predictor are novel ideas and have not
been reported by other researchers.Moreover, the results have
been verified through numerous experiments, three of which
are presented here.

The rest of this paper is presented in the following order.
Section II presents the kinematic and dynamic model of
the vehicle. Section III discusses trajectory tracking using
the vector-field-orientation method. Section IV explains the
utility of barrier functions to create safety guarantees for a
control system. Section V presents the safety control design
using an exponential barrier function. Section VI presents
the two-layer predictor to improve the dynamic performance
of the vehicle. Section VII reports three experiments that
validate the contributions made in this work. Section VIII
concludes the paper.

II. SYSTEM MODELING
The nonholonomic vehicle considered in this work is driven
by a differential-drive system comprised of two identical
electric wheels. The schematic of the vehicle, and inertial
and body reference frames are shown in Figure 1. The body
reference frame is attached to the vehicle at the center of
mass. The steering angle, θ , is measured with respect to the
x-axis in the counterclockwise direction. The kinematic and
dynamic models of the nonholonomic vehicle are given in the
following [27]

q̇ = S(q)ωw (1)

M ω̇w + C(q, q̇)ωw + Kωw = T , (2)
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FIGURE 1. A schematic of a nonholonomic vehicle in an inertial reference
frame x-y . The body reference frame is xb-yb and θ is the steering angle.
Note that the center of mass is on the middle point between the two
wheels.

where q = [x y θ θR θL]T , where [x y]T is the vehicle’s
position, θ is the steering angle of the vehicle, and θR and θL
are the angles of the right and left driving wheels. Also, ωw =
[ωR ωL]T is the angular velocity of the wheels, and T =
[TR TL]T consists of motor’s torques TR and TL , which act
on the right and left wheels, respectively. The systemmatrices
are defined as

S(q) =


(rw/2) cos θ (rw/2) cos θ
(rw/2) sin θ (rw/2) sin θ

rw/d −rw/d
1 0
0 1

 (3)

M =
[
m1 m2
m2 m1

]
(4)

C(q, q̇) =
r2wmbdc
d

[
0 θ̇

−θ̇ 0

]
(5)

K =
[
kR 0
0 kL

]
, (6)

where m1 = mr2w/4 + Ir
2
w/d

2
+ Iw, m2 = (m/4 − I/d2)r2w,

where m = mb + 2mw, and I = mbd2c + mwd
2/2 + Ib + Im,

where rw is thewheel radius, d is the distance between the two
wheels, dc is the distance between the center of mass of the
robot and the middle point of the line that connects the center
of the wheels,mb is the robot body mass, andmw is the wheel
mass. Also, Ib, Iw, and Im are the moments of inertia of the
body about the vertical axis fixed at the center of mass, the
wheel about the wheel axis, and the wheel about the wheel
diameter, respectively. The damping coefficients of the right
and left wheels are kR and kL , respectively.

The relationship between the vehicle velocities v andω and
wheel angular velocities is given as[

ωR
ωL

]
=

1
rw

[
1 d/2
1 −d/2

] [
v
ω

]
. (7)

Also, note that the linear velocity of the wheels are obtained
as

[vR vL]T = rw [ωR ωL]T . (8)

Substituting (7) into (1) transforms the kinematic equations
of the nonholonomic vehicle into

ẋ = v cos θ (9)

ẏ= v sin θ (10)

θ̇ = ω. (11)

Mass density is higher around the driving wheels in com-
parison with other parts of the vehicle. Note that the vehicle is
also symmetric. Moreover, as shown in Figure 1, the vehicle
chosen for this study has a circular footprint, where the center
of mass is on the middle point between the wheels. Hence,
dc = 0 andm2 ≈ 0. Then, termC(q, q̇) is eliminated from (2),
and M becomes a diagonal matrix. Also, because of design
symmetry the damping coefficient of the two wheels are the
same, i.e., kR = kL . Substituting (8) into 2 gives

v̇w = −Avw + BT , A = M−1K , B = rwM−1, (12)

where vw = [vR vL]T . Note that A = diag([a a]) and
B = [b b]T are constant matrices. Therefore, the dynamic
equation of the vehicle comprises of two decoupled, first-
order, linear time-invariant models. The dynamic model in
(12) has been used commonly for control design of nonholo-
nomic vehicles [28]–[30].

The wheel torques are produced by DC motors modeled as
the following

żi =−a′zi + b′ui(t − τ ) (13)

Ti = zi + ui(t − τ ), for i = R,L, (14)

for the right and left wheels, respectively, where a′ > 0 and b′

are constant coefficients, τ represents a constant time-delay
in the actuator, and ui is themotor command input. Because of
symmetry, the two motors have the same model. Depending
on the application, other models can be used instead of (13)
and (14). The dynamic equation of the vehicle, including the
motor model, is given by

v̇i =−avi + bzi + bui(t − τ ) (15)

żi =−a′zi + b′ui(t − τ ), for i = R,L. (16)

Equivalently, the dynamic equations (15) and (16) can be
represented as transfer functions

Vi(s)
Ui(s)

=G(s)e−τ s, for i = R,L, (17)

G(s)= b
s+ a′ + b′

(s+ a)(s+ a′)
(18)

where Vi(s) = L(vi), and Ui(s) = L(ui), where L denotes the
Laplace transform. The wheel linear velocity is vi, and the
motor command is ui, where i = R,L for the right and left
wheel, respectively.

The validity of the dynamic model obtained from the phys-
ical relationships is verified empirically using system iden-
tification. Wheel command inputs that guarantee persistent
excitation [31] are fed to the motors, and the linear velocity
of each wheel is measured. The System Identification toolbox
of MATLAB shows that fit to estimation data is above 85%,
and the dynamic equations of the two wheels are decoupled
and closely match each other as suggested by (15) and (16).
The model verifies that the actuator possesses a constant
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FIGURE 2. System identification verifies the validity of the dynamic
model given by (15) and (16). Also, it is confirmed that the two wheels are
decoupled with closely matching models. The result of system
identification for (a) the right wheel and (b) the left wheel, where solid
black is the model output, dotted red is the actual wheel velocity, and
dash-dotted blue is the input command. It can be seen that a time delay
of approximately 0.5 s is present in the system output.

time-delay. Figure 2 shows that the model output, shown in
solid black, closely follows the actual wheel velocity, shown
in dotted red. The dash-dotted blue line represents motor
command inputs.

In the subsequent sections, the vehicle’s kinematic model
given by (9)–(11) is used for tracking and safety control
design. The vehicle’s dynamic model given by (15) and (16)
is used to improve the transient performance by means of the
two-layer predictor.

III. TRACKING CONTROL WITH GUARANTEED STABILITY
The first control objective is precision trajectory tracking.
Assume that the reference trajectory satisfies the nonholo-
nomic condition

ẋr = vr cos θr (19)

ẏr = vr sin θr (20)

θ̇r = ωr . (21)

This paper only considers the forward movement. Thus, vr
is a positive real value, and ωr is a real value. The reference
position is [xr yr ]T .
Remark 1: One might question the generality of (19)–(21)

for applications where only the reference position is avail-
able. Assume that the reference position [xr yr ]T is provided
and twice differentiable, i.e., [ẋr ẏr ]T and [ẍr ÿr ]T exist. Also,
the reference linear velocity is positive. Then, one can obtain
the magnitude and angle of the velocity vector as

vr =
√
ẋ2r + ẏ2r (22)

θr = atan2c(ẏr , ẋr ). (23)

The function atan2c (a, b) is the four quadrant arctangent
of a and b, which is implemented such that θr provides
a continuous and differentiable curve and is not wrapped

between [−π, π]. Taking the time derivative of (23) gives the
angular velocity as the following

ωr =
ÿr ẋr − ẍr ẏr
ẋ2r + ẏ2r

. (24)

The reference can now be reproduced using (19)–(21), with
vr and ωr given by (22) and (24), respectively.

An extensive body of research exists on tracking algo-
rithms for nonholonomic vehicles, including but not lim-
ited to Lyapunov method [32], sliding mode control [33],
vector-field-orientation method [30], adaptive robust con-
trol [25], model predictive control [34], and adaptive neu-
ral networks [35]. Advanced design methods can be used
when input and state constraints are present [36], [37]. Low
complexity, guaranteed stability, tracking accuracy, and con-
venient integration with the safety control are the primary
design criteria for the tracking control. The authors have
found that the vector-field-orientation (VFO) method bal-
ances the design criteria [30]. A concise stability proof is
developed for the VFO.

The VFO method is explained in the following. Denote
the position vector as e = [ex ey]T = [xr − x yr − y]T .
The tracking objective is equivalent to reducing the position
error to zero and aligning the vehicle velocity vector with
the reference velocity vector. As shown in Figure 3, one can
define an auxiliary velocity vector (shown in dashed purple
by va, θa) as the summation of a weighted error vector and
the reference velocity vector, i.e.,

[hx hy]T = k[ex ey]T + [ẋr ẏr ]T , k > 0. (25)

If the vehicle is governed toward the auxiliary velocity
vector, one can show that trajectory tracking is achieved,
i.e., the red vector aligns with the green vector and e = 0.
Therefore, one needs to drive the vehicle wheels such that the
vehicle velocity vector mimics the behavior of the auxiliary
velocity vector. To determine the proper wheel velocities,
first, the auxiliary velocity and steering angle are obtained
as the following

va = hx cos θ + hy sin θ (26)

θa = atan2c
(
hy, hx

)
. (27)

The auxiliary angular velocity is obtained as

ωa = k1eθ + θ̇a, k1 > 0 (28)

where eθ = θa − θ and

θ̇a =
ḣyhx − hyḣx
h2x + h2y

, (29)

where

ḣx = k
(
ẋr − va cos θ

)
+ ẍr (30)

ḣy = k
(
ẏr − va sin θ

)
+ ÿr . (31)

Consider v = va and ω = ωa in (9)–(11). Then, one
gets ėθ = −k1eθ , which guarantees that θ converges to θa.
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FIGURE 3. The vector-field-orientation aligns the vehicle velocity vector
shown in red with the reference velocity vector shown in green and
governs e toward zero. The auxiliary velocity vector generates the steering
control, θa, and pushing control va. Robot and reference position are
p = [x y ]T and pr = [xr yr ]T , respectively.

Thus, (26) gives

va = hx cos θa + hy sin θa. (32)

Also, (27) gives

cos θa = hx/
√
h2x + h2y (33)

sin θa = hy/
√
h2x + h2y . (34)

Substituting (33) and (34) into (32) gives v2a = h2x + h
2
y,

which in turn gives cos θa = hx/va and sin θa = hy/va.
Therefore, ẋ = va cos θa and ẏ = va sin θa give ẋ = hx and
ẏ = hy, respectively. Using (25) one obtains ẋ = kex+ ẋr and
ẏ = key + ẏr . The position error equations are then obtained
as ėx = −kex and ėy = −key, which show that position
error converges to zero for k > 0. Accurate position tracking
transforms (25) into hx = ẋr and hy = ẏr . Hence, (33)
and (34) along with (19) and (20) give cos θa = cos θr and
sin θa = sin θr , which means accurate steering is achieved,
i.e., θa = θr . The stability result is summarized in the
following.
Proposition 1: Consider the vehicle kinematics given

by (9)–(11) and the reference trajectory is represented
as (19)–(21), where vr > 0. If the linear and angular veloci-
ties are set to (26) and (28), respectively, where hx and hy are
given by (25) and θa is given by (27), then perfect trajectory
tracking is achieved for any positive k and k1.

One can improve steering angle tracking of the actual
vehicle by replacing (28) with

ωa = KP,θeθ + KI ,θ

∫ t

0
eθdη + θ̇a, (35)

where KP,θ > 0 and KI ,θ > 0 are control gains. The integral
action in (35) reduces the steady-state tracking error. The
obtained values for va and ωa serve as the desirable reference
values for the vehicle dynamics.

The VFO provides the pushing, va, and steering, θa, com-
mands. One canmodify the steering command to avoid obsta-
cles that are located on or near the vehicle’s trajectory. Barrier
functions can be utilized to calculate an envelope of safe
steering angles for the vehicle. Hence, the concept of barrier
function and its usage for collision avoidance is discussed in
the next section.

IV. COLLISION AVOIDANCE USING BARRIER FUNCTIONS
First, the barrier function is introduced. Consider the follow-
ing system

Ẋ = F(X ), X ∈ X ⊆ Rn, (36)

where F(X ) is smooth enough. A set of initial conditions
X0 ∈ X and a set of unsafe states Xu ⊂ X are given. The
safety is achieved if all the state trajectories initiated inside
X0 avoid the unsafe set for all t > 0. The following lemma
introduces the barrier function and necessary conditions for
guaranteed safety of (36).
Lemma 1 (Safety Condition [10]): Consider the system

(36) and the corresponding setsX ,X0, andXu. For any given
α ∈ R, if there exists a barrier function, i.e., a continuously
differentiable function B(X ) : X → R satisfying the follow-
ing conditions:

∀X ∈X0 : B(X ) ≤ 0 (37)

∀X ∈Xu : B(X ) > 0 (38)

∀X ∈X : Ḃ(X ) ≤ −αB(X ), (39)

where Ḃ(X ) = (∂B(X )/∂X) f (X ). Then, the safety property
is satisfied by the system (36), i.e., B(X (t)) ≤ 0 for all t > 0.

Note that B(X ) = 0 shows the obstacle boundary. A non-
positive value of α creates a repelling obstacle boundary,
which is unsuitable to use with the trajectory tracking control.
For α > 0, the system can perform accurate steering maneu-
vers without violating the safety condition. Thus, throughout
this paper, positive values of α are considered.

Obstacles are modeled as a barrier function B(x, y) sat-
isfying conditions (37)–(39), where B(x, y) > 0 inside the
avoidance zone. The value of the barrier function is zero
on the avoidance boundary, i.e., B(x, y) = 0. Note that the
structure of the barrier function is optional, and multiple
obstacles with different shapes could be modeled using one
barrier function. Denote the gradient of the barrier function
as

∇B =
[
∂B(x, y)
∂x

∂B(x, y)
∂y

]
. (40)

Substituting the kinematic equations (9) and (10) in (39) gives

Ḃ(x, y)≤−αB(x, y) (41)
∂B(x, y)
∂x

ẋ +
∂B(x, y)
∂y

ẏ≤−αB(x, y) (42)

∂B(x, y)
∂x

v cos θ +
∂B(x, y)
∂y

v sin θ ≤−αB(x, y). (43)

The gradient vector in (40) is nonzero near the avoidance
zone of the obstacle. Also, forward motion is considered,
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i.e., v > 0. The gradient of the barrier function points from the
vehicle toward the obstacle as shown in Figure 4. The gradient
can also be represented as

∇B = ‖∇B‖
[
cosβ sinβ

]
, (44)

where ‖∇B‖ and β are the magnitude and angle of the gradi-
ent vector, respectively.

Thus, inequality (43) can be written as

‖∇B‖ cosβ cos θ + ‖∇B‖ sinβ sin θ ≤−α
B(x, y)
v

(45)

Using cos(θ − β) = cos θ cosβ + sin θ sinβ, one can trans-
form (45) into

cos(θ − β) < c, (46)

where

c = −αB(x, y)/(v‖∇B‖). (47)

Note that c ≥ 0 outside the avoidance zone because v >
0, α > 0, and B(x, y) ≤ 0. Moreover, if c > 1, the angle
condition (46) gives

cos (θ − β) ≤ 1, (48)

which is true for any value of θ . Thus, the vehicle steering
angle need not be restricted, and the vehicle can safely track
the reference trajectory. On the other hand, if c ≤ 1, there
is an unsafe envelope for the steering angle, which is to be
avoided to ensure collision-free navigation.

To calculate the unsafe envelope of the steering angle, δ is
introduced as

δ = arccos (c) . (49)

Recall that 0 ≤ c ≤ 1 and 0 ≤ δ ≤ π/2 outside the avoidance
zone. The angle condition (46) gives

cos (θ − β) ≤ cos δ. (50)

As Figure 4 shows, when the vehicle is near the avoid-
ance zone, there is an unsafe steering envelope bounded
between θL and θH , which indicates a potential collision with
the obstacle. In other words, if the vehicle stays inside the
unsafe envelope, the risk of collision increases as the vehicle
approaches the obstacle. One can deduce from (50) that angle
δ is the minimum safe deviation from the gradient vector of
the barrier function. A graphical representation of the angle
condition is shown in Figure 4. Therefore, the safety control
is designed to modify the auxiliary steering angle such that
the vehicle avoids entering the unsafe envelope.

As shown by (47) and (49), the value of δ not only depends
on the barrier function and its gradient but also is affected by
the vehicle velocity and α. Higher vehicle velocities mean
that c drops below one at a farther distance from the obstacle.
Hence, the steering angle is adjusted early to avoid a collision.
Moreover, increasing α causes δ to drop below one at a
closer distance to the obstacle. In other words, a large value
of α causes a tight maneuver around the obstacle and may

FIGURE 4. Angle arrangements between the vehicle at position (x, y )
shown as a blue dot and obstacle at position (xo, yo) shown as a red dot.
The red circle shows the boundary of the obstacle avoidance zone. The
barrier function is zero on the avoidance boundary. The unsafe steering
envelope is bounded between θL = β − δ and θH = β + δ. The blue vector
shows the vehicle velocity vector. The safety control keeps the vehicle
velocity vector outside the unsafe envelope.

increase the risk of collision. On the other hand, small values
of α lead to early correction of the steering angle, leading to
long detours around the obstacle. Hence, α needs to be appro-
priately designed to achieve a desirable avoidance maneuver.

The proposed method is applicable to multiple obstacles
that are adequately far from each other. In other words, the
environment is navigable by the vehicle. A barrier func-
tion that represents multiple obstacles may have shallow
dips/valleys outside Xu, which means ∇B ≈ 0. Evaluation
of (42) gives B(x, y) ≤ 0, which is valid outside Xu. Hence,
no additional condition is needed for the barrier function. The
safety result about the steering angle is summarized in the
following.
Proposition 2: Let the kinematic equation of the nonholo-

nomic vehicle be given as (9)–(11), where v > 0. Let
obstacles be far enough from each other andmodeled as a bar-
rier function B(x, y), satisfying conditions (37)–(39), where
α > 0. If the steering angle of the vehicle satisfies (50), then
the vehicle does not collide with any obstacle.

In the next section, a safety control is designed using a
barrier function.

V. DESIGN AND IMPLEMENTATION OF SAFETY CONTROL
This paper uses barrier functions to design a safety control
that adjusts the auxiliary steering angle produced by the VFO
method so that the vehicle safely maneuvers around an obsta-
cle. The proposed method has a preassigned structure and is
decoupled from obstacle properties. The proposed algorithm
does not interfere with the trajectory tracking control, simpli-
fies the collision avoidance control design, and reduces the
processing power required for collision-free navigation of the
nonholonomic vehicle. Moreover, the safety control handles
obstacles of different footprints.
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Condition (50) gives the unsafe range of steering angle as
2k ′π − δ ≤ θ − β ≤ 2k ′π + δ for k ′ = 0,±1,±2, · · · .
However, the steering angle cannot change abruptly. There-
fore, one can neglect non-zero values of k ′, and express the
unsafe envelope of the steering angle as the following set

2u = {θ ∈ R : −δ ≤ θ − β ≤ δ}
= {θ ∈ R : θL ≤ θ ≤ θH } , (51)

where θL = β − δ, θH = β + δ, and δ is obtained using (49).
The gradient angle β is calculated when c drops below

one. If c = 1, one can deduct from (49) and (50) that
β = θ . Hence, β is initialized to the value of θ at the moment
where c drops below one. Note that the vehicle may face
one obstacle multiple times or encounter different obstacles.
Hence, calculation of β using atan2c(·, ·) requires additional
modification.

Here, a dynamic update law for β is provided, which
ensures robust calculation. Denote ∇B = [∇Bx ∇By].
Using (44), one can calculate angle β as the following

β = arctan(∇By/∇Bx) (52)

β̇ =
∇Bx

d(∇By)
dt −∇By

d(∇Bx )
dt

‖∇B‖2
. (53)

The barrier function only depends on the vehicle’s position.
Thus, ∇B depends on x and y, too. Recall that ẋ and ẏ are
expressed as (9) and (10), respectively, which means

d(∇Bx)
dt

=H11v cos θ + H12v sin θ (54)

d(∇By)
dt

=H21v cos θ + H22v sin θ, (55)

where the Hessian matrix of B(x, y) is given as

[
H11 H12
H21 H22

]
=


∂2B(x, y)
∂x2

∂2B(x, y)
∂x∂y

∂2B(x, y)
∂x∂y

∂2B(x, y)
∂y2

 . (56)

Also, the Hessain matrix depends on x and y. Hence, the
right-hand side of (53) depends on x, y, v, and θ . Thus, one
can calculate β in real-time by integrating (53). Recall that
β is calculated for c ≤ 1. Therefore, the initial value of β is
reset to the value of the steering angle at the moment where
c ≤ 1 for the first time.

Since the steering anglemust avoid the set2u, the auxiliary
steering angle, θa, obtained from the VFO, is modified to
avoid the unsafe set. The vehicle can either turn left or right
to avoid the obstacle. Here, the left turn avoidance maneuver
is considered. Thus, the safe steering angle, θs, is calculated
as

θs =

{
θa if Ḃ(x, y) ≤ −αB(x, y)
θH if Ḃ(x, y) > −αB(x, y).

(57)

The right turn avoidance maneuver is obtained using the
following logic

θs =

{
θa if Ḃ(x, y) ≤ −αB(x, y)
θL if Ḃ(x, y) > −αB(x, y).

(58)

The values of θL and θH depend on β and δ, which are
calculated in real-time using the vehicle’s location and trans-
lational velocity data. Moreover, the angle control requires
the derivative of the safe angle. Therefore, the following logic
is utilized to create θ̇s

θ̇s =

 θ̇a if Ḃ(x, y) ≤ −αB(x, y)
s

Ts+ 1
θs if Ḃ(x, y) > −αB(x, y).

(59)

where T is small enough in comparison to the response time
of the steering angle control loop.

If the auxiliary steering angle falls inside the unsafe steer-
ing angle envelope, i.e., Ḃ(x, y) > −αB(x, y), the safety
control is activated. Then, the safe steering angle, θs, and its
estimated time derivative respectively replace the auxiliary
steering angle, θa, and its time derivative, θ̇a, in (35). There-
fore, the safe rotational speed, ωs, is generated accordingly.
However, the auxiliary linear velocity, va, is calculated using
the position error, and the result may be inconsistent with the
intent of avoiding the obstacle in favor of tracking. Hence, va
is replaced by vr during avoidance maneuvers, i.e., the safe
linear velocity is obtained as

vs =

{
va if Ḃ(x, y) ≤ −αB(x, y)
vr if Ḃ(x, y) > −αB(x, y).

(60)

Figure 5 shows a block diagram of the safety control and
its connection with the VFO block. Angles δ and β are
calculated using the exponential barrier function. If Ḃ(x, y) >
−αB(x, y), the safety control is active. Angle β is reset when-
ever the value of c drops below zero, i.e., the integrator is reset
to the current value of θ on the rising edge of sign(1− c).

The safe angular and linear velocities, created by the safety
control, are fed to the servo-system of the nonholonomic
vehicle. The vehicle linear and angular velocity are related
to the wheel velocities as (7) and (8). Then, one can calculate
the safe wheel velocities as the following

vR,s = vs +
d
2
ωs (61)

vL,s = vs −
d
2
ωs. (62)

Since the wheel velocity is bounded, the safe values of vR,s
and vL,s are scaled to avoid control saturation

vi,sc =

{
vi,a/µ if µ > 1
vi,a if otherwise, i = R,L,

(63)

where µ = max
(
|vR,a|, |vL,a|

)
/vmax, where vmax is the

maximum wheel velocity.
The subsequent section improves the dynamic response of

the vehicle such that quick steering is achieved. As shown
by (17), the vehicle dynamics includes actuator time-delay,
which compromises the tracking and avoidance maneuver
performed by the vehicle. Hence, a two-layer predictor is
proposed to compensate for any trace of time-delay in the
vehicle control loops.
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FIGURE 5. Block diagram of the proposed control, including the safety control, VFO, and two-layer predictor. The safety control ensures obstacle
avoidance by correcting the auxiliary linear velocity and steering angle produced by the VFO. The innermost predictors (highlighted in red and
yellow) compensate for the time-delay in the wheel velocity loops, and the outermost predictor (highlighted in blue) compensates the transferred
time-delay to the steering angle control from the servo-system.

VI. IMPROVED TRANSIENT USING TWO-LAYER
PREDICTOR
The success of the proposed control heavily depends on the
performance of the dynamic response of the vehicle. Inad-
equate accuracy and slow transient response in the velocity
and steering angle loops deteriorate the control performance
and may cause the failure of tracking and safety control.
One needs to compensate for the effect of time-delay at the
dynamic level to achieve desirable closed-loop performance.
Thus, this section presents a two-layer predictor that guaran-
tees fast transient responses.

The dynamic model in (17) is a combination of a transfer
function and constant time-delay. Hence, the Smith predic-
tor (SP) is used to compensate for the effect of time-delay
in the wheel control loops. The Smith predictor compensates
time-delay by acting on a nominal model of the system
to provide a controlled response unaffected by time-delay.
Furthermore, the Smith predictor compares the actual system
output to the nominal delayed-output to eliminate drifts and
external disturbances in the system response [38], [39].

Since the wheels dynamics are identical, the velocity con-
trol loops for the two wheels are also identical. Consider the
nominal model of the wheel velocity given by

V̂i(s)
Ui(s)

= Ĝ(s)e−τ̂ s, i = R,L, (64)

where V̂i(s) is the estimate of wheel velocity, and Ĝ(s) and
τ̂ are found using mathematical modeling or system identi-
fication, which may be different from the actual values G(s)
and τ . The estimate of wheel velocity is obtained as V̂i(s) =
Ĝ(s)e−τ̂ sUi(s), where Ui(s) for i = R,L is the wheel control
input. Moreover, one can predict the future output as V̂i(s)eτ̂ s.
Thus, the feedback signal can be corrected as

Ui(s)=C(s)
(
Vi,sc(s)−

(
Vi(s)−V̂i(s)+V̂i(s)eτ̂ s

))
(65)

for i = R,L, where C(s) is the control and Vi,sc(s) = L(vi,sc),
where vi,sc is the scaled safe wheel velocity. Using (64),
an implementable realization of (65) is obtained as

Ui(s) = C(s)
(
Vi,sc(s)−

(
Vi(s)+ Z (s)Ui(s)

))
, (66)

for i = R,L, where

Z (s) = Ĝ(s)− Ĝ(s)e−τ̂ s. (67)

The controller with the Smith predictor can be described as

Csp(s) =
C(s)

1+ C(s)Z (s)
. (68)

Hence, the closed-loop transfer function of each electric
wheel becomes

Gcl =
Csp(s)G(s)e−τ s

1+ Csp(s)G(s)e−τ s

=
C(s)G(s)e−τ s

1+C(s)Ĝ(s)−C(s)Ĝ(s)e−τ̂ s + C(s)G(s)e−τ s
. (69)

For the ideal case where the nominal model and delay are
perfectly known, i.e., Ĝ(s) = G(s) and τ̂ = τ , the closed-loop
transfer function of the wheel velocity simplifies to

Vi(s)
Vi,sc

= Gv(s)e−τ s, i = R,L, (70)

where

Gv(s) =
C(s)G(s)

1+ C(s)G(s)
. (71)

Therefore, the Smith predictor moves the time-delay to the
outside of the wheel velocity loops.

Using (7) and (8), one obtains ω = rw(ωR − ωL)/d =
(vR − vL)/d . Denote �(s) = L(ω). Using (70), one obtains

�(s)=Gve−τ s
(
VR,sc(s)− VL,sc(s)

d

)
. (72)
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Assume that the safe wheel velocities are not scaled, i.e.,
vi,sc = vi,s for i = R,L. Substituting the Laplace transform
of (61) and (62) into (72) gives

�(s)
�s(s)

= Gv(s)e−τ s, (73)

where �s(s) = L(ωs), where ωs = (vR,s − vL,s)/d is
obtained from (61) and (62). Using equation (11) and (73),
one obtains the transfer function from the safe angular speed,
ωs, to the actual steering angle, θ , as the following

2(s)
�s(s)

= Gθ (s)e−τ s, Gθ (s) = Gv(s)/s, (74)

where 2(s) = L(θ(t)). It is observed that the first layer of
the Smith predictor transfers time-delay to the steering angle
loop. Achieving proper steering is key to the success of the
proposed control. Thus, the effect of transferred time-delay
to the steering angle control needs to be compensated.

The steering angle control with the Smith predictor correc-
tion is implemented as the following

�s(s) = Cθ (s)
(
2s(s)−

(
2(s)+ Zθ (s)�s(s)

))
, (75)

where

Zθ (s) = Ĝθ (s)− Ĝθ (s)e−τ̂ s, (76)

where Ĝθ (s) = Ĝv(s)/s, where

Ĝv(s) =
C(s)Ĝ(s)

1+ C(s)Ĝ(s)
. (77)

The two-layer predictor is shown in Figure 5, where the
red and yellow boxes compensate for the time-delay in the
velocity loops. The transferred time-delay to the steering
angle loop is compensated using another layer of the Smith
predictor shown inside the blue box. The values of vs, θs, and
θ̇s, are produced by the safety control. The steering angle
and wheel velocity control are shown as Cθ (s) and C(s),
respectively. Recall that Cθ (s) is a proportional-integral con-
trol given by (35). The wheel velocity loops are adequately
faster than the steering angle control loop.
Remark 2: The time-delay determines the response time

of the wheel velocity and the steering angle control loops.
Moreover, the VFO is required to act slower than the steer-
ing angle and velocity control loops. In other words, the
inner-loops settle down long before the VFO converges.
Hence, the response time of the VFO will be sufficiently
lengthier than the time-delay, and an additional predictor for
the VFOmay neither be an appropriate design nor can lead to
a noticeable improvement in trajectory tracking performance.
Experimental results verified that a layer of the Smith pre-
dictor in the VFO control loop did not improve the tracking
performance of the nonholonomic vehicle. Hence, It was
decided against adding a predictor in the VFO control loop.

The details of the conducted experiments are explained in
the next section. It is shown that the proposed control can
achieve adequately precise trajectory tracking performance
with guaranteed obstacle avoidance behavior.

TABLE 1. Technical parameters of the nonholonomic vehicle [40].

VII. EXPERIMENTAL RESULTS
In-house experiments were carried out to verify the effective-
ness of the proposed control system for collision-free navi-
gation of a nonholonomic vehicle. As shown in Figure 6(a),
the experimental testbed includes a ground control station
(GCS), which is used to code, compile, and download the
executable files to the nonholonomic vehicle. The ground
control station also acts as a data acquisition system. The
position and orientation information of the vehicle is acquired
using a motion capture system, which comprises eight Flex
13 infrared cameras. The cameras are connected to the ground
control station through twoUSBhubs. AWifi router is used to
communicate with the vehicle. A schematic of the experiment
is shown in Figure 6(b).

The vehicle used in this work is the Qbot 2e, shown in
Figure 6(c), which is developed by Quanser [40]. The vehicle
is equipped with a processing board that allows running the
control loops locally. The servo-system of each wheel is
comprised of a DC motor and a gearbox, which amplifies
the torque produced by the DC motor. The velocity of each
wheel is numerically derived from the angular positions of the
respective axle measured using encoders. Technical informa-
tion of the vehicle is given in Table 1.
As shown in Figure 6(c), the vehicle has five passive

markers which allow the motion capture system to measure
the vehicle’s position and orientation in the operating envi-
ronment. The linear and rotational velocities of the vehicle are
calculated using the wheel velocities, i.e., v = (vR+vL)/2 and
ω = (vR − vL)/d . The control sample rate is set to 1 ms
throughout this paper.

System identification is carried out to obtain the dynamic
equation of the vehicle. The results validate the dynamic
model given by (17) and (18) with parameters a = 7.2, b =
5.94, a′ = 0.2, and b′ = 0.04. The input and output units
are m/s. The identified model fits the estimation data with
accuracy above 85%.

The wheel dynamic model has a pole at s = −0.20 and a
zero at s = −0.24, which causes a lengthy transient. More-
over, time-delay restricts a controller’s ability to reduce the
response time of the system to a desirable level. Preliminary
numerical simulations were conducted to initialize the control
parameters, evaluate the proposed safety control capabili-
ties, and troubleshoot the implementation issues. In general,
the conducted numerical simulations align with the exper-
iments. However, modeling error and system uncertainty
cause a noticeable deviation between numerical simulations
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FIGURE 6. (a) The workspace of the Autonomous Systems and Controls
Lab at Wayne State University, Detroit, USA. (b) Schematic of the
experimental testbed. (c) Quanser’s QBot 2e used in the
experiments [40]. The white spheres are passive markers.

and experimental results. Hence, the experimental setup is
used to calibrate the control parameters. The subsequent anal-
ysis only reports the experimental results.

The experiments are presented as follows: A) the effect of
the two-layer predictor on the trajectory tracking is inves-
tigated, B) the safety algorithm is tested with two circular
obstacles in the operating environment, and C) the obsta-
cle avoidance maneuver is tested for a large obstacle with
non-circular footprint in the operating environment.

A. FIRST EXPERIMENT—EFFECT OF THE TWO-LAYER
PREDICTOR
Numerous experiments are carried out to evaluate the
effectiveness of the two-layer predictor to improve trajec-
tory tracking. Control calibration is done empirically. Each
wheel’s velocity loop has a PI control, i.e., C(s) = 2 + 1/s.
Moreover, the steering angle control is also designed as a
PI control, i.e., Cθ (s) = 0.6 + 0.1/s. The integral action
noticeably reduces the steady-state tracking error.

FIGURE 7. Trajectory-tracking of a circular reference path. Experimental
performance with (in solid red) and without (in dash-dotted blue) the
two-layer predictor. The two-layer Smith predictor reduces the settling
time by a factor of four and improves tracking accuracy above 98%.

FIGURE 8. Trajectory-tracking of a circular reference path. Variation of
(a) position error and (b) steering angle error versus time, with (in solid
red) and without (in dash-dotted blue) the two-layer Smith predictor.
With the two-layer predictor, the transient is passed in less than 7 s, and
tracking accuracy above 98% is achieved.

First, a circular reference trajectory is generated as
xr = R sin(ωr t), yr = −R cos(ωr t), where R = 1 m, and
ωr = 2π/20 rad/s. The VFO without the two-layer predictor
is unstable with C(s) = 2 + 1/s. Thus, the wheel velocity
control is modified asC(s) = 0.5+0.1/s, where the two-layer
predictor is not present. The initial condition is set to x(0) =
0.05 m, y(0) = −1.50 m, and θ (0) = −3◦. The effect of the
two-layer Smith predictor (SP) is shown in Figure 7 and 8.
Despite the large initial error, the proposed algorithm brings
the vehicle to steady-sate in less than 7 s, which improves
the convergence time of the VFO by a factor of four. Contour
error is the closest distance from the actual position to the
reference curve, directly measuring the tracking precision.
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FIGURE 9. Performance of the proposed control for a figure-8 path which
represents a complicated reference trajectory. (a) The vehicle tracks the
reference trajectory with an accuracy above 98%. (b) Variation of position
error versus time. (c) Variation of angle error versus time. The transient is
passed in less than 5 s.

The RMS and average value of the steady-state contour
error for the proposed algorithm are 1.69 cm and 1.57 cm,
respectively.

Moreover, the proposed method is tested with a figure-8
reference trajectory as given by xr = ax sin(2ωr t) and yr =
−ay cos(ωr t), where ax = 0.5 m and ay = 1.5 m, and ωr =
2π/30 rad/s. The initial condition is set to x(0) = 0.08 m,
y(0) = −1.52 m, and θ (0) = 14 ◦. The experimental result is
shown in Figure 9. The algorithm passes the transient in less
than 5 s. The RMS and mean contour error are 1.28 cm and
1.16 cm, respectively. The tracking accuracy is above 98%
for the two cases.
Remark 3: If the reference angle exhibits complicated

behavior, the steady-state error may increase. For exam-
ple, in the circular reference, the angle increases with a
fixed ramp. Thus, as shown in Figure 8(b), the PI controller
keeps the RMS value of the steady-state angle error about
4◦. However, the reference angle of the figure-8 oscillates
between ±122◦. Thus, as shown in Figure 9(c), the RMS
value of the steady-state angle error is about 10◦. Advanced
angle control techniques require special investigation, which
is not in the scope of this work.

B. SECOND EXPERIMENT—AVOIDANCE MANEUVER WITH
TWO CIRCULAR OBSTACLES
The proposed algorithm can handle single or multiple obsta-
cles in the operating environment. The control structure
remains the same. The barrier function can also be formed
using a general methodology, where the count, position, and
dimension of the obstacles can be modified arbitrarily. For
example, consider the following barrier function

B(x, y) = −B0 +
m∑
j=1

exp
(
−d2j /σj

)
, (78)

where B0 and σj are positive constants, m is the number of
obstacles. The distance of the vehicle from the obstacle j is

FIGURE 10. Snapshots with timestamps of the collision-free navigation
experiment with circular obstacles. Each obstacle is represented as three
traffic cones.

FIGURE 11. Experimental validation with two circular obstacles (in solid
blue) on a reference circular path (in dashed-green). The QBot 2e
consistently avoids the obstacles over two revolutions.

calculated as

dj =
√(

x − xoj
)2
+
(
y− yoj

)2
, (79)

where [xoj yoj]T is the position of obstacle j and [x y]T is the
position of the vehicle.

An appropriate selection of B0 and σj can model arbitrary
avoidance radii for all the obstacles. For example, two obsta-
cles with different avoidance radii are considered for this
experiment. The obstacles are located at [0.85 0.85]T m and
[−1.25 0]T m, where σ1 = 0.4, σ2 = 0.3, and B0 = 0.6. The
designer is free to choose any barrier function for the obstacle
avoidance as long as conditions (37)–(39) are satisfied.

The snapshots of the experiment are shown in Figure 10,
where three traffic conesmark each obstacle. The quantitative
experimental results are shown in Figure 11 and 12. The
reference trajectory is generated as xr = R sin(ωr t), yr =
−R cos(ωr t), where R = 1 m, and ωr = 2π/40 rad/s. The
initial position and steering angle are x(0) = 0.07 m, y(0) =
−1.48 m, and θ (0) = 3◦. The algorithm provides consistent
avoidance performance. The vehicle stays away from the
obstacles shown as blue circles. Additional obstacles can be
included by properly modifying the barrier function (78). The
calculated envelope of the unsafe steering angle is shown in
Figure 12(a), where the adjusted steering angle, θa, is not
allowed to take any value between θL = β−δ and θH = β+δ.
In other words, the safe angle is kept outside the unsafe
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FIGURE 12. Experimental validation with two circular obstacles. (a) The
unsafe steering angle envelope is bounded between θL and θH . The safety
control keeps the steering angle outside the unsafe steering angle
envelope. (b) Negative value of B(x, y ) shows that the vehicle stays away
from the obstacles.

FIGURE 13. Effect of parameter α on the avoidance maneuver. As α
increases, the vehicle moves closer to the obstacle boundary. Thus,
B(x, y ) can experience values close to zero.

envelope during the experiment. As Figure 12(b) shows, the
barrier function stays negative, which proves that safety is
achieved.

The selection of parameter α in (39) affects the obstacle
avoidance maneuver. Small values of α cause a conserva-
tive obstacle avoidance, which creates a long detour around
the obstacle. On the other hand, a large value of α causes
aggressive avoidance maneuvers. Thus, large values of α
may cause the vehicle to collide with the obstacle when the
vehicle velocity increases. The experimental result shown
in Figure 13 verifies the effect of α on the variation of the
barrier function. If the value of α is increased, the vehicle may
narrowly evade the obstacle. Hence, as shown in Figure 13,
the barrier function experiences values near zero.

Some guidelines to tune the value of α can be obtained
from (47). Note that the value of c determines the safe heading
angle. If the vehicle velocity is slow, one can increaseα. Then,
c drops below one at a closer distance to the avoidance bound-
ary, and a tight maneuver can be safely executed. On the other
hand, if the vehicle moves fast, the value of α needs to be
reduced so that c drops below one farther from the avoidance
boundary. Hence, the fast vehicle will have adequate room to
avoid the obstacle. One can design an adaptive algorithm to
update the value of α based on the vehicle’s velocity.

C. THIRD EXPERIMENT—NON-CIRCULAR OBSTACLE
The proposed safety algorithm can also handle non-circular
obstacles. The components of the algorithm remain the same.

FIGURE 14. Snapshots with timestamps of the collision-free navigation
experiment with a rectangular obstacle. Five traffic cones mark the
obstacle which represents a wall.

FIGURE 15. Experimental validation with a square obstacle (in solid blue)
on a reference circular path (in dashed green). The QBot 2e consistently
avoids the obstacles over two revolutions.

A new barrier function is needed to model the obstacle prop-
erly. For example, a square obstacle can be expressed as

B(x, y)=−B0+exp

(
−

(
x − xo
σx

)2n

−

(
y− yo
σy

)2n
)
, (80)

where n is positive integer larger than one, B0 is a positive real
number, σx and σy are positive real numbers which specify the
dimensions of the obstacle along x- and y-axis, respectively.
Note that n = 1 models an ellipse. Additional circular or
square obstacles can be modeled by adding similar exponen-
tial terms with appropriate values for σx , σy, and n for each
obstacle. Here, a square obstacle is considered at [0 1.2]T m
with σx = σy = 1, n = 2, and α = 1. A circular reference
trajectory is generated as xr = R sin(ωr t), yr = −R cos(ωr t),
where R = 0.75 m, and ωr = 2π/40 rad/s. The initial
condition is set to x(0) = −0.1 m, y(0) = −0.87 m, and
θ (0) = 2◦.
The snapshots of the experiment are shown in Figure 14,

where five traffic cones mark the obstacle. The experi-
mental result shown in Figure 15 confirms that the vehi-
cle accurately tracks the reference trajectory and safely
avoids the obstacle. As shown in Figure 16(a), the steer-
ing angle is kept outside the unsafe steering angle enve-
lope. Also, as shown in Figure 16(b), the barrier function
is negative during the experiment, which means safety is
achieved.
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FIGURE 16. Experimental validation with a square obstacle. (a) The
steering angle is kept outside the unsafe steering angle envelope marked
by θL and θH . (b) The barrier function stays negative. Hence, the vehicle
does not enter the avoidance zone of the obstacle.

VIII. CONCLUSION
This work develops a controller with guaranteed safety for
collision-free navigation of nonholonomic vehicles. The sta-
bility and safety of the proposed algorithm are proved analyt-
ically and verified via extensive experiments. The two-layer
predictor reduces the response time of the control algorithm
by a factor of four and improves trajectory tracking accuracy
above 98%. The safety control keeps the vehicle steering
angle outside the unsafe steering angle envelope, thus ensur-
ing obstacle avoidance. The performance of the safety control
is tunable using the decay rate of the barrier function, α. The
value α is selected to accommodate collision-free navigation
at high vehicle velocities. If the vehicle velocity changes
widely, one may achieve a consistent avoidance maneuver by
adaptively modifying α. The proposed design uses linear con-
trol components and has eight control parameters distributed
between the three control modules, i.e., the VFO, safety
control, and dynamic control. Hence, the control design and
calibration are simplified. Future work expands the usage of
barrier function for collision-free navigation of vehicles in the
presence of moving obstacles.
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