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ABSTRACT A multi-strategy ensemble social group optimization algorithm (ME-SGO) to improve the
exploration for complex and composite landscapes through distance-based strategy adaption and success-
based parameter adaption while incorporating linear population reduction is proposed. The proposed method
is designed to achieve a better balance between exploration and exploitation with minimal tuning while
overcoming the limitations of SGO. The proposed improved algorithm is tested and validated through
CEC2019’s 100-digit competition, five engineering problems and compared against the standard version
of SGO, four of its latest variants, five of the advanced state-of-the-art meta-heuristics, five modern meta-
heuristics. Furthermore four complex problems on electric vehicle (EV) optimization namely, the optimal
power flow problem with EV loading for IEEE 30 bus system (9 Cases) and IEEE 57 bus-system (9 cases)
optimal reactive power dispatch with uncertainties in EV loading and intermittencies with PV and Wind
energy systems for IEEE 30 bus system (25 scenarios), dynamic EV charging optimization (3 cases) and
energy-efficient control of parallel hybrid electric vehicle (3 cases with 2 scenarios) covering the domains of
power systems, energy and control optimization have been considered for validation through the proposed
multi-strategy ensemble method and fifteen other state-of-the-art advanced and modern algorithms. The
performance for the standard engineering problems and the EV optimization problems was excellent with
good accuracy of the solutions and least standard deviation rates.

INDEX TERMS Multi-strategy ensemble social group optimization (ME-SGO), social group optimization
(SGO), CEC2019, engineering problems, optimal power flow, EV loading, EV optimal control, optimal

charging.

I. INTRODUCTION

A. INTRODUCTION TO META-HEURISTICS

Meta-heuristic optimization is a major contributor to
problem-solving and operation management and has an envi-
sioned status among researchers and practitioners across var-
ious domains. Independent of the gradient information of the
problem, meta-heuristics are applicable to both single and
multi-objective problems, either continuous or discrete sys-
tems with a multitude of decision variables and constraining
factors. The quality of solutions through meta-heuristic opti-
mization is reliable and, in most cases, more than satisfactory
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in terms of efficacy and efficiency with limited computational
requirements. Swarm and evolutionary approaches have been
the dominant domains of the meta-heuristics with algorithms
such as PSO, GA and DE being referred to as the backbone
of optimization algorithms. Apart from the aforementioned
state-of-the-art, research in the development of optimization
algorithms continues to grow rapidly with several novel vari-
ants inspired by the various forces in nature (e.g., foraging
techniques, social interactions, swarming behaviours etc.)
published lately.

Besides the swam and evolutionally meta-heuristics, oth-
ers such as physics-based optimization algorithms, human
behaviour-based optimization algorithms (HBBOAs) have
gained popularity across the globe with several publications
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found across various domains of engineering, mathe-
matics, computer science, decision sciences, finance and
management etc. Amongst them, the growth of HBBOAs
have been on the rise since the proposal of Taboo Search
Algorithm (TSA) in 1996 [1]. Following it, many others
such as Harmony Search (HS) in 2001 [2], Imperialist Com-
petitive Algorithm (ICA) in 2007 [3], Teaching—learning-
based optimization (TLBO) in 2011 [4], Social Group
Optimization (SGO) in 2016 etc. have been the prominent
ones. As mentioned earlier, these paradigms are inspired by
the improvisation and interaction of human beings as they
deal with complex problems and a few examples are the
improvisation of music players, the conquest amongst various
empires in a colonial system, knowledge sharing and gaining
in a classroom, group counselling, sports tournaments and
competitions etc. Simplicity, reliability, efficacy have been
the attributes that have attracted many researchers to deploy
the HBBOAs as part of their optimization research.

B. IMPROVEMENTS AND ADVANCEMENTS IN
META-HEURISTICS

The traversal of the search space is dictated by two inchoate
phases, namely, exploration or diversification (often referred
to as “Global Search’) and exploitation or intensification
(often referred to as ““Local Search’). Exploration of a larger
area of the search space is often the key to enhancing pop-
ulation diversity lowering the risk of population stagnation
which in turn leads to local entrapment and premature con-
vergence. Exploitation on the other hand is essential to accel-
erate convergence and improve the accuracy of the solutions
found so far. To summarize, the perfect balance of the two
conflicting aspects of exploration and exploitation is crucial
to extract the best possible performance of a meta-heuristic
in terms of quality of the solutions, consistency, convergence
etc.

In most meta-heuristics, the control of these conflicting
aspects is often done through “algorithm-specific tuning
parameters” or through ““ parameter tuning’’ in short. Rang-
ing from one parameter to several in number, a precise set-
ting of these parameters is often the backbone to eventuate
to a good outcome for the chosen problem. Benchmarking
tests and empirical results are the most-employed methods
pertinent to achieving the best trade-off as seen in a myriad
of works. Other complex and viable methods include F-race
tuning, Chess Rating System (CRS-Tuning), REVAC (Rele-
vance Estimation and VAlue Calibration) etc. with integration
of chaos theory and versatile tuning operators have been
deployed successfully in the literature.

While a smaller number of tuning parameters with simpler
tuning is congenial, it can prove ineffectual at times with
complex search landscapes and large number of problem
dimensions. On the other hand, complexity associated with
advanced tuning techniques can be difficult for practitioners
all while providing nominal improvements in the outcome.
Hence, dynamic and adaptive tuning strategies that can intel-
ligently modify the exploration quality and scale with respect
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the problem’s landscape and dimensions while requiring min-
imal and basic settings are often implemented in various
advanced and modern meta-heuristics.

Other reasons to allude to the lack of a competitive perfor-
mance are to do with the algorithmic structure, population
selection and sorting strategies and excessive dependence
on one or few search strategies with little to no adaptive
measures to improve the population diversity. Most modern
meta-heuristics rely on simpler strategies with the incorpo-
ration of the global best solution found so far (often termed
as “Leader” or “Gbest”) as a propensity to enhance global
search (also accelerating convergence) while the fact that
such strategies are one-sided and are often found to drift
towards the geometric center of the search landscape. The
research article at [5] presents evidence as to how shifted and
rotated test functions can prove detrimental to such one-sided
search methodologies.

C. MULTI-STRATEGY AND MULTI-POPULATION BASED
IMPROVEMENTS

There has been a mammoth of research to improve or enhance
the limitations with such search methodologies in the past and
the recent literature. Modifying the algorithmic structure to
suit the search landscape either for complex benchmarking
or domain-specific problems are achieved through a myriad
of techniques and hybridization or combination of two or
more meta-heuristics for a synergistic boost in the perfor-
mance have been very popular with researchers from vari-
ous domains. Likewise, the ensemble techniques integrating
multiple meticulously designed and re-forged search strate-
gies with adaptive tuning operators have also contributed
to the improvement of the classic paradigms. Additionally,
multi-population techniques incorporating a different set of
populations with each set governed and dictated by distin-
guished search techniques have also been popular among the
community of optimization.

Performance improvement through the avoidance of local
entrapment while staying true to its faster converging nature
have been the ultimate goals with such implementations.
The other side of the coin is the demerits that accompany
them including, increased computational resources, complex-
ity and computational times, a larger number of function
evaluations, complexity in implementation owing to the tun-
ing prerequisites for individual search strategies in multi-
ensemble techniques, lack of a strong immunity to “‘the curse
of dimensionality”, very slow convergence rate for simpler
problems etc.

Although multi-population ensemble techniques are hailed
as the state-of-the-art for a wide range of problems, the
tedious coding and tuning of these can be excruciating to
the average practitioner. Hence, a balanced approach relying
on simpler yet meticulously designed, multiple yet fewer
search strategies with lower tuning requisites and adaptive
techniques are preferred while standing unabated to the per-
formance in terms of solution quality and convergence.
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Literature Survey of the State-of-the-art Multi-Strategy and
Multi-Population Based Improved Algorithms: A literature
survey of the most-cited multi-strategy and multi-population
based improved meta-heuristics is presented below.

1) GA BASED ENSEMBLE ALGORITHMS

(i) A two-stage multi-population genetic algorithm (MPGA)
was proposed by Cochran et al. [6] in 2003 incorporating
sub-population evolution and elitism to optimize parallel
machine scheduling problems. MPGA outperformed MOGA
for scheduling problems with two and three objectives with a
higher number of Pareto Front solutions with better solution
quality although the limitation that both the algorithms pro-
duced unwanted solutions dominated by others was acknowl-
edged. (ii) A novel multi-strategy ensemble ABC (MEABC)
algorithm, the coexistence and competition between pools
of distinct solution search strategies i.e., The original ABC,
GABC and Modified ABC/best/1 is realized [7]. Benchmark-
ing through 12 commonly used functions and the CEC2013
test suited is utilized while comparisons with the state-of-the-
art variants of PSO, DE and ABC are made to demonstrate
the effectiveness of MEABC. (iii) An adaptive collaborative
optimization algorithm integrating GA’s exploration prowess
and ACO’s stochastic abilities in a multi-population strategy
known as MGACACO is proposed [8]. Various scale travel-
ling salesman problems (TSP) are considered to verify the
proposed approach. The proposed method outperformed the
parent algorithms with better accuracy and fast convergence
while avoiding local optima.

2) PSO BASED ENSEMBLE ALGORITHMS

(i) A multiagent-based Particle Swarm Optimization
(MAPSO) for optimal reactive power dispatch integrating
lattice-based agent-agent interactions and knowledge-based
learning to improve optimality and accelerate convergence
has been proposed in [9]. MAPSO outperformed SGA and
PSO at lowering the active power losses with lower execu-
tions times compared to the latter. (ii) Multi-strategy ensem-
ble particle swarm optimization was proposed in 2008 by
Du and Li [10]. MEPSO categorizes the particles into two
parts with Gaussian local search and differential muta-
tion guiding them to accelerate convergence and prevent
local entrapment respectively. Experimental analysis with
the moving peaks benchmark (MPB) and dynamic Rast-
rigin functions demonstrated the effectiveness of MEPSO
at evading entrapment compared to other variants of PSO.
(iii) Wang et al. proposed the Self-adaptive learning-based
particle swarm optimization (SLPSO) in [11] with four PSO
strategies with a self-adaptive probability model based on
the fitness landscapes. Extensive comparisons with eight
state-of-the-art variants of PSO for 26 numerical optimiza-
tion problems and economic load dispatch problem of
power systems (ELD) are performed with SLPSO being
the top-performer. (iv) In 2013, Diversity enhanced particle
swarm optimization with neighbourhood search (DNSPSO)
was proposed [12]. To achieve a better trade-off between
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exploration and exploitation, diversity enhancing mechanism
and neighbour search with local and global search systems
are integrated and evaluated using 15 standard benchmark
functions, CEC2005 and CEC2010 test suites. The proposed
method was successful with the least mean errors compared to
the variants of PSO. (v) A quantum-behaved particle swarm
optimization algorithm incorporating flexible single-/multi-
population strategy and multi-stage perturbation strategy
(QPSO_FM) to balance the diversity and the convergent
speed is proposed in [13]. Benchmarking with 28 standard
benchmark functions with several other quantum variants of
PSO demonstrated its effectiveness at providing an acceler-
ated global search.

3) DE BASED ENSEMBLE ALGORITHMS

(i) Neighbourhood mutation strategy integrated with various
niching differential evolution (DE) algorithms (NCDE) was
investigated by Qu et al. [14]. Euclidean neighbourhood-
based mutation improved the performance for multi-modal
landscapes tested against (14 basic multi-modal and 15 com-
posite multimodal problems). (ii) Multi-population ensemble
DE (MPEDE) with three mutation strategies and population
pools incorporating a dynamic allocation of fitness evalua-
tions to the best strategy has been proposed by Wu et al. [15].
Control parameter adaption for each mutation strategy is inte-
grated as well and the improved performance is demonstrated
against the CEC2005 test suite comparing several variants of
DE. (iii) Ensemble of differential evolution variants (EDEV)
incorporating JADE, CoDE and EPSDE with three indicator
sub populations and one reward sub population was proposed
by Wu et al. [16]. EDEV outperformed several variants of DE
for the CEC2005 and CEC2014 test suites.

4) OTHER ENSEMBLE ALGORITHMS

(1) In 2005, a restart-Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) with restart strategy incor-
porating increments to the population size (IPOP) known
as [IPOP-CMA-ES has been proposed by Auger et al. [17].
CEC2005 real-parameter optimization test suite with 25 func-
tions were chosen in a benchmarking analysis with the
proposed method outperforming the local restart strategy
in 29 out of 60 cases. (ii) An Improved Ant Colony Opti-
mization Algorithm Based on Hybrid Strategies ICMPACO)
for TSP and actual gate assignment problem is realized
in [18]. The proposed multi-population approach includes
co-evolution mechanisms with pheromone updating and
diffusion mechanisms for better exploration-exploitation
balance and achieved better assignment results. (iii) Multi-
population differential evolution-assisted Harris hawks opti-
mization with chaos strategy (CMDHHO) to avoid local
entrapment has been realized in [19]. In a comparative
analysis with several modern and advanced meta-heuristics
with CEC2017 and CEC2011 (selected functions for real-
world issues) test suites, CDMHHO outperformed them.
(iv) Chaotic multi-swarm whale optimizer (CMWOA) by
Wang and Chen [20] for support vector machine-based
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medical diagnosis combining chaotic and multi-swarm strate-
gies is proposed. In a comparative analysis against PSO, BFA
and PSO, the proposed method achieved better classification
performance and feature subset size. (v) A multi-strategy
ensemble GWO (MEGWO) with an enhanced global-best
lead strategy to improve local search and an adaptable coop-
erative strategy to promote global search and population
diversity is proposed in [21]. 30 benchmark test problems
from the CEC2014 suite are chosen for the benchmarking
and 12 feature selection datasets are considered. In a compre-
hensive comparison with various meta-heuristics, MEGWO
showcased robust optimization results for both benchmarking
and feature selection.

A brief summary of the aforementioned publications con-
sidered for the literature survey has been tabulated in Table 27
(Appendix)

D. CONTRIBUTIONS OF THE CURRENT ARTICLE
Following the literature survey of the state-of-the-art, the cur-
rent article proposes a multi-strategy ensemble social group
optimization (ME-SGO) algorithm to improve the perfor-
mance of the standard social group optimization (SGO) for
complex and composite landscapes and an investigation of
its performance for complex multi-dimensional, non-linear,
multi-constrained problems on the optimization of electric
vehicles from the recent literature is made. The reasons for
the choice of SGO as the optimizer to be improved and the
selection of the four problems on EV optimization are listed
in the following sub-sections.

1) CHOICE OF SGO
The following have been the factors for the choice of SGO
over other contemporary meta-heuristics.

1) SGO is a relatively new meta-heuristic proposed in
2016 with a simple structure and can be imple-
mented on multiple programming languages with sup-
port for parallel computation and black-box mode of
implementation.

2) The performance of SGO for unimodal and multi-
modal landscapes has been outstanding as it outper-
formed several state-of-the-art variants of DE, PSO,
ABC in recent publications 22]-[25].

3) There exists a huge potential to improve and enhance
the exploration of SGO through multiple strategies with
a wide range of parameter adaptation techniques for
composite and hybrid search landscapes where it is
known to struggle.

4) Although a few improved and hybrid variants of SGO
exist in the recent literature, none of them have demon-
strated the improved performance for complex and
composite landscapes. This has been the centre of focus
in the current manuscript.

5) Very little effort has been made to improve the perfor-
mance of SGO through dynamic and adaptive param-
eters that control its search process (population size,
social introspection factor).
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6) Efforts made to improve SGO through the enhance-
ment of population diversity have not been com-
prehensively verified with other state-of-the-art
advanced meta-heuristics for complex and real-world
optimization problems.

Hence based on the aforementioned aspects, the proposed
multi-strategy ensemble variant of SGO aims to deliver a
better balance of exploration and exploitation for complex
real-world problems especially for complex and composite
landscapes with a higher degree of robustness and precision.

2) OPTIMIZATION IN EV'S

The testing and validation of advanced meta-heuristics are
often performed through real-world multi-constrained prob-
lems known to be complex and computationally expensive
as they help evaluate their overall performance concern-
ing limited computational resources, high dimensionality
and high-multimodality with a larger degree of complexity
in exploring its dynamic search landscapes. Besides these,
a higher number of equality and inequity constraints often
restrict the algorithm from exploring the landscapes to their
fullest potential which is often the case with static control
parameters. In this regard, four complex problems on EV
optimization covering the areas of power systems, energy
management and control optimization from the recent litera-
ture are chosen to demonstrate yeh the performance potential
of the proposed method. The following are the reasons for
their choice.

1) Electric vehicles have emerged as the next mile-
stone in the transportation sector and have been the
centre of focus for research and development over
the last decade. More often, the problems on EV
optimization are modelled as optimization problems
(Linear programming, non-linear programming, inte-
ger programming, mixed-integer non-linear program-
ming, convex programming etc.) and solved through
various meta-heuristics and solvers. Optimization
through meta-heuristics has been the choice on-the-go
for many researchers and practitioners on this topic.

2) Most EV optimization problems follow complex math-
ematical modelling with multiple equality and inequity
constraints with a large number of non-separable prob-
lems dimensions covering multiple areas of power
systems, control optimization, design and energy man-
agement with complex landscapes requiring dynamic
optimization strategies to ensure better optimality.

3) The integration of machine learning and predictive
control techniques can be efficiently coupled with opti-
mization techniques to lower the learning errors paving
way for truly autonomous driving and cruise control
etc.

4) The design and management of EVs is one such area
which requires the collaborative co-optimization of
rule-based control and optimization of energy man-
agement to work in synergy to ensure optimal driving
efficiency.
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5) Path finding, EV routing, optimal charging and dis-
charging, optimal planning of EV charging location and
charging infrastructure etc. are the best examples that
require robust and dynamic optimization techniques to
determine the optimal solution as the scope of these
areas tends to expand.

Over the last decade, the optimization in very domains con-
cerning EVs have been dominated by the improved/hybrid
meta-heuristics indicating the efficiency of adaptive tech-
niques over the classical paradigms. A brief literature survey
depicting the development of various improved and advanced
meta-heuristics to the very domains of EV optimization is
presented in Table 28 (Appendix)

Considering the following aspects, four complex problems
namely, the optimal power flow problem with EV loading
for IEEE 30 bus system (9 Cases) and IEEE 57 bus-system
(9 cases) optimal reactive power dispatch with uncertainties
in EV loading and intermittencies with PV and Wind energy
systems for IEEE 30 bus system (25 scenarios), dynamic EV
charging optimization (3 cases) and energy-efficient control
of parallel hybrid electric vehicle (3 cases with 2 scenarios)
coverage the domains of power systems, energy and control
optimization have been considered for validation through the
proposed multi-strategy ensemble method and fifteen other
state-of-the-art advanced and modern algorithms.

3) ORGANIZATION OF THE ARTICLE

The remainder of this article is organized as follows.
Section II focuses on the literature review and working of
SGO, review of its variants followed by a discussion of
its merits and demerits. Section III discusses the formula-
tion of the multi-strategy ensemble SGO technique with a
detailed description of its various attributes. The performance
of ME-SGO with fifteen different meta-heuristics (includ-
ing four variants of SGO, four modern meta-heuristics, and
seven state-of the art advanced meta-heuristics) is analysed in
Section IV with CEC 2019 benchmark suite and the 100-digit
competition followed by a comparative analysis on standard
engineering problems (pressure vessel design, welded beam
design optimization, tension/compression spring design opti-
mization, cantilever beam design and design of 10-bar truss
optimization). Section V analyses the performance of the
proposed method and the fifteen competitor algorithms on
the four and real-world constrained complex EV optimization
tasks The conclusion, followed by the merits and demerits of
ME-SGO, potential applications and the future scope of the
current work are given in Section VI.

Il. SOCIAL GROUP OPTIMIZATION

Social Group Optimization (SGO) is a human behaviour
inspired evolutionary technique, proposed by Suresh Satap-
athy and Anima Naik in 2016 [26]. The inspiration of SGO
stems from the social behaviour of human beings collectively
working together to solve complex problems. The following
sections explain the working of SGO, various attributes of
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SGO, merits and demerits followed by a detailed literature
review of the algorithm including its variants.

A. WORKING OF SGO

SGO is implemented in two phases, namely, the improving
phase and the acquiring phase. Both the phases rely on simple
evolutionary equations to transform the solutions obtained
through random initialization at the beginning following a
greedy selection strategy. The search process commences
with the identification of the ““leader” or “gbest” from the
randomly initiated population pool.

1) IMPROVING PHASE

The “leader” influences the population members and prop-
agates his knowledge resulting in the repositioning of the
population pool with reference to the ‘““leader’”. The new
positions of the population pool are updated as described

by (1).

Fori=1toN
Forj=1toD
Pg;rl) =c X Pft; +rx |:Leaderj - Pt(t;i|
end for
end for (1)

where,

N stands for the population size, D stands for the number
of problem dimensions, ¢ stands for the current iteration, r is
a random number in [0, 1] and r ~ U (0,1), ‘c’ is the self-
introspection factor whose value can be set with the range
0<c<l.

2) ACQUIRING PHASE

Contrary to the improving phase, the acquiring phase is
intended for the interaction of the members in the population
pool with the leader and other random population members.
The interaction is conditional with the person having a greater
knowledge transferring his/her knowledge to the other person
while a person with lesser knowledge acquires it from a
higher knowledgeable person. Since the leader of the social
group interacts with every other population member, he/she
has the greatest influence on the others to learn from him/her.
The new positions of the population pool are updated as
described by (2) and (3):

Fori=1to N

Randomly select a member P, from the population pool
such thati #r

If f(Py) < f(Py)

Forj=1toD
(t+1) _ plt) 0 _ plt)
Pi,j _Pij—i—rl X |:Pij —Pr".i| +r
)
X |:Leaderj - P; ‘ii| 2)
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TABLE 1. Tabulation of the merits and demerits of SGO.

Merits

Demerits

Simpler and straightforward to code and can be implemented across a wide range of
programming languages.

Although Double Fitness Evalutions per iteration (DFEs) improve the search
behaviour, they can lead to a compromise in the population size or iterations under
fixed computational requirements.

SGO is excellent for unimodal, most multi-modal and constrained search landscapes
(continuous and discrete) with a faster convergence rate to the global optimal solution.

The excessive dependence on the leader can lead to local entrapment in complex search
landscapes. This coupled with greedy selection is more likely to cause population
stagnation resulting in premature convergence.

Smaller number of tuning requisites, i.e., one algorithm-specific tuning parameter (self-
introspection factor ‘c’) makes it easier to regulate the explorative behaviour for a wide
range of problems.

The tendency of the search mechanism to slide to the geometric centre of the search
landscape can be detrimental for rotated and shifted landscapes.

Good immunity to the curse of dimensionality and excellent for global search with the
greedy selection process updating the population twice in every iteration.

The lack of any adaptive measures can result in the greedy selection limiting the
population diversity in complex multi-modal problems.

The modules in the algorithm can be hybridized with other meta-heuristics.

The implementation of the improving phase for the entire population can result in a
loss of diversity by concentrating a larger section of the population closer to the gbest.
This is followed by the acquiring phase for all the population members leading to
shallow exploitation of the search space.

Rapid convergence to global optimum for separable benchmark function due to its
strong exploitative capabilities.

The empirical setting of the self-introspection factor may not be suitable at all times.
Improper setting can lead to the fitness evaluations being futile and render the search
process useless at times.

Parallel computational techniques cannot be implemented to efficiently distribute the
computational tasks in multi-core machines due to the limitation of the search process.

A sudden transition from exploration to exploitation witnessed for non-separable
benchmark functions indicates a higher probability of local stagnation brought upon by
the constriction of the available search space due to limited population movement
throughout exploration.

end for
Else
Forj=1toD

(+D) _ p) 0 plt)
Pi,j =Pl.J.+r1 X |:Pr,j_Pi,ii| +r

x |:Leaderj - P,(f,)} A3)
end for
end if
where,

r; and r» are two random numbers in [0, 1] and r;, r» ~ U
(0,1).

Merits and Demerits of SGO: Table 1 lists the merits and
demerits of SGO based on a comprehensive literature survey.

B. ANALYSIS AND DEDUCTIONS FROM THE PREVIOUS
PUBLICATIONS AIMED AT IMPROVING SGO

Following the proposal of SGO in 2016, several improved
variants of SGO have been found in the literature. Exploring
the literature, three improved variants, three hybrid variants,
one modified and one discreet variant of SGO were found.
A deeper analysis of these variants indicates that research into
improving SGO has been aimed at enhancing the population
diversity to help evade local entrapment. A brief discussion
of the variants is given below.

1) Improved SGO (ISGO-Variant 1) based Support Vector
Machine (SVM) classifier for transformer fault diagno-
sis model using an optimal hybrid dissolved gas anal-
ysis features subset was proposed by Fang ef al. [27].
The proposed method aimed at the prevention of
local entrapment in SGO through the incorporation
of population sub-grouping and eliminating phase
to enhance the explorative potential. The proposed
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method recorded better fitness compared to GA, PSO
and SGO based classifiers.

2) In [28], Cluster Head Multi-Hop Routing Algorithm
based on another Improved SGO (ISGO- Variant 2) was
proposed. The authors proposed a three stage Improved
SGO with historical population memory and a ranking
system followed by the initial 25 percent of the popu-
lation learning from the last 25 percent of population.
Intended at improving the population diversity, the pro-
posed ISGO outperformed the competitor algorithms
for maximizing the network life cycle and minimizing
the energy consumption.

3) In other works, Improved SGO (ISGO-Variant 3) for
short-term hydrothermal scheduling by Akash er al.
was proposed [29]. It expands the concept of a self-
awareness probability (SAP) factor from MSGO [30]
to improve the diversity through re-initialization of the
population in the acquiring phase. It performed com-
petitively with lower production costs compared to the
competitors in four cases tested.

4) Modified SGO (MSGO-Variant 1) was proposed
by Naik et al. [30]. A novel modification to the
acquiring phase known through the addition a new
control parameter known as self-awareness probabil-
ity (SAP) to enhance the exploratory capabilities with
increased population diversity is realized and uses the
re-initialization of the solution vector to achieve this.
In an extensive benchmarking analysis with 23 classi-
cal functions and 3 cases of hydrothermal scheduling
problems, MSGO outperformed several classical and
contemporary meta-heuristics. Following it in 2021,
the same MSGO for circular antenna array optimization
was proposed in [31] where MSGO outperformed the
classical SGO in terms of optimality, accuracy, conver-
gence and robustness across three cases.
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TABLE 2. Summarization of the variants of SGO from the literature.

S. No Authors Name.of the Categorization Formulation NFEs Application / Benchmarking Improvement in the
and Year variant performance
J. Fang et . .
. . Population sub grouping and SVM-based Transformer Fault ISGO outperformed PSO, GA
01 al. 1[1;72]0 18 18GO Improved Variant elimination of the weakest Np+2x(Np>T) Diagnosis Model and SGO for five test cases.
Y. Liuet Historical population memory with ISOG achieved the least energy
02. | al.in2018 ISGO Improved Variant ranking methodology and Np+3x(NpxT) | Cluster Head Multi-Hop Routing consumption and maximum
[28] population learning network life cycle.
A‘etG;u:?lm Self-awareness probability (SAP) ISGO had lower production
03. 202'1 ISGO Improved Variant factor-based population re- Np+2x(NpxT) | Short-term hydrothermal scheduling costs compared to the
129] initialization in the acquiring phase competitor in four cases tested
A. Naik et Self-awareness probability (SAP) Benchmarking analysis with 23 MSGO performed
04. | alin 2020 MSGO Modified Variant factor-based population re- Np+2x(NpxTI) | classical functions and 3 cases of | competitively throughout the
[30] initialization in the acquiring phase hydrothermal scheduling problems testing
K.V.L.
Narayana . . Benchmarking analysis with 30 HS-WOA demonstrated faster
05. etal.in HS-WOA Hybrid Variant Hy_bndlzatlo‘n of WOA .Wlth 8GO Np+(NpxT) functions and eight cases of convergence and better
with a modified acquiring phase . ; o
2020 production planning problem exploitation.
[32]
K.V.L.
Narayana Improving and acquiring phases Benchmarking analysis with 30 .
05. etal.in | HS-WOA+ | Hybrid Variant are combined with bubble-net Np+2x(NpxT) functions and eight cases of A better bglar}ce of explo.r ation
. . ; and exploitation was achieved.
2020 foraging from WOA production planning problem
[32]
A K. Singh .
. . . . . . HSGO based SVM classifier
etal. in . . A new mutation phase is COVID-19 infection detection from .
06. 2021 HSGO Hybrid Variant incorporated into SGO Np+3x(NpxT) chest X-Ray images achieved an aﬁcuracy of
99.65%
[33]
Se.t\gfnirrlla . . . . . Travelling Salesman Problem (5 DSGO achieved minime}] costs
07. 202'0 DSGO Discrete Variant Discretized adaptation of SGO | Np+2x(NpxT) Cases) for five TSP datasets with fast
convergence
[34]
J.J. Jena et Analysis of the various inertia 27 benchmark functions suite and a Sigmoid-adaptive inertia
08. | al.in 2021 | SGOSAIW | Comparison study | weight strategies to tune the self~ | Np+2x(NpxT) few mechanical and chemical weight based SGO obtained
[23] introspection factor engineering problems better results
A Naik et A comparative study with multiple
09. | al in 2020 SGO Comparison study SGO was compa1}'1ed 'Wlth multiple Np+2x(NpxT) classwg} ben&?hmark fqnctlons, CEC SGO had a 1;/ery competitive
22] meta-ehuritcs spema} sesswr_l fun(_:tlons, and six performance
classical engineering problems
5) The hybridization of SGO and Whale Optimiza- was proposed in ()[34]. Compared to GA and DPSO,

6)

7
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tion Algorithm (WOA), another popular contempo-
rary swarm-based meta-heuristic to realize two hybrid
variants were developed by K.V.L Narayana et al
in [32]. A lite version named HS-WOA to improve
the exploitation and convergence speeds through a
modified acquiring phase with SFEs and an extended
version (HS-WOA-+) with DFEs to improve the
exploration-exploitation balance was proposed. Exten-
sive comparisons with recent and classical paradigms
for 30 benchmarking, 4 engineering problems and a
multi-unit production planning were carried out to
demonstrate the effectiveness of the proposed methods
with HS-WOA+’s performance being good for most of
the testing.

In other developments, a hybrid of SGO and GA,
known as HSGO [33] incorporating a new muta-
tion phase into SGO to facilitate continuous improve-
ment in the population is proposed. Deployed to
detect COVID-19 Infection from chest X-Ray images,
the HSGO based SVM classifier achieved an accu-
racy of 99.65% among all classifiers outperforming
them.

A discretized adaptation of SGO known as DSGO to
solve the popular Travelling Salesman Problem (TSP)

DSGO achieved minimal costs for five TSP datasets
while demonstrating accelerated convergence.
Following them were two comparative studies at [22] com-
paring SGO with recent algorithms from 2017 to 2019 for
multiple classical benchmark functions while the analysis
at [23] investigated the adaptive tuning mechanisms for the
self-introspection parameter for solving engineering design
problems.
A brief description of the variants of SGO is summarized
in Table 2.
A detailed description of the aforementioned variants of
SGO is described in Table 29 (Appendix).

Ill. PROPOSED METHOD: MULTI-STRATEGY ENSEMBLE
SOCIAL GROUP OPTIMIZATION (ME-SGO) WITH LINEAR
POPULATION REDUCTION TECHNIQUE

The proposed multi-strategy ensemble social group
optimization aims to deliver a good balance between the
exploration and exploitation while ensuring that local entrap-
ment is avoided. Hence, to improve the population diversity
and enhance the search capabilities, multiple strategies are
designed and integrated systematically to keep track that the
algorithm aims for global search. A detailed explanation is
provided the following sub sections.
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A. MOTIVATION

After a careful analysis of the various works aimed at improv-
ing the standard SGO algorithm, the motivation for the
current work is as follows:

1) SGO lacks population diversity since the improving
phase and acquiring phase are implemented for the
entire population and not for individual population
members. This system where both the phases rely on
greedy selection and as the population pool enters
the acquiring phase, very little room exists for fur-
ther improvement casing clustering leading to local
entrapment.

2) The improvement phase requires additional modifi-
cations to dynamically adapt to complex landscapes
through strategic search equations to improve diversity.
A reason to modify improving phase is to ensure that
all the population members are not drawn too close to
the leader and prevent the of the function evaluations
being futile.

3) The static nature of the self-introspection factor from
the improving phase is another aspect that can drive the
nature of the search process. Furthermore, a dynami-
cally adaptive self-introspection factor ‘c’ can signif-
icantly improve the exploration during the improving
phase.

4) The acquiring phase, although provides ample compar-
isons among the population can be modified to target
the movement of the population towards a global opti-
mum through its immediate implementation after the
improving phase for every population member rather
than in groups. This way, every population member
from the improving phase gets an opportunity to inter-
act with either a random improved solution or one with
no improvement preserving population diversity.

5) SGO’s adaptation of double fitness evaluations requires
either the population size or the iteration count to
be lowered to match the required NFEs compared
to other modern optimizers with single fitness eval-
uations. Gradual population reduction schemes can
be experimented with in this regard to ensure a
higher initial setting for the population size and iter-
ations ensuring a better balance of exploration and
exploitation.

6) SGO is excellent at local search providing acceler-
ated convergence to the obtained local optimum points
and this ability of SGO can be exploited and further
enhanced through modifications to both the improving
and acquiring phases.

Following the aforementioned aspects, the following mod-
ifications and improvements have been considered in the
current work.

1) To adapt to dynamic and complex landscapes, the
proposed ME-SGO incorporates dynamically adaptive
features incorporated into the improving phase, acquir-
ing phase, population size and the self-introspection
factor. The complexity of the search landscapes
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dictates the adaptive rate of these strategies and
parameters.

2) To prevent loss of diversity and improve the suc-
cessful utilization of the function evaluations, the
improving and acquiring phases are implemented for
every individual population member in an iteration as
opposed to the implementation in groups.

3) The improving phase is given a major overhaul with
distance-based strategy adaption and success-based
control parameter adaption. The distance-based strat-
egy adaption splits the improving phase into two
sub-phases each triggered by a pre-set number of func-
tion evaluations.

4) The acquiring phase also adopts parameter adaption
with a focus on directing the particles to explore around
the leader rather than exploiting the same search space.

5) Linear population reduction technique (LPRT) to
ensure heavy emphasis on exploration and diversifica-
tion during the initial half of the search and transition
to exploitation is implemented to enable a higher initial
population. LPRT and distance-based strategy adaption
ensure the prevention of early entrapment to make sure
that the search process continues to adapt to complex
landscapes.

6) Population elimination feedback from the population
being discarded due to the reduction of population is
considered to help guide the remaining population
members to explore the potentially promising areas in
the search space.

B. IMPLEMENTATION

ME-SGO is implemented in two phases similar to SGO,
which are the enhanced improving phase with global search
and adaptive acquiring phases respectively. In each phase,
the greedy selection technique is implemented to select the
newer population with better fitness than its predecessors.
Linear population reduction strategy is applied on top of the
whole exploration system to encourage deeper exploration
and enable a smooth transition from exploration to exploita-
tion. The individual phases are detailed as follows.

1) ENHANCED IMPROVING PHASE WITH GLOBAL SEARCH
The improving phase in SGO is aimed at exploring around
the Leader to further improve the solution quality. The self-
introspection factor set through empirical analysis servers as
a control mechanism to limit the velocity of each population
member. The greedy selection follows the improving phase
to ensure that the fittest members are included while the
others are discarded. Although it has been effective for most
unimodal and a few multi-modal problems, this system is
often prone to local entrapment as a result of excessive depen-
dence on the leader in dynamic search landscapes especially
resulting in poor performance for the shifted and rotated
composite landscapes. Population stagnation can occur if the
fitness of a member fails to improve since the greedy selection
discards any solution with an inferior fitness.
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The enhanced improving phase incorporates much more
efficient strategies to explore a vast majority of the land-
scape while learning from the experience of the leader. This
system incorporates the previous improving operator with a
new modified improving operator and a modified differential
mutation operator to allow for a larger exploration of the
search space and prevent it from quickly transitioning to
exploitation. The enhanced improving phase is split into two
sub-phases with the first phase known as the enhanced explo-
rative phase implemented for the first half of the function
evaluations followed by the enhanced exploitative phase for
the other half as described in (4).

Enhanced Explorative phase

- NFEs < 0.5 % Total NFEs
Preyw(t+ 1) = . 4)
Enhanced Exploitative phase

otherwise

The enhanced explorative phase is designed to take advan-
tage of the increased population available during the initial
stages of the search process. Enhancement of diversity is set
as the primary goal of this process and the newer solutions
are generated through combinations of multiple difference
vectors to drive the current population to explore the vast-
ness of the search landscape. The equations concerning the
generation of new a solution is described by (5) and (6)
respectively.

Randomly select a member P, from the population pool
such thati #r
If fPi) < f(Py)
(1) _ 0 e 7
PiJ. =R xPiJ—i—rl X | X1|+r2 x|Y1|+7r3

x [zl] )

I 0
X = Pr’j—Pi’j]

Y = Leaderj — P}(,t’;:|

7 = | Pl = wars, |

Else
Pg}z) — Cp x pz’; —r % [)22] —r2 X [172] —01

x| 23] ©)
where

)Zz = | Leader; — P?fj) :|

» = | Leaderj — P£[2)1i|

Worst = PY/)]

where,
X Y and Z denote the difference vectors designed to

promote the population diversity, P() is the position of the
populatlon for the j” dimension in the ¢ iteration, P()

and P() denote the positions of any two randomly chosen

populatlon members from the current 1terat10n Leader; is
the best solution obtained so far and Worstt is the worst
solution from the current iteration, Cp stands for the success-
history based dynamic self-introspection factor in the range
0.1 and 1. R is a random number in 0 and 1 dynamically
updated at the end of every iteration and for every reset of Cp

The inclusion of the worst solution is to ensure that diver-
sity is preserved during exploration. Multiple difference vec-
tors prevent the clustering of solutions at a single point and
the adaptive self-introspection factor allows for controlled
freedom of the particle to navigate and expand the solution
space.

The enhanced exploitative phase includes the original posi-
tion update equation from SGO and adds a novel feedback
position update system with a probabilistic selection between
both strategies. This is described by (7) and (8) respectively

Obtain a random value for “Sel” through uniform
distribution
If Sel > 0.5

Pl(f,.*“ Cr xP( )+r1 x [Leader, _P(’):| (7

Else
(t+1) 1) o @
P =CrxPj+Fx [P FB-Leaderj — T, r2,i:|
(t) (1)
—0.01 x [Pr3J - PFB Worst,]i| @®)
where
PO {FB-Leader, J if Npis reduced
FB-Leaderj — | p(t) .
P, J otherwise
P(t) {FB-Worst, J if N pisreduced
FB-Worstj — ?t) .
P, ¥ otherwise

F =1+rand + Cg
end if

where,

Sel is the exploitation scheme selector, FB-Leader and
FB-Worst denote the best and worst solutions from the elim-
inated population set to provide feedback to the current pop-
ulation, Cg is known as the randomized self-introspection
factor re-initialized in the range 0.2 to 1.0 with respect to the
learning rate and F denotes the scaling factor.

2) ADAPTIVE ACQUIRING PHASE

The acquiring phase in SGO is focused on enhancing pop-
ulation diversity through comparative learning between the
population members and the leader. This phase is inspired
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by the information exchange in society as each population
member interacts with other random members while also
interacting with the leader. Information is either transferred
or gained between the members of the population based on
the intellect of the two members interacting. The acquiring
phase contributes to a quicker convergence and the inclusion
of a greedy operator for every new solution combination may
lead to loss of population diversity.

The adaptive acquiring phase implements a fitness-based
selection system between the two population members
devised below to improve the diversity of the population
being generated. Premature convergence as a result of entrap-
ment and stagnation can be avoided through this method. Re-
initialization has not been considered since its contribution to
the overall population diversity is negligible with the current
greedy selection technique. The population update equations
are specified by (9) and (10) respectively.

Randomly select a member Py from the population pool
such thati #r

If fPi) < f(Pr)

PE?’I ) — Pff]) +Cp x [Leaderj - Pzt;] ©)
Else

Pl(f}l) = Pff]) —Cp x [Leaderj — Pzi)l] (10
end if

C. LINEAR POPULATION REDUCTION TECHNIQUE (LPRT)
The population management in ME-SGO is done through a
linear population reduction technique where the members in
the population pool are gradually decreased from a maximum
population size to a minimum population size, both of which
can be set as required. The key advantage of this strategy is
that the exploration quality is enhanced by a larger degree
and the risk of local entrapment and premature convergence
is minimized. Since, every population member is compared
to their leader and its previous iteration counterpart, the
information exchange is adequate such that the elimination
of members in the population pool is unlikely to have any
effect on the outcome of the exploration. Initially, as the
algorithm beings the search, it can sample a large number of
solution combinations and as the iterations progress, a smooth
transition from exploration to exploitation is possible.

The population updating process occurs twice in every iter-
ation allowing for more interactions between the member in
the population pool and generating new population members
with good diversification and superior fitness. The absence of
any sorting procedure to further sort and select the next gener-
ation of population enables the proposed method to be quicker
than the algorithms, thereby reducing its time complexity.
The upper limit and lower limit for the population size can
be set based on the number of function evaluations (NFEs)
and it is recommended for adequate exploitation to occur, the
lower limit of the population be at least one-tenth of the upper
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limit. The population size is determined as per (11).

Np,. — Ne,,
Np = round |:(N e —NFEcurrent) X %}

(1)

D. PARAMETER ADAPTION

The key to improving the performance of SGO is to dynami-
cally adapt the self-introspection factor to the complex land-
scapes through a series of successes and failures. Authors
at [23] demonstrated this through an investigative analysis
of the various inertial control schemes for various unimodal
and multi-modal landscapes with the concussion that a static
setting of ‘c’ = 0.2 is often the best for unimodal land-
scapes while inertia-based increments to ‘c’ with respect
to the progression of iterations can be exploited for multi-
modal landscapes. Grounding on this, a learning mechanism
to increment the value of Cp is devised as per (12).

Cp,, Failures < learning rate
(0.2 x Cp,,) + (0.2 x rand) (12)
Failures > learning arte

CDnew =

int

As per the adaptive scheme, the value of Cp retained for
the successful new population with improved fitness and is
re-initialized for the maximum number of failures. Failures
are set to zero at the initialization and are incremented by 1 for
every population member that fails to generate a superior off-
spring in either the enhanced improving phase or the adaptive
acquiring phase. The learning rate is devised (empirically set
to 10) to ensure that every new combination of Cp is given an
ample number of trials to improve the quality of the solution.
Besides Cp,.the values of Cp is set to be re-initialized within
the range of 0.2 to 1.0 (the recommended range for ¢ from
the standard SGO) whenever Cp is modified and R being
randomized in the range 0.1 to 1.0 at the end of every iteration
and whenever Cp is modified to ensure that static settings for
control parameters are avoided to the most possible extent.

E. EXPLORATION VERSUS EXPLOITATION

Besides the distance-based strategy adaption and success-
based parameter adaption, the dynamic population control
through LPRT serves as the backbone to efficiently balance
exploration and exploitation. While the distance-based strat-
egy adaption ensures that population diversity is enhanced,
LPRT ensures that the maximum possible population is ded-
icated to it. The initial higher population enhances the reach
of the population to multiple corners of the search space
across multiple dimensions as it proceeds to exploit them
during the latter stages. As the population size is lowered,
the feedback enhanced exploitation phase from the enhanced
improving phase proceeds to exploit the most promising areas
discovered thereby improving the accuracy of the solutions.
The adaptive acquiring phase extends the exploration to a
global scale pushing the remaining population to further
explore after the first explorative phase thus extending the
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TABLE 3. Time complexity of ME-SGO.

Operation Time Total Time required for population sizer of N, Time Complexity

Initialization 1 i xN O(N,)
Fitness evaluation of the initialized population 6 XN O(N,)
Enhanced Improving phase t; t; XN O(N,)
Fitness evaluation for the greedy selection 1 tyx N O(N,)
Adaptive Acquiring phase ts ts XN O(N,)
Fitness evaluation for the greedy selection ts ts X N O(N,)

exploration over a larger timeframe and allowing the popu-
lation to explore and exploit simultaneously. The ensemble
of these strategies allows for explosive exploration while
allowing smoother yet careful exploitation over the course of
iterations to achieve a near-perfect balance of the exploration
and exploitation dynamically.

F. TIME COMPLEXITY AND COMPUTATIONAL
COMPLEXITY
The position update system in ME-SGO occurs twice i.e.,
the first position update in improving phase followed by the
second position update in the acquiring phase. The greedy
selection follows both the phases to decide on preserving the
fitter solutions or discarding the inferior ones. The fitness
evaluation and the position updates are performed for all
the members in the population pool twice in an iteration.
Hence, it is obvious that ME-SGO performs double fitness
evaluations (DFEs) per iteration. For an iterative count of T’
iterations with a population size of N each having a D number
of decision variables/dimensions, the following are the com-
putational complexities of individual phases. The computa-
tional complexity of initialization is O(D), the computational
complexity of the fitness evaluation is O(N), the computa-
tional complexity of the position updation is O(T x (N x D)).
This is followed by fitness evaluation of all the new position
for the greedy selection with O(N x T). Since, ME-SGO
relies DFEs and updates the position of the population twice
in every iteration, the total computational complexity of is
O(N x (D+2x(T+ (T x D)))).

In the same manner, the time complexity of ME-SGO is
measured considering its total run time i.e., ‘t;,;° for one
independent run. It is as shown in 13.

tiotal =1 X O1 4+t x02~+....... ty X Oy (13)
where,

1,1 .. ...ty are the computational times needed by SGO to

complete the various operations O1, O> . . ...Oy for N popu-

lation size. The various operations and the time requirements
are presented in Table 3.

Hence, from Table 3, it can be concluded that the time
complexity of ME-SGO is O(N).

IV. BENCHMARKING ANALYSIS

The benchmarking of the proposed method is performed in
two phases i.e., the first phase comprises of benchmarking
test functions following the latest standards (10 complex
multi-modal functions from the CEC2019 test suite for the
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single-objective optimization) followed by the second phase
with 5 constrained standard engineering problems (pressure
vessel design, welded beam design, cantilever beam design,
tension/compression spring design and 10-bar truss design
optimization). All the experimentations considered for the
current work are performed on a Ap Ultrabook running the
operating system of Microsoft Windows 10® Pro (Version
20H2 - OS Build 19042.1165) with 16 Gigabytes of DDR3
RAM powered by an Intel(R) Core (TM) 17-4700MQ quad-
core CPU @ 2.40GHz. MATLAB R2020a is chosen to code
all the algorithms for all the considered exterminations in the
comparative analysis.

A. PERFORMANCE EVALUATION CRITERIA
The performance evaluation criteria are as follows. (1) The
best, worst, average (mean) and standard deviation values
are obtained based on 51 independent runs for all the all
algorithms in comparison. (2) The first statical test, i.e.,
Wilcoxon’s rank-sum test at a 0.05 significance level is per-
formed for ME-SGO concerning the other algorithms. For
better performance of the other algorithms with respect to
ME-SGO “+4” symbol is used, for the similar performance of
the other algorithms with respect to ME-SGO “a”* symbol is
used and for the inferior performance of the other algorithms
concerning ME-SGO “-” symbol is used. (3) The second
statistical test, i.e., a ranking test through a non-parametric
Friedman’s test is performed to rank the best-performing
algorithms. (4) Furthermore, the mean absolute errors (MAE)
to indicate the difference between the global optimal solution
and the best solution obtained by each algorithm is evaluated.
(5) The convergence graphs are provided for the CEC2019
benchmarking suite to showcase the converge characteristics
of the proposed method. (6) The population diversity plots
(Analysis of variance — ANOVA/box plots) are provided for
the CEC2019 benchmarking suite. (7) The average computa-
tional times (Seconds) for the 51 runs are recorded.

The flowchart of ME-SGO is presented in Figure 2
(Appendix).

B. ALGORITHMS IN THE BENCHMARKING FRAMEWORK
1) The performance of ME-SGO is compared and val-
idated against the standard SGO algorithm from
2016 and four of its latest state-of-the-art variants
whose description is provided in Table 4.
2) Additionally, five state-of-the-art advanced meta-
heuristics namely, EPSO, MPEDE (with Linear
Population Reduction) being the multi-strategy
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Algorithm 1 Pseudo-Code of ME-SGO

1. Start
2. Initialize NP, T, C, rate, dim, Ly, Uj,
3. Set c to 0.2, rate to 10, Failures to 0;

4. The initial population is generated randomly with a size of ‘NP xdim’

5. Identify the leader/gbest and the worst
6. fJort=1tT
7 Jori=1toNp
8 Implement ““Enhanced Improving phase”
9. P’;W 41— Enhanced Explo;‘"an?/e phase
Enhanced Exploitative phase
10. end Enhanced Improving phase
11. Implement “Greedy Selection I’
12. Update Cp
13. Cp,., = oo

(0.2 x Cp,,) + (0.2 x rand)
14. Update the leader/gbest and the worst

15. Implement “Adaptive Acquiring phase”
16. Seti#£r
17. IffPi) < fPy)_ i
18. Pg;rl) = Pl(tj 4+ Cp x |:Leaderj - Pfji|
19. else . .
20. Pgtjl) = Pl(tj — Cp x | Leader; — Pfj:|
21. end Adaptive Acquiring phase
22. Implement ““Greedy Selection I1I”
23. Update Cp
24 Cp,,, = Cooa

(0.2 x Cp,,
25. Update the leader/gbest and the worst
26. end for-Np
27. end for-T

28. Update Np

29. Np =round | (Np,.. — NFEcurrent) %

Max NFEs

<NPmax 7NPmin> j|

30. Check the termination criteria
31. Stop

NFEs < 0.5 x Total NFEs

otherwise

Failures < learning rate

Failures > learning rate

Failures < learning rate

) + (0.2 x rand) Failures > learning rate

ensemble variants, CLPSO, GABC, and L-SHADE
being the learning and adaptive have been employed
to assess the performance of the proposed method.
A brief description of the five state-of-the-art advanced
meta-heuristics is provided in Table 4 and their catego-
rization in Table 5.

3) In addition to the aforementioned variants of SGO,
four of the modern meta-heuristics (GWO, WOA, SMA
and ChOA) and one recent multi-strategy ensemble
variant (MEGWO) are selected for the testing and val-
idation process. A brief description of the four modern
meta-heuristic and the multi-strategy ensemble variant
is provided in Table 4.

4) To assess the performance of the proposed methods
with the top performers for each benchmarking suite,
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the results winners/top-performing algorithms are also
added in their sub-sections to provide a comprehen-
sive analysis of the current standings of the proposed
method.

C. TUNING SETTINGS OF THE ALGORITHMS

To ensure that a fair comparison is achieved, it required to
set/tune the algorithm-specific parameters (tuning parame-
ters) appropriately to extract the best performance. Hence,
after a meticulous review of the various algorithms’ perfor-
mances, the following tuning settings have been finalized
to ensure that the chosen algorithms deliver their best per-
formance to the fullest of their potential. Please note that
the values of the tuning parameters provided in Table 30
(Appendix) remain the same for the entire benchmarking
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TABLE 4. Description of the state-of-the-art meta-heuristics used in the comparative analysis.

Categorization Name of the variant Authors Year Reference
HS-WOA+ (Extended variant of hybrid social whale optimization algorithm) K.V.L. Narayana et al. 2020 [35]
Latest advanced variants of HS-WOA (Lite version of hybrid social whale optimization algorithm) K.V.L. Narayana et al. 2020 [35]
SGo MSGO (Modified Social Group Optimization) A. Naik et al. 2020 [30]
ISGO (Improved Social Group Optimization) J. Fang et al. in 2019 [27]
GWO (Grey Wolf Optimizer) S. Mirjalilin et al. 2014 [36]
WOA (Whale Optimization Algorithm) S. Mirjalili, A. Lewis 2016 [37]
Modern meta-heuristics SMA (Slime Mould Optimization Algorithm) S. Lietal. 2020 [38]
ChOA (Chimp Optimization Algorithm) M.Khishe and M.R.Mosavi 2020 [39]
MEGWO (Multi-strategy ensemble Grey Wolf Optimizer) Q. Tuetal. 2019 [21]
CLPSO (Comprehensive Learning Particle Swarm Optimizer) Liang et al. 2006 [40]
State-of-the-art advanced MPEDE (Multi-population ensemble Differential evolution) G. Wuet al. 2016 [15]
meta-heuristics GABC (gbest guided Artificial bee colony) G. Zhu etal. 2010 [41]
L-SHADE (Success history-based adaptive differential evolution with linear population reduction) R. Tanabe et al. 2014 [42]

TABLE 5. Categorization of the state-of-the-art meta-heuristics used in
the comparative analysis.

Algorithms Adaptive Linear Multi- Multi-
Control Population population strategy

Parameters Reduction ble bl

L-SHADE v v

MPEDE v v v

CLPSO v v v

EPSO v v v

GABC v

MEGWO v v

process and real-world problems tackled in the remainder of
the manuscript.

D. PERFORMANCE ANALYSIS WITH CEC2019
BENCHMARK FUNCTIONS

The 100-Digit Challenge from Special Session and Com-
petition on Single Objective Numerical Optimization in
2019 introduced 10 special functions to be minimized with
limited control parameter “‘funing” for each function [43].
The test functions were meticulously crafted with multiple
local optima and one unique global optimal solution to ensure
that the exploratory prowess and local minima avoidance
characteristics are put to test. Similar to composition func-
tions from the previous CEC sessions, the CEC2019 bench-
mark suite presents challenging exploratory conditions with
their landscape shifted and rotated to further complicate the
search process of an algorithm. It is to be noted that these
functions are extremely challenging for any global optimiza-
tion algorithm to determine the global optimal solution as
their formulation is such that they are intended to trap the
algorithms at local best positions, especially for algorithms
designed with a tendency to converge to the central point
of the search landscape. Additionally, these problems have a
large number of dimensions making the search process even
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harder and complex and only the algorithms with a higher
exploratory tendency of the entire search space can determine
the global optimal solution or generate solutions in close
proximity to the global best.

The description of the CEC2019 benchmarking suite is
shown in Table 31 (Appendix).

1) ANALYSIS OF BENCHMARKING PERFORMANCE WITH
CEC2019 TEST FUNCTIONS

The CEC2019 benchmark suite provides a more gradu-
ated way to measure ‘““horizontal” performance (accuracy)
because even ‘‘failures” can have some correct digits. The
complex test functions require a deeper exploration of the
various corners and dark spots of the search landscape such
that the algorithm can reach the global optimal solution and
has been proven to be quite challenging for many state-of-
the-art meta-heuristics. Considering that computational time
has become less of an issue lately, the test suite does not
impose restrictions on the number of function evaluations
indicating that faster convergence is not the priority with the
competitors.

To ensure a fair comparison, 50 independent runs have
been considered for all the algorithms with 500,000 func-
tion evaluations (NFEs). All the algorithms have been given
1000 iterations with the population size set based on the
requirements. The variants of SGO were given a population
size of 250 as they relied on DFEs and the modern meta-
heuristics were given 500 as they relied on (Single Function
Evaluations per iteration (SFEs). L-SHADE, MPEDE were
given an initial population size of 100 and a final population
size of 4 with NFEs being the termination criteria. ME-SGO
was given an initial population of 500 and a final population
of 50 with NFEs being the termination criteria.

The benchmarking results (best, worst, mean and standard
deviation) are shown in Table 6, the results of Wilcoxon’s
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TABLE 6. The values of best, worst, mean and the standard deviation of the sixteen algorithms for the CEC2019 benchmark functions.
SGO MSGO ISGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
Best 1(P) 1(P) 1(P) 1(P) 1(P) 1(P) 46410 1(P) 1) 18165 1(P) 26433 1(P) 1(P) 1(P) 1(P)
Fl Worst 1@ 1@ 1® 2949.5 1@ 405.61 6367.2 1(®) 421.70 66.165 1(P) 86.621 73.539 1P 10000 1(P)
Mean 1(P) 1(P) 1(P) 291.98 1(P) 37.786 1438.7 1(P) 100.93 25.156 1(P) 30.055 10.587 1P 1 1(P)
Std 0 0 0 744.26 0 82.919 1888.7 0 129.83 20.457 0 25.040 22518 o]  11E-07 0
Best 4.1863 4.4064 4.2721 4.9630 4.2355 14.6523 41562 4.2390 32507 8.1564 1(®) 625.20 89.953 1(P) 45.857 1(P)
- Worst 4.6394 5 5 5 5 456.83 13587 5.0000 17234 12,151 1® 2515.0 436.47 1@ 210.31 1®
Mean 4.3639 4.9488 4.8984 4.9988 4.7729 23337 7903.5 4.3275 967.82 10.165 1® 1688.0 228.39 1® 122.53 1(P)
Std 0.1124 0.1309 02032 0.0067 03294 114.11 2689.8 0.1414 55110 1.9418 0 464.47 86.526 0 37.039 0
Best 1.0007 3.9995 1.0239 1.4103 1.0041 1.0057 1.4091 2.0092 27543 10.894 1.0000 1.0213 1.0000 4.1145 1.0001 1(P)
- Worst 23289 75367 25212 4.9076 3.0155 4.6086 7.6330 7.7121 5.4243 12.329 1.0001 20906 14091 4.1467 2.9247 1.5001
7 | Mean 14907 6.0394 1.6347 20210 1.6979 1.6418 22107 3.5749 37461 11.458 1.0000 14119 13827 4.1321 14815 1.2164
Std 03519 08105 04220 0.8556 0.4340 08323 14329 2.0847 0.6854 03297]  2.1E-05 0.1810 01022|  85E-14 0.5377 0.1884
Best 6.9698 61.320 6.9697 18.081 9.3901 3.0103 15.924 2.9900 31.873 3.9988 1.8214 1.9950 2.9899 1.0015 1.9967 1.8451
F4 Worst 54.728 112.72 39.803 75.351 44.944 28.807 71.642 14.781 54.660 6.7154 4.9214 5.1949 13.934 4.7895 12.034 5.9798
Mean 29.437 83.227 22.631 43278 25.546 9.0756 38.270 8.8450 40.730 5.6487 32815 37394 7.2586 23154 6.5270 3.1889
Std 11332 11.565 7.9888 12428 83048 57112 15.905 32322 5.1627 09461 02354 09367 2.1828 1.0284 29319 1.0276
Best 1.1674 42375 1.0787 1.8801 1.5737 1.0698 1.1760 11157 22194 1.0101 1(P) 1.0000 1.0246 1(P) 1.0285 1(P)
Fs Worst 2.2011 102.61 1.4973 5.5299 2.0806 1.7814 2.7281 1.3944 33.407 1.0548 1.0258 1.0254 1.3812 1.0894 1.1244 1.0041
Mean 1.4298 57.910 1.2318 3.2820 1.8830 1.3217 1.7279 1.1994 9.6612 1.0301 1.0111 1.0063 1.1058 1.0286 1.0720 1.0022
Std 02492 13.361 0.1143 1.0026 0.1295 0.1948 03983 0.0805 638115 00204 00214 0.0065 0.0769 0.0412 0.0274 0.0024
Best 1.9885 8.6207 22889 49558 1.8276 1.1340 3.7198 1.5642 53780 1.4156 1(P) 1.0018 1.0002 1(P) 1.0906 1(P)
F6 Worst 8.9731 12.086 7.5515 11.793 7.5137 3.5852 9.4972 5.0853 8.1599 1.9515 1® 1.5475 2.8166 1.8515 4.9928 1@
Mean 4.9984 10.584 5.1331 77156 4.3334 1.5689 7.0091 2.8365 6.1565 1.5977 1(P) 1.1101 13660 12644 2.5067 1(P)
Std 1.4585 0.8084 1.4759 1.5587 1.2289 05756 1.4788 1.2880 1.6568 0.0483 0 0.1803 0.5606 03648 14714 0
Best 34827 1360.8 34776 61253 24.447 45.636 665.30 97.996 796.86 121.65 11215 1.2528 1.1249 5.1547 347.76 1.5489
. Worst 1484.8 2402.7 13623 1642.5 1505.2 1096.8 17724 776.09 1663.9 294.72 72154 149.45 664.58 299.15 136231 338.13
Mean 976.14 1947.8 822.73 1132.8 81837 408.67 1125.7 40421 1297.1 134.84 20.548 58.472 32322 95.015 82273 90.092
Std 290.44 214.67 293.76 294.82 35275 21090 277.03 188.03 198.69 46.304 19.189 58.447 183.44 98.156 29376 70.848
Best 3.1993 4.4000 3.0644 35675 3.0542 1.2090 3.1987 1.8306 3.7774 28871 1.5617 1.5193 1.2891 1.8451 22601 1.4587
- Worst 4.5029 52453 4.5099 49764 4.7043 3.5681 4.6377 3.9690 4.9023 34315 2.8465 3.1349 3.1134 2.9478 4.1534 2.9651
Mean 3.7858 4.9911 3.8258 43711 3.8749 27095 4.0439 3.1105 44666 29154 22648 23311 21444 25484 32216 23531
Std 03879 0.1940 03542 02955 03924 0.6454 03396 04771 02536 02326 03216 03749 05159 03151 05712 05612
Best 1.0556 25623 1.0911 1.2073 1.1670 1.0248 1.0927 1.0483 1.1297 11154 1.0354 1.0457 1.0562 1.0548 1.0505 1.0105
o |Vorst 14056 3.9220 13242 1.8676 1.6759 11220 1.7289 1.2469 14870 12139 1.0404 1.1593 11661 1.4841 1.1266 1.1248
Mean 1.2056 3.2522 1.1947 1.4294 1.3083 1.0795 1.3705 1.1192 1.3321 1.1845 1.0394 1.0998 1.0957 1.2676 1.0835 1.0927
Std 0.0959 03788 00651 0.1537 0.1012 00237 0.1702 0.0455 0.0967 0.0264 00154 00237 0.0254 0.1463 0.0190 0.0215
Best 1.0076 21.076 2.1551 12.069 2.9850 2.0133 21.000 1.5175 21.155 8.5514 1.0001 1.0042 1(P) 1(P) 21.146 1(P)
F10 Worst 21.307 21.407 21.322 21.336 21.413 21.370 21335 21.029 21.412 21.048 21.024 21.036 21.255 21.004 21.345 21.189
Mean 14.861 21.287 18.921 20.648 19.602 20.628 21.037 19.074 21.301 13.651 10.066 12.964 5.680 9.2145 21.251 8.102
Std 77375 0.0827 6.0256 22666 52020 34552 0.0816 6.0076 0.0608 4.1052 9.8009 9.2651 8.5340 9.1254 0.0421 75719
(P) indicates that the precision of the algorithm was accurate up to the ten decimal places
TABLE 7. The p-values obtained from the Wilcoxon’s rank sum test comparing ME-SGO with the fifteen algorithms for the CEC2019 benchmark functions.

SGO MSGO ISGO HS-WOA HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO

FI 3.82E-03 (1) | 6.85E-03 ()| 3.51E-04 (-) | 6.65E-09 ()| LO6E-03 (-) | 1.49E-09 ()| 7.53E-09 (-) | 8.17E-02 (=) | 4.90E-09 (-) | 4.98E-08 ()| 9.50E-02 (=) | 3.53E-07 () | 2.90E-08 () | 1.37E-02 (=) | 6.00E-03 (1)
F2 9.48E-06 (-) |_2.15B-07 (1) | _1.0SE-06 (-) | 5.16E-06 (-) | 2.83E-05 (-) | 4.23E-09 (-) | 7.38E-09 (-) | 6.91E-04 () | 4.47E-09 (-) | 9.51E-09 (-) | 5.46E-02 (=) | 2.03E-09 (-) | 7.52E-09 (-) | 5.67E-02 (=) | 2.68E-09 (-)
3 5.18E-04 (-) | 6.89E-06 (-) | 8.94E-03 (1) | 6.05E-04(-) | 5.46E-03 (1) | 9.07E-03 (-) | 3.94E-04 (1) | 3.21E-04(-) | 643E-05 (1) | 3.44E-05 (-) | L.46GE-01 (+)| 2.56E-03 (-) | 7.49E-03 (-) | 4.70E-04 (-) | 6.51E-03 (-)
F4 5.17E-09 (-) | 5.14E-09 (-) | 6.17E-06 () | 8.36E-07 (-) | 9.48E-05 () | 7.86E-05 (-) | 6.52E-07 (-)| 9.41E-04 (-) | 7.05E-06 (-) | 5.84E-04 (-) | 1.56E-03 (-)| 6.14E-03 (-) | 3.83E-04 (-) | 2.17E-02 (=) | 6.85E-04 (-)
5 6.85E-03 (1) |_5.87B-08 (-) | 7.15E-03 (-) | 1.86E-05 (-) | 9.56E-04 (-) | 9.50E-03 (-) | 1.78E-04(-) | 4.38E-04 (1) | 7.50E-07 (-) | 2.29E-03 (-) | 2.62E-02 (<) | 4.74E-02 (=) | 5.66E-03 (-) | 3.40E-02 (=) | 7.43E-03 ()
6 7.61E-05 (-) | 7.71E-05 (-) | 9.16E-05 (1) | 6.89E-07 (-) | 1.64E-06 (1) | 6.53E-03 ()| 7.02E-07 (1) | 4.40E-04 (-) | 2.81E-06 (-) | 7.46E-03 (-) | 8.34E-03 (-) | 3.55E-03 (-) | 1.84E-03 (-)| 1.69E-03 (-) | 4.52E-04 (-)
F7 6.80E-07 (-) |_2.16E-08 (-) | 4.89E-08 (-) | 8.14E-08 (-) | 9.61E-08 (-) | 4.50E-08 (-) | 4.41E-08 (-) | 3.84E-06 () | 6.76E-08 (-) | 2.60E-03 () | 2.59E-01 () | 8.24E-02 (=) | 5.63E-05 (-) | 7.88E-03 (-) | 4.92E-07 ()
3 841E-04 (-) | 8.65E-05 (-) | 7.42E-05 () | 5.47E-04(-) | 9.48E-04 (1) | 8.42E-03 (-)| 2.81E-05 (1) | 7.60E-05 (-) | 6.52E-04 (-) | 5.06E-04 (-) | 8.08BE-02 () | 5.84E-02 (=) | 5.30E-02 (=) | 3.15E-03 (-) | 2.34E-05 (-)
F9 8.43E-04 (-) | 4.98E-06 (-) | 2.15E-03 () | 9.16E-04 (-) | 4.86E-03 (-) | 9.25E-02 (=) | 4.55E-04 (-) | 7.89E-03 (-) | 1.69E-04 (1) | 6.95E-03 (-) | 2.49E-02 (=) | 5.49E-03 (-) | 7.74E-02 (=) | 5.28E-04 (-) | 9.05E-02 (=)
F10 332E-03 (-) | 3.18E-07 (-) | 3.56E-04 () | 7.96E-08 (-) | 7.04E-08 (1) | 6.75E-08 (-) | 1.05E-08 (-)| 1.93E-08 (-) | 1.27E-09 (-)| 8.83E-03 (-) | 9.21E-03 (-)| 9.09E-03 (-) | 9.25E-01 (+) | I.72E-03 (-) | 1.59E-09 (-)
L(-) 10 10 10 10 10 9 10 9 10 10 3 7 7 6 9
W5 - - - - - B B - - - 2 - 1 - 0
T(=) - 1 B 1 - - 5 3 2 4 1

rank-sum test are shown in Table 7, the mean absolute
error (MAE) for all the fifteen algorithms and the results of
Friedman’s non-parametrical test are shown in Table 8 and
the average computational times (ms) are shown in Table 9
respectively.

2) THE 100-DIGIT COMPETITION

The scoring system considers the average number of correct
digits in the best 25 out of 50 trials such that an accurate rep-
resentation of the performance of the algorithm is provided.
Furthermore, compared to the latest CEC2020 benchmark-
ing suite, where the test functions from previous sessions
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were re-used, the CEC2019 session provides tailor-made,
meticulosity designed test functions which also provides a
measure of the accuracy and precision of the search technique
being used. The CEC2019 suite allows for a limited control
parameter “funing’ for each function which can double as
a method to validate the tuning sensitivity of the proposed
method and compare it with the winners of the competi-
tion. A maximum of 1E408 NFEs was allowed for all the
functions as the termination criteria and the performance of
ME-SGO is shown in Table 10. Comparison of ME-SGO’s
score (rounded-off) with the other top performing algorithms
is shown in Table 11.
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TABLE 8. Ranking the sixteen algorithms based on the Friedman'’s for the CEC2019 benchmark functions.

Algorithms Friedman’s rank Mean Absolute Error Generalized rank
L-SHADE 1.5214 3.22108 1
ME-SGO 2.0051 10.00473 2
MPEDE 2.1654 10.8786 3
CLPSO 3.0564 19.76464 4
SMA 4.5161 43.9297 5
EPSO 5.6641 57.22302 6
GWO 7.6516 70.7851 7
HS-WOA+ 8.1564 87.23884 8
ISGO 8.2544 87.32005 9
MEGWO 9.5542 97.34033 10
SGO 10.8496 102.87122 11
HS-WOA 12.5645 150.25239 12
GABC 14.6546 179.01896 13
MSGO 16.8451 213.10395 14
ChOA 18.1646 244.32435 15
WOA 25.35486 1053.3569 16
TABLE 9. Comparison of the computational times (ms) of the eleven algorithms for the CEC2019 benchmark functions.
SGO MSGO ISGO__| HS-WOA | HS-WOA+ | _GWO WOA SMA ChOA | CLPSO | L-SHADE | GABC EPSO__| MPEDE | MEGWO | ME-SGO
F1 13.0713 97474 138433 |  14.8295| 125953 5.0317 43000 128923  24.5937]  23.1160 7.5169]  13.7051| 2538141 8.8607 | 10.4089 8.1776
%) 8.6120 7.3593 9.3219]  10.0389 8.2539 4.0535 24747]  12.8382]  34.9985]  19.5770 7.9652 8.1065 |  24.1784 9.2785 5.7166 7.0378
F3 84724 7.8851 9.4037 9.8853 8.5096 42017 2.6047|  12.8231]  36.1548]  19.7141 8.0217 8.6846 |  33.6156 9.1565 5.5204 7.0122
F4 9.2995 6.7640 9.4687|  10.1485 8.4143 3.6086 27028 | 11.2407|  23.3079|  17.9957 9.1426 85149 22.4310]  10.1821 5.5558 8.6165
5 11.4689 87443 12.1167] 130899  11.1287 3.6670 25564]  12.3220]  22.5155|  23.7576 8.5620  10.8613| 224347 9.3798 7.2833] 125198
F6 341153 |  32.517|  344764|  343399|  32.9569|  22.1361|  213398|  29.9730| 261.1867|  37.7809|  10.6521|  32.4362|  42.6472 9.3798| 314651  40.1562
F7 11.7799 8.6598 12.2957 13.0869 10.7614 3.7326 2.7663 11.2741 22.7771 23.3775 8.9199 11.6768 29.3584 11.1264 12.2957 12.6815
¥8 10.9958 84853 |  11.8317] 125310  10.6620 3.6538 25561|  11.2974]  224358|  23.1219]  10.5450| 103538 | 286163  12.1512 7.2306] 101562
F9 10.6770 8.0794]  114782|  12.1496|  10.2894 3.4609 24086| 109697 | 227950  22.0983 8.1968 9.8311 |  28.9415 9.9084 6.5874] 121562
F10 10.2738 79312 10.7422] 118173 9.959 3.5999 26422 113211 22.7919] 21,6100 7.9875 94945 30.9275 8.2051 6.6602|  12.8950
TABLE 10. Final scores of ME-SGO for the 100-digits challenge.
Function 0 1 2 3 4 5 6 7 8 9 10 Score Max
NFEs
F1 50 10 2.9E+04
L 50 10 3.8E+06
F3 22 28 10 9.8E+06
F4 28 21 1 1 2 1 1E+08
F5 22 28 10 7.1E+05
re 50 10 9.1E+06
F7 27 19 2 1 2 1 1E+08
F8 1 43 6 3 1E+08
F9 42 8 1E+08
F10 20 30 10 4.3E+05
Score 68
TABLE 11. Comparison of the scores of the top-performing algorithms for the CEC2019 100-digit challenge.
Algorithm Score Rank
JDE100 [44] 100 1
HyDE-DF [45] 93 2
CIPDE [46] 85 3
DISH [47] 83.92 4
GADE [48] 71.96 5
ME-SGO 68 6
DLABC [49] 67.88 7
MiLSHADE-LSP [50] 60.72 8
ESP-SOMA [51] 51.92 9

Analysis of Results:
1) The performance of ME-SGO has been excellent for
F1, F2, F3, F5, F6 and F10. The proposed method
achieved the 10-digit accuracy for these functions with
minor deviations in terms of accuracy. The perfor-
mance for functions F1, F2 and F6 have the best and
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both ME-SGO and L-SHADE have produced similar

results.

2) Function F7 had been the most challenging for
ME-SGO and could only outperform MPEDE while
L-SHADE had been the best performing algo-
rithm. The function F10 had similar outcomes from
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TABLE 12. Tabulation of best, worst, average (mean), standard deviation and the average computational times (seconds) for the pressure vessel design

from the 30 independent runs for the sixteen algorithms.

Algorithms Best Worst Mean Standard Deviation Ave.”'ge .

Computational Time
ME-SGO 5885.3312509799 5979.7596103693 5891.1181201905 224313341327 0.2771
L-SHADE 5885.3315367749 5976.5297327623 5892.9100540970 22.0236908441 0.3584
MPEDE 5885.6218583630 6009.3105421747 5935.9703272727 49.2198996947 0.3381
EPSO 5885.3312508567 7318.9989210709 6125.0087354593 384.0367642831 0.7378
CLPSO 6110.5829295447 6202.0838536094 6157.7140609976 35.2511879165 0.1372
GABC 6061.6997485320 6265.8527398385 6165.3576777197 96.8523879118 0.1015
MEGWO 5908.1870610321 6434.8089904437 6171.0250813655 221.8932295329 0.0851
ISGO 5885.9827864557 7318.9937225151 6226.9112765049 423.1925176938 0.0790
GWO 5895.5021011051 7271.1849180084 6263.7459189117 513.5139797835 0.0682
SGO 5886.8003560724 7318.9989210708 6285.2499074233 369.9712646763 0.0800
SMA 5885.3917725061 7319.0052742464 6446.8437991134 529.6207730838 0.2542
HSWOA+ 5935.9986303480 7880.5667454425 6683.7500352068 649.3751253418 0.0777
HSWOA 5994.6720636824 7474.0524772128 6782.1884083616 465.5344139496 0.0852
ChOA 7684.2457795734 9785.7984249093 8208.2348559745 552.3979536913 0.2192
WOA 7483.3366637680 113853.66120769 19957.38044634 26472.61283668 0.0650
MSGO 25951.381319747 549520.46604697 288534.8035376 108194.2142375 0.0620

L-SHADE, MPEDE and ME-SGO and for F8 and F9
all three of them performed similarly with ME-SGO
being the best performer for F9.

3) It is quite evident that ME-SGO, L-SHADE and
MPEDE have been the top-performing algorithms and
the point of similarity is the integration of linear pop-
ulation reduction in all three of them. While it is clear
that linear population reduction helps achieve a better
exploration, it has been crucial to avoiding early entrap-
ment as witnessed with the other algorithms.

4) ME-SGO’s score of 68 in the 100-digit competition
has been compared to other top performing algorisms.
It ranked sixth overall outperforming other DE based
optimizers. It is worth mentioning that only the initial
population size and number of iterations have been
modified to achieve this outcome as rules of the com-
petition dictate. The adaptive parameters have not been
modified, although it is possible that tuning the learn-
ing rate can help improve the performance for other
such complex landscapes.

The convergence graphs for all the algorithms for the
CEC2019 benchmarking suite are shown in Figure 3
(Appendix) and the ANOVA plots are shown in Figure 4
(Appendix)

E. PERFORMANCE ANALYSIS WITH STANDARD
CONSTRAINED ENGINEERING PROBLEMS

In addition to the benchmarking tests, it is required to validate
the performance of the proposed method with constrained
engineering problems. Generally referred to as “‘the standard
engineering problems” , these design optimization problems
have multiple constraints and requires the generation of a
feasible optimal solution with no constraint violation. Hence,
five standard engineering problems (requiring the objective
function to be minimized) are chosen which include the
SE1: pressure vessel design, SE2: welded beam design prob-
lem, SE3: cantilever beam design, SE4: tension/compression
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spring design problem and the SES5: 10-bar truss design opti-
mization. The previous sixteen algorithms are included in the
comparative analysis with no change to the tuning settings of
the algorithm-specific parameters. All the algorithms consid-
ered for the comparative analysis are given 30 independent
runs to determine the mean and standard deviation with the
NFEs set to 10,000. Additionally, the best fitness score and its
corresponding optimal decision variables, worst fitness score,
the average computational times are recorded for all eleven
algorithms.

The penalty function approach (static penalty function) is
opted to handle the various constraints wherein a penalizing
score (very high pre-set value) known as a penalty is added to
the objective function for any violation of the constraints by
the members of the population pool.

1) PRESSURE VESSEL DESIGN

A detailed description of the objective function, con-
straint functions and the range of the decision variables
(mathematical formulation) for the pressure vessel design
is shown in Table 32 (Appendix). The best fitness values
and their corresponding optimal decision variables for all the
sixteen algorithms sorted in the ascending order of their fit-
ness scores are given in Table 33 (Appendix). A comparative
tabulation of the best, worst, average, standard deviation and
the average computational times of the 30 independent runs
for all the fifteen algorithms is shown in Table 12.

2) WELDED BEAM DESIGN

A detailed description of the objective function, constraint
functions and the range of the decision variables (mathe-
matical formulation) for the welded beam design is shown
in Table 34 (Appendix). The best fitness values and their
corresponding optimal decision variables for all the sixteen
algorithms sorted in the ascending order of their fitness scores
are given in Table 35 (Appendix). A comparative tabulation
of the best, worst, average, standard deviation and the average
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TABLE 13. Tabulation of best, worst, average (mean), standard deviation and the average computational times (seconds) for the welded beam design

from the 30 independent runs for the sixteen algorithms.

Algorithms Best Worst Mean Standard Deviation Average .
Computational Time
MPEDE 1.7248523092 1.7248528760 1.7248523482 1.07E-07 0.4146
L-SHADE 1.7248523431 1.7250235326 1.7248617482 3.09E-05 0.3121
ISGO 1.7248523086 1.7347499178 1.7253138420 1.81E-03 0.0814
ME-SGO 1.7248718352 1.7272495493 1.7253946595 6.11E-04 0.2131
MEGWO 1.7248523086 1.7604474298 1.7272907337 9.18E-03 0.0819
SGO 1.7248523086 1.8499212711 1.7290978664 2.24E-02 0.0849
GWO 1.7265131462 1.7431677086 1.7316114946 4.66E-03 0.0703
EPSO 1.7248523243 1.8142933846 1.7420084978 3.36E-02 0.7295
SMA 1.7251226806 2.3589833566 1.7883982022 1.57E-01 0.2137
ChOA 1.8409799601 1.8849777067 1.8645590979 1.21E-02 0.2278
GABC 1.7427050667 2.0958825501 1.8799263146 1.02E-01 0.0917
HSWOA 1.7384337268 2.6979568854 1.9609319687 2.48E-01 0.0892
CLPSO 1.7395032302 2.4327943216 2.0114140654 2.19E-01 0.1251
HSWOA+ 1.7375924903 5.6918747514 2.0782237057 7.70E-01 0.0788
WOA 1.9875489291 4.8829627452 2.9316213300 9.12E-01 0.0662
MSGO 2.9296353313 8.6376869845 5.3057368166 1.33E+00 0.0643

TABLE 14. Tabulation of best, worst, average (mean), standard deviation and the average computational times (seconds) for the cantilever beam design

from the 30 independent runs for the sixteen algorithms.

Algorithms Best Worst Mean Standard Deviation Avef‘age .
Computational Time
ME-SGO 1.33995636163 1.33995962476 1.33995701599 0.00000087392 0.1285
L-SHADE 1.33995675163 1.34012668650 1.33997545058 0.00003575208 0.4127
EPSO 1.33996725179 1.34015033980 1.34002275682 0.00005337529 0.6470
ISGO 1.33996051482 1.34042947532 1.34002491404 0.00011886728 0.0550
SGO 1.33996944407 1.34159345358 1.34004123767 0.00028954848 0.0578
MPEDE 1.33996566939 1.34034267357 1.34014552804 0.00013922643 0.4526
MEGWO 1.33999185203 1.34055722840 1.34014651353 0.00017949390 0.1050
GWO 1.33997812110 1.34058241259 1.34024273243 0.00016491679 0.0516
CLPSO 134013852742 134469531133 1.34152665585 0.00100518376 0.0975
HSWOA 1.34044457161 1.34808895815 1.34260204905 0.00170490167 0.0639
HSWOA+ 1.34133868334 1.36515180438 1.35063164183 0.00600099114 0.0555
GABC 1.34853399859 1.38319808573 1.36194484193 0.01058366457 0.0609
ChOA 1.34936655039 1.39600463795 1.36909453552 0.01313582174 0.2494
SMA 1.56465826214 1.85858333032 1.67832511212 0.07658198495 0.2205
WOA 1.40414979085 3.22870683572 1.89761687251 0.47546784469 0.0442
MSGO 1.78143056637 4.78551641462 2.48256475659 0.61409765208 0.0411

computational times of the 30 independent runs for all the
fifteen algorithms is shown in Table 13.

3) CANTILEVER BEAM DESIGN

A detailed description of the objective function, constraint
functions and the range of the decision variables (mathemat-
ical formulation) for the cantilever beam design is shown
in Table 36 (Appendix). The best fitness values and their
corresponding optimal decision variables for all the sixteen
algorithms sorted in the ascending order of their fitness scores
are given in Table 37 (Appendix). A comparative tabulation
of the best, worst, average, standard deviation and the average
computational times of the 30 independent runs for all the
fifteen algorithms is shown in Table 14.

4) TENSION/COMPRESSION SPRING DESIGN

A detailed description of the objective function, constraint
functions and the range of the decision variables (math-
ematical formulation) for the tension/compression spring
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design is shown in Table 38 (Appendix). The best fitness
values and their corresponding optimal decision variables
for all the sixteen algorithms sorted in the ascending order
of their fitness scores are given in Table 39 (Appendix).
A comparative tabulation of the best, worst, average, stan-
dard deviation and the average computational times of the
30 independent runs for all the fifteen algorithms is shown in
Table 15.

5) 10-BAR TRUSS DESIGN

A basic description of the 10-bar truss design problem and
its constraints is provided in Table 40 (Appendix). The best
fitness values and their corresponding optimal decision vari-
ables for all the sixteen algorithms sorted in the ascending
order of their fitness scores are given in Table 41 (Appendix).
A comparative tabulation of the best, worst, average, stan-
dard deviation and the average computational times of the
30 independent runs for all the sixteen algorithms is shown
in Table 16.
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TABLE 15. Tabulation of best, worst, average (mean), standard deviation and the average computational times (seconds) for the tension/compression
spring design from the 30 independent runs for the sixteen algorithms.

Algorithms Best Worst Mean Standard Deviation Ave.”'ge .

Computational Time
ME-SGO 0.012665233 0.012950610 0.012683911 5.62E-05 0.2390
L-SHADE 0.012665234 0.013210065 0.012693972 9.77E-05 0.3078
MPEDE 0.012669158 0.012732363 0.012710457 2.41E-05 0.3499
SGO 0.012667381 0.012849562 0.012743586 4.56E-05 0.0792
GWO 0.012703978 0.013105946 0.012776107 1.04E-04 0.0707
ISGO 0.012665260 0.013311909 0.012804912 1.74E-04 0.0764
GABC 0.012715319 0.013456150 0.012864619 2.02E-04 0.0987
MEGWO 0.012678741 0.013308462 0.012880697 2.05E-04 0.0803
CLPSO 0.012740981 0.013506243 0.012980271 2.55E-04 0.1346
EPSO 0.012713094 0.017773158 0.013066680 9.37E-04 0.6649
ChOA 0.012842115 0.016108193 0.013348314 8.22E-04 0.1870
HSWOA 0.012754221 0.016406911 0.013372694 7.73E-04 0.0876
SMA 0.012670057 0.017332469 0.013386007 1.24E-03 0.1875
HSWOA+ 0.012732026 0.018002269 0.013392215 1.27E-03 0.0764
WOA 0.012666503 0.016159385 0.013851240 1.22E-03 0.0686
MSGO 0.040992332 0.055436222 0.038567351 1.38E-02 0.0609

TABLE 16. Tabulation of best, worst, average (mean), standard deviation and the average computational times (seconds) for the 10-bar truss design from

the 30 independent runs for the sixteen algorithms.

Algorithms Best Worst Mean Standard Deviation Ave‘rage .
Computational Time
MPEDE 5060.87043842 5076.85171483 5064.02430884 6.32510045 7.537
L-SHADE 5061.76661402 5086.54104024 5064.84893749 5.80737449 5.289
SMA 5061.36974029 5096.29515197 5068.92952786 8.74637144 11.069
ME-SGO 5061.30193860 5097.88968419 5084.88836938 15.58404217 5.522
GWO 5076.25174080 5126.66395695 5102.48545541 14.82826204 3.234
GABC 5089.66807074 5120.38270830 5105.69242847 10.06191397 3.384
ChOA 5147.70383078 5907.78738096 5290.05916403 250.09255479 3.677
CLPSO 5152.70055304 5500.63087888 5312.63888940 98.76338549 3.366
EPSO 5061.43035403 7349.14601502 5617.69634993 770.83793324 20.811
MEGWO 5345.13649658 6540.48118227 5956.22363164 485.31699972 3314
HSWOA+ 5130.60179834 7364.67647008 6042.53807980 631.85260498 21.420
WOA 5884.73096069 8155.58242175 6831.70270668 569.62933788 3.213
HSWOA 6244.40954659 8026.53898200 7027.51573342 474.01932446 18.622
SGO 5552.86358591 8408.39489218 7315.13903170 639.22578141 18.237
ISGO 6504.33958450 8552.95753299 7387.69461236 490.32316101 18.315
MSGO 6909.09280613 16619.02865276 9284.58726025 2176.71159957 18.489
Analysis of Results: deviation by ME-SGO demonstrated the robustness
1) The performance of ME-SGO has been good for the of ME-SGO at handling optimization problems with
standard engineering problems for all the five engineer- multi-constated higher dimensionality.
ing problems with excellent performances for SE1, SE3
and SE4. V. INVESTIGATION OF THE PROPOSED METHOD FOR EV
2) The difference between the state-of-the-art optimizers OPTIMIZATION PROBLEMS
such as L-SHADE and MPEDE has been minimal with To demonstrate the effectiveness of the proposed algorithm
the three of them dominating for the five problems. towards the handling of complex real-world constrained
3) Compared to SGO and its other variants, ME-SGO problems with multiple equality and inequity constraints and
achieved better solutions with higher accuracy and higher problem dimensions, four problems on EV optimiza-
robustness through the testing with lower standard tion from the recent literature have been considered. The
deviation rates. The distance-based strategy adaption same algorithms are chosen with the previously set configu-
and adaptive control parameters have been at the fore- rations for the algorithm tuning settings and a comprehensive
front in steering ME-SGO to improve the solution comparative analysis is provided below.
quality while not compromising on the computational
times. A. PROBLEMS CONSIDERED FOR INVESTIGATION
4) The performance of ME-SGO for the 10-bar truss Four complex problems namely, (i) the optimal power flow

optimization is indicative of its efficiency at balancing
global and local exploration while SGO and its variants
have not been able to achieve the same efficiency at
delivering the optimal solution. The lower standard
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problem with EV loading for IEEE 30 bus system (9 Cases)
and IEEE 57 bus-system (9 cases), (ii) optimal reactive power
dispatch with uncertainties in EV loading and intermitten-
cies with PV and Wind energy systems for IEEE 30 bus
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TABLE 17. Summary of the case studies of the OPF for the IEEE 30 and IEEE 57 bus systems with EV loading.

Case Studies Objectives of various case studies
Basic Fuel Cost Voltage Stability Emission Power Loss Voltage Deviation | Valve-point Effect
Case 1 v
Case 2 v
Case 3
Case 4 v
Case 5 V4 v
Case 6 v v 4
Case 7 v v
Case 8 v v 4
Case 9 v v v

system (25 scenarios), (iii) dynamic EV charging optimiza-
tion (3 cases) and (iv) energy efficient control of parallel
hybrid electric vehicle (3 cases with 2 scenarios) coverage the
domains of power systems, energy and control optimization
have been considered for validation through the proposed
multi-strategy ensemble method and fifteen of the previously
described state-of-the-art advanced and modern algorithms.
The constraint handling for the first and second problems on
EV optimization is done through the superiority of feasible
solution method [52] and for the third and fourth problems,
static penalty approach is followed.

1) EV LOADING MODEL

The EV loading model in the current work for the first and
second problems is accomplished considering the additional
electric power demand due to multiple Plug-in electric vehi-
cles (PEVs) on the electric distribution system. The PEV
loading model from [53] implemented for an IEEE 33 bus
system for the optimal integration of distributed generators
has been considered for the IEEE 30 bus system and extended
to the IEEE 57 bus system in the current work. The EV
loading models for the first and the second problems is for-
mulated based on the average loading with considerations for
the peak loading scenarios and off-peak conditions of EV
load demand with respect to the varying load pattern of the
distribution network. It is also assumed that the entire EV load
is distributed on the residential busses. A detailed description
of the EV loading is given the upcoming sub-sections and the
summarization of the IEEE 30 and IEEE 57 bus systems with
EV loading is provided in Table 42 (Appendix) and Table 43
(Appendix) respectively.

The third problem studies the effect of varying levels
of EV loading from [55] with three scenarios of 100,
200 and 300 EVs. The probability distributions of the EVs
connecting and disconnecting from the local grid is modelled
using normal distribution and have initial SoC values speci-
fied by normal distributions within the range 0.1 to 0.9.

2) UNCERTAINTY WITH WIND AND PV ENERGY
The second problem considers the optimal reactive power dis-
patch from [54]. The EV loading model from the first problem
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based on [53] for the IEEE 30 bus has been followed here as
well with 25 different scenarios investigated considering the
uncertainties with the renewable power generation and load
demand including EV loading. The base case considers 100%
loading (fixed) of the network with 5% EV load followed by
24 randomized scenarios from a total of 1000 plausible sce-
narios formulated through Monte Carlo simulations obtained
through the method of scenario reduction using backward
reduction algorithm (BRA) [54].

3) SOLUTION METHODOLOGY

The MATPOWER (version 7.1) has been utilized in conjunc-
ture with MATLAB R2020b and Backward/forward sweep
based load flow has been used for load flow studies for the
first and second problems on EV optimization [53].

B. OPTIMAL POWER FLOW PROBLEM WITH EV LOADING
The first problem is that of the optimal power flow (OPF)
with EV loading for the standard IEEE 30 and IEEE 57 bus
systems for several OPF objectives such as cost, emission,
power loss, voltage stability etc. from [52] is considered.
OPF is a highly non-linear complex optimization problem
where the steady-state parameters of an electrical network
need to be determined for its economical and efficient oper-
ation. The complexity of the problem escalates with the
ubiquitous presence of constraints in the problem. Solving
OPF remains a popular but challenging task among power
system researchers. In the last couple of decades, numerous
evolutionary algorithms (EAs) and swarm intelligence-based
optimization algorithms have been considered to find optimal
solutions with different objectives of OPF.

The nine different cases in the OPF for the IEEE 30 and
IEEE 57 bus systems with EV loading are given in Table 17.

The OPF with EV loading for IEEE 30 bus system has
24 control/decision variables and the IEEE 54 bus system
has 33 control variables to be optimized. The different cases
for the formulation of the objective function and the various
constraints are provided in Table 44 (Appendix). Summariza-
tion of the bus systems is provided in Table 45 (Appendix)
and Table 46 (Appendix) for the IEEE 30 and IEEE 57 bus
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systems respectively. The lower and upper bounds for the
optimization are given in Table 47 (Appendix).

1) OPF WITH EV LOADING FOR IEEE30 BUS SYSTEM

The procedure for EV loading from [53] has been followed
with EV load distributed on the residential buses (17 buses
for the IEEE 30 bus system).

To study the effect of additional electric power demand due
to PEVs in the electric distribution system for IEEE 30 bus
system, it has been assumed that 50 PEVs per residential bus
with a total of 17*50 = 850 PEVs have been considered,
where 45% of these PEVs are low hybrid vehicles equipped
with 15 kWh batteries, 25% PEVs are medium hybrid vehi-
cles with 25kwh batteries and 30% PEVs are pure battery
vehicles with 40 kWh batteries. It is also assumed that all
the electric vehicles return to the home with an SoC of 50%.
Therefore, total electric demand due to PEVs per residential
bus per day is 50*(15*45% + 25*25% + 40*30%)*0.5 =
625 kW and total electric demand needed per day due to PEVs
is 625 % 17 = 10,625 kW.

The tabulation of the best solutions with statistical analysis
and computational times of OPF for the IEEE 30-bus system
with EV loading for all the algorithms in comparative analysis
is given in Table 18. The decision variables for the best
performing algorithm for all the 9 cases are given in Table 47
(Appendix).

In Table 18, Fit denotes the fitness value, FC denotes the
cost of fuel in $/h, E denotes emissions in t/h, P Loss denotes
the real power loss in MW, VD denotes the voltage deviation
in p.u., L-index denotes the L-index (max).

Analysis of Results:

1) ME-SGO obtained the optimal solutions for five out of
the nine cases and for the other cases, the performance
was quite competitive.

2) The first case saw competitive results from GABC,
EPSO, MPEDE, MEGWO and ME-SGO. It is also
worth noting that ME-SGO and MPEDE had the
least standard deviation for this case. The sec-
ond, third and sixth cases saw similar results with
excellent performances from ME-SGO, MPEDE and
EPSO.

3) The adaptive and multi-population approaches have
been successful at handling the multiple constraints
while delivering solutions with higher accuracy and the
same performance has not been reflected with the other
modern meta-heuristics.

4) MPEDE and EPSO performed second to the proposed
method while L-SHADE and G-ABC performed next
to them.

5) ChOA and MSGO performed poorly due to a lack
of balance between exploration and exploitation. The
re-initialization system in MSGO could not aid the
exploitation system as the algorithm was slower to
exploit the promising regions as indicated by the
results. The computational times for ChOA have been
the highest due to the integration of chaotic sequences.
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2) OPF WITH EV LOADING FOR IEEE57 BUS SYSTEM

The procedure for EV loading from [53] has been followed
with EV load distributed on the residential buses (41 buses
for the IEEE 57 bus system).

To study the effect of additional electric power demand due
to PEVs in the electric distribution system for IEEE 57 bus
system, it has been assumed that 100 PEVs per residential bus
with a total of 41*100 = 4100 PEVs have been considered,
where 45% of these PEVs are low hybrid vehicles equipped
with 15 kWh batteries, 25% PEVs are medium hybrid vehi-
cles with 25kwh batteries and 30% PEVs are pure battery
vehicles with 40 kWh batteries.

It is also assumed that all the electric vehicles return
to the home with a SOC of 30%. Therefore, total elec-
tric demand due to PEVs per residential bus per day is
100*(15%45% + 25*25% + 40*30%)*0.7 = 1750 kW
and total electric demand needed per day due to PEVs is
1750*41 = 71,750 kW.

The tabulation of the best solutions with statistical analysis
and computational times of OPF for the IEEE 30-bus sys-
tem with EV loading for all the algorithms in comparative
analysis is given in Table 19. The decision variables for the
best performing algorithm for all the 9 cases are given in
Table 48 (Appendix). In Table 19, Fit denotes the fitness
value, FC denotes the cost of fuel in $/h, E denotes emissions
in t/h, P Loss denotes the real power loss in MW, VD denotes
the voltage deviation p.u., L-index denotes the L-index (max).

Analysis of Results:

1) The performance of ME-SGO has been similar to that
of the TUEEE 30 bus system with it being consis-
tent at delivering a balanced performance for complex
landscapes. ME-SGO performed well for 6 out of the
9 vases for the IEEE 57 bus system.

2) GABC performed next to the proposed method fol-
lowed by EPSO and MPEDE. It is inferred that
multi-population and multi-strategy-based paradigms
have been dominant at delivering a consistent perfor-
mance while static control strategies have found it chal-
lenging to explore and exploit simultaneously through
the search process.

3) OPTIMAL REACTIVE POWER FLOW FOR IEEE 30 BUS
SYSTEMS WITH UNCERTAINTY IN LOADING AND
RENEWABLE POWER GENERATION CONSIDERING EV
LOADING

The second problem on EV optimization is that of the opti-
mal reactive power dispatch (ORPD) from [54] accounting
for the uncertainties with EV loading and distribution sys-
tem demands, uncertain renewable power i.e., wind and PV
power. The load uncertainty model is based on the probability
density function (PDF) from [54] and Weibull PDF describes
the wind speed distribution. 1000 Monte Carlo scenarios for
the loading and windspeed distributions are simulated and 25
most probable scenarios have been considered. IEEE 30 bus
system with 25 scenarios with the EV loading model from
Problem 1 is used. A detailed description of the mathematical
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TABLE 18. Tabulation of the best solutions with statistical analysis and computational times of OPF for the IEEE 30-bus system with EV loading for all the
algorithms in comparative analysis.

Case 1 SGO MSGO ISGO HS-WOA HS-WOA+ GWO 0A SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
Fit 846.00 851.379, 42.794 8428111 43.1834 842.4997 40.8165 841.9357 50.1264 42.851 840.0881 39.1136. 39.1415 39.1599, 39.9184 838.9998|
FC 845.9995 897.224 42.79: 922.9688 51.0768 842.652 40.7908 904.8547 53.7814 68.275 840.0881 39.5686. 39.1417 39.4001 40.2603 839.0224|
Best E 0.365038 0.725274| .3643 0.22964 1416912 0.354828 .369406 0.707223 317653 40145 0.382387 .378853 381327 371796, .386563 0.380702
P Loss 10.4123 19.44098 .6845 5.19809, 2.48481 9.020405 .534648 21.86486 466397 0.8015 9.83605 .600021 .543881 404811 776321 9.49952
VD .608065 374786, 637967 .901473 0.777234 588613 0.480663 1.27047: 0.504399 355607 0.650101 0.496043 .905726 0.601455 339746 0.872397
L-index 152553 .164938 L1411 150195 0.159567 141812 0.14901 0.1631. 0.150537 155913 0.154506 0.147813 .140047 0.14377 146945 0.140281
Worst 49.2907 1059.5315 49.82 53.1004/ 928.0401 69.3596 58.6807 858.867. 960.451 48.2539 842.2256 839.9647 43.3792 839.3656 41.1855 839.0894
Mean 47.8646 95.6719) 845.23 47.9886 872.6297 56.6636 49.1835 847.633 926.716 45.1453 841.317 839.322 40.2555 839.2249| 40.6835 839.0626
Std. .323248 159.275 .7339. 750684 37.2497 1.29628 408723 6.873694 916.9501 .155616° 0.881999 0.364586, 1.79989 0.084277 .471981 0.024449|
Avg. Time 76.74614 75.35418 95.28828 77.06109 76.63067 87.14379 7.09069 114.64403 106.56940 88.97466 97.60864 73.68705 103.24306 79.27807 64.68234 78.69122
Case 2 SGO MSGO ISGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
Fit 0.140238 5.154001 0.139911 0.141577 0.141878 0.140605 0.14042 0.140506 0.81915 0.140687 0.139454| 0.14073 0.140533 0.139465| 0.140332 0.139812
FC 972.3689 883.1619, 888.0677 870.1798 938.5162, 880.3212 907.7723 860.3001 897.375 879.5503 923.1893 945.2026 878.7784 914.7841 893.6888 864.7808
Best E 0.213919 0.635693 0.264132 0.435438 0.266644 0.251336 0.252479 0.340031 0.262363 0.28102 0.263954) 0.236746 0.341194 0.264215 0.257877 0.367517
P Loss 4.10844 18.31727 6.403909 14.30844 6.154964 6.466715 6.073045 8.950745 7.033266 7.14045 6.630546 5.850191 8.866962 6.809632 6.709671 8.95387
VD 0.750277 1.357374 0.79802 1.113533 0.253067 0.74133 0.59773 0.732463 0.626344| 0.481557 0.773265 0.554557 0.606568 0.87015 0.460169 0.872247
L-index 0.140238 0.164514| 0.139911 0.161306 0.148939 0.140146 0.140419 0.140412 0.155354, 0.152408 0.139884| 0.145356 0.140524 0.13955 0.141438 0.139958
Worst 143887 8.128944| 1.824919 148657 0.149159 0.141501 .150093 0.143408 2.157401 .142087 141785 0.143329 0.141473 0.140318| 0.14140: 0.140514|
Mean 14222 7.521037 0.480964 143051 0.145275 0.141199 144379 0.141758 741884/ .141464 140726 0.141725 0.14111 0.139866 0.14090 0.140053
|Std. .00164: 2.061549 0.745774 003134/ 0.002841 0.000356 003608 0.001301 .954918 .000519! 000924/ 0.000973 0.00040: 0.000311 0.00046! 0.00¢ Sz(
Avg. Time 5.7822: 74.65869 9321251 5.14979] 75.07077 78.07716 0.12519 129.779 744318 7.61731 99.2763 74.8331 217.289 159.0977 63.7252. 79.45147
Case 3 SGO MSGO ISGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
Fit 0.214231 8.228349 .219793 209719 0.208951 0.220248 0.208789 .212696 0.27579 0.213123 0.209109 0.208769 0.208744 0.208748 .297011 0.208774
FC 969.7238 897.3902 67.6307 67.1108 9335113 947.6574 9749315 97.6064 909.348 923.174 983.2972 985.7148 980.4872 980.6407 96.8287 980.257
Best E 0.214231 0.72567, .219793 .507172 0.22308 0.220917 0.209821 726186 0.255167 0.24957 0.209109 0.209291 0.208744 0.208767 .238701 0.208734|
P Loss 5.096559 19.48416 4.617802 6.03924 6.050764 4.781059 3.894808 9.54034 6.208979 6.28473 4.534064 4.973743 3.629422 3.684992 703492 3.606105
VD 0.387082 1.375456 0.467958 1.159756 1.263273 0.328949 0.549713 1.454088 0.534656, 0.287089 0.340167 0.473036 0.822999 0.655815 0.236689 0.903189
L-index 0.158808 0.16381 0.151531 0.161813 0.162512 0.144346 0.149121 0.165655 0.153586 0.150582 0.14948 0.154709 0.141495 0.143852 0.15397 0.140792
Worst .27476/ .556144 .240337 0.224023 .255691 .302704 .319833 .230943 869485 228218 .231434 0.208891 0.225422 0.208767, .303756 0.208957
Mean 22954 .387805 .232081 0.214856 .218795 .254127 .254861 .221917 60966 .223725 .21403: 0.208818 0.21236 0.20876 298922 0.208872
Std. .02544; .518051 .009205 0.006753 020628 .036042 .040837 .007145 .053006 006062 .00974: 5.15E-05 0.007318 7.61E-06| 002825 6.82E-05
AVE.Time 138.3850( 150.77890) 177.52918 145.12104) 145.71301 150.09114 153.17129 190.36315 171.38312 139.27421 194.6871 148.57214 201.30660 157.98909 133.01630 146.00101
Case 4 SGO MSGO ISGO HS-WOA HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO |
it 5.553741 8.94997 4.074181 3.877234 3.873018 4.52239 5.753958 4.110825 6.553419 4.54532 3.576668 3.533186 3.542473 3.529788 5.092266 3.513195|
C 927.0897 890.221 982.3011 923.1866 949.1163 956.5536 901.8779 897.6042 871.1775 881.6896 994.398 994.7143 994.5315 994.4689 940.1532 994.3924
Best 0.227562 .669293 0.213487 .229271 223327 0.225823 0.256311 0.726181 0.270917 0.26823 209642 0.209659 .209637 0.20966 0.225763 0.209634|
Loss 5.553741 8.47003 4.074181 .612002 .084084 4.52239 5.746655 19.53976 7.005108 7.788369 582275 3.616495 .542463 3.550141 4.643554 3.514513
VD 0.378849 354075 0.433619 .952843 .862492 0.576898 0.408282 1.45363 0.520312 0.471739 .837178 0.81785 .877235 1.008291 0.286608 0.881501
L-index 0.157839 164324 0.154266. 158503 158111 0.145706 0.151916 0.165649 0.148067 0.162735 140139 0.140785 139968 0.140624| 0.150138 0.140809|
‘Worst 6.936551 9.155603 5.526557 5.656269 4.127091 9.309694 9.247071 6.73537 9.192385 5.386695 4.761731 3.596305 3.887071 3.575087 7.437347 3.640378
Mean 6.071761 7.567082 4.969309 4.476482 4.004234 7.246033 7.30909 5.274029 8.8103485 5.100594 4.190827 3.578142 3.675719 3.542276 6.800815 3.545532
|Std. 0.528554 1.315007 0.569346 0.751704, 0.101996 1.775808 1.46054 1.080752 748.6969 0.36308 0.544878 0.025574 0.175327 0.019282) 0.516903 0.053079|
Avg. Time 153.81099 160.13538 191.99149 170.20624| 160.14499 15347309 154.11508 191.00458 164.30966| 160.14838 213.89953 155.78886 202.29368 163.93187| 13132616 164.53972
Case 5 SGO MSGO I1SGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
Best |Fit 878.2331 2480.159] 881.6142 885.2875 887.0241 893.655 884.8203 879.5134 1022.117 887.2792. 877.8526 875.7404 873.852 873.3601 877.0551 872.8843
FC 843.7821 895.2583 845.4233 877.5124) 854.594 844.9668 850.1421 845.5223 866.6872 887.9042 845.9232 848.2295 843.5619 844.546 843.6492 842.6901
E 0.43019 0.699295 0.4249 0.56969 0.407602 0.357795 0.43089 0.432633 0.31444| 0.342889 0.438726 0.428809 0.442188 0.44175 0.429063 0.442874
P Loss 10.82281 19.07844 11.30924 17.44683 14.1357 9.152594 10.5186 11.40857 8.24158 1242575 11.61989 11.84344 11.3461 11.52565 10.64742 11.11823
VD 0.625333 1.331995 0.564282 1.185552 1.443495 0.383557 0.522245 0.405687 0.455104| 0.501561 0.205982 0.230899 0.502686 0.526654 0.386179 0.650641
L-index 0.146574 0.164519] 0.157914 0.162681 0.171533 0.147378 0.152434 0.151266 0.150231 0.155739 0.148751 0.150646 0.152654 0.144771 0.153781 0.142891
Worst 901.9726 18023.3 913.4064 903.5731 949.3066 905.7523 971.5128 908.4545 3712.405 891.5864 902.4197 879.1579 80.6285 874.6974| 890.2143 873.7989|
Mean 891.3593 7371.405 895.1541 8922354 911.8736 899.7542 906.6605 893.0876 716.593 889.3661 885.659. 877.4574 76.1877 873.925 882.5018 873.4211
Std. 8.492575 6410.772 14.28205 7.447905 31.05046 4.64662 6.5684 10.87556 116.146 1.892651 9.79075 1.39814 .870063 0.521496 5.098621 0.231754]
Avg. Time 155.69908 164.73543 198.54402 161.29712 159.05008] 154.63217 150.96084/ 199.37580 209.91275 166.94579 211.9517 159.09875 215.53678 172.59082 134.75815 160.93747
Case 6 SGO MSGO ISGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
Fit 1128.04¢ 493.714] 1113.637 120.257 1108.408 111591 1126.571 1100.085 1887.87 1120.71 1097.938 096.191 1095.911 1095.754 099.743 1095.933
FC 918.487 971196 882.387 62.9262 883.5738 891.6 914.6384 915.9175 924.573 869.4005 902.7166 96.7816. 899.0619 900.2565 94.8093 899.9919
Best |E 0.23329: 725025 0.246338 307839, 0.2553 0.258511 0.233552 0.390033 0.26625: 0.314905 0.233235 .234229 0.233154 0.232734 .237519 0.232652
P Loss 5.23896 9.41386 5.781239 0.68896 8.357056 5.651715 5.295126 24.82199 7.03681 8.685024 4.883755 .002323 4.921244 4.913702 327726 4.869358
VD 0.338801 1.352374) 0.542644 1.027756 0.962487 0.378745 0.395465 0.843099 0.566564| 0.421056 0.715838 0.904244 0.896749 0.822314 0.392368 0.899778
L-index 150313 .164238 0.155305 15986 0.15888 0.151419 0.154069 0.154125 0.143149 0.141692 142788 0.141508 14014 0.141016, 0.147623 0.140761
Worst 132.415 1112.37 1137.426 1156.053 1131.947 1175.594 1185.724 1140.818 4256.966 1155.381 144.093 1100.13 123.85 1097.98 1102.494 1096.343
Mean 129.197 8.232 1122.948 1140.316 1122.975 1153.719 1149.32 1113.946 2638.21 1134.865 109.151 1098.929 110.19 1097.071 1098.658 1095.177
Std. 866431 563.069 10.32187 13.64884| 9.649766 24.22352 23.30294 15.63412 977.107 12.96544 9.61783 1.62284 2.3815. 0.909251 9.370119 0.937232
Avg. Time 158.25576 162.94180 200.87973 157.69825 159.69406 150.08374 148.74970 198.66797 227.96105 161.96093 209.02621 147.16739 214.25765 173.72671 126.24888 164.54502
Case 7 SGO MSGO ISGO HS-WOA HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
Fit 860.134 865.1773 59.3909 859.8883 863.2451 870.2179 864.0402 858.7172 1625.613 66.2138 856.9671 53.7211 55.9981 853.7802 54.3421 852.2779
FC 844.8677 896.817 44.2298 857.2582 860.0125 852.1852 843.0093 890.1402 927.7239 53.1512 842.2838 39.8856 42.4945 842.7819 40.1487 842.1262
Best E 0.356156 0.724304| 346875 0.425675 0.448202 0.391203 0.34725 0.588346 0.261637 353399 0.38303: .387684 .382459 0.39314 .384003 0.378727]
P Loss 9.839039 9.33522 .034261 14.77547 14.57348 10.56138 9.159174/ 19.04348 6.330321 .53776! 0.35935 .817566 10.41775 0.82199, .844267 10.29822
VD 0.37093 279476 433365 1.149201 1.677211 0.18343 0.335666 0.435745 0.500875 .30675 148792 786975 0.135046 117268 0.38895 0.116209|
L-index 0.152673 163348 .151847 0.161777 0.190473 0.148214 0.144819 0.15802 0.151987 .15357. 148576 142611 0.150324 149365 0.143345 0.150708
‘Worst 872.9651 6464.89 67.2975 1455.96 974.762 885.0054 875.065 885.8723 4182.437 78.090 63.1857 55.8024 871.516 56.3639) 857.9126 853.3646|
Mean 866.3962 8060.087 861.9589 981.9235 898.328 880.3477 870.6265 867.4616 2657.564) 872.6355 859.1409 854.6916 861.2388 854.6024 855.4953 853.0805|
Std. 5.343617 5722.306, 3.228853 265.0171 46.04899 5.855914 4.217623 11.02671 1052.701 4.257293 2.607437 0.754186 6.191362 1.092911 1.427915 0.295509
Avg. Time 168.61468 158.34312 200.23106 150.94981 149.92205 148.62123 146.02795 189.51954 215.66227 162.67874 19731512 143.90148 217.03204 162.02432 120.75938 183.94840
Case 8 SGO MSGO ISGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
Fit 868.1086 1758.232 873.484 870.4453 881.827 862.0318 857.2719 855.8243 891.0266 857.5705 853.4199 856.4779 853.8629 853.1719] 858.9532 852.9959|
FC 848.3919 896.5817| 845.3992 855.485 857.0836 848.0405 842.8998 842.1831 889.1861 881.7165 839.4223 842.5438 839.8343 839.3996 845.434 839.0393
Best E 0.341221 720392 0.341877 0.348847 0.382133 0.355344 0.363693 0.35512 0.3225 0.292844 0.375613 .369946 0.38472 0.371966 0.337135 0.380442
P Loss 9.552348 9.31857 9.665467 11.05721 13.16475 9.273211 9.105654 9.171764 7.092829 10.86089 9.442264 0.07285 9.76031 9.338523 9.182169 9.503517
VD 0.197167 326935 0.281526. 0.8172 1.04979 1418872 658484 .649862 0.431722 0.47805 0.847769 .563992 .68722 0.785433 182927 0.90461
L-index 0.150133 164049 0.157047 0.157457 0.160545 143324 .140972 144174 0.151942 0.14079¢ 0.140438 157606 .14029 0.139672 147276 0.139828|
Worst 896.9414 15045.45 952.2177 884.1884| 936.5959 70.5104 61.0883 64.1067 2106.045 873.97 900.7776 862.209 55.73: 53.7093 67.4337 853.1502
Mean 878.5383 7699.034 905.128 875.3479 905.6385 66.6979 59.6046. 58.9434 1528.46 862.212 865.5607 858.0465 54.52 53.4467 61.9657 853.1092
Std. 11.38318 5584.911 30.61322 5.23184/ 9.6751 576969 445954 743219 504.4051 6.75024. 19.83904 2.383648 8454 .243385 .231067 0.036962
Avg. Time 74.19102 74.80112 91.81312, 76.03192 77.84499 148.12306 156.09400 179.39091 201.15003 163.0175 207.65160 73.91391 223.533 164.73050 64.26668 79.27672
Case 9 SGO MSGO ISGO HS-WOA HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
Fit 1031.752 1017.552 932.036. 1029.952 1026.04 1035.309 1029.85 1016.333 1187.342 1027.402 1015.696 1013.738 1018.537 1013.00 1071.75 1013.102
FC 877.3133 866.2665 97.1909 863.473 860.1092 861.0235 882.0869 933.3023 988.3316 857.408 8709711 880.9986 873.4487 871.4625 858.8177 870.15
Best E 0.258411 0.262029 .725195 0.313017 0.291676, 0.290263 0.258007 0.221686 0.211667 0.311735 0.255679 0.248655 0.255697 0.255242 0.287395 0.258022
P Loss 6.461801 6.280038 19.43238 10.50576, 8.745068 7.423596 6.070226 4.690929 4.664247 7.918642. 6.042255 5.955475 6.16131 5.931483 7.083063 5.943143
VD .350914 .387934, 370132 0.927805 793445 0.304102 .444464 723901 397814, 0.37637 .3417 0.32733 0.222992 0.334295| 328065 0.3027
L-index 156919 151347 .164593 .15877 .153892 0.148218 149714 .149709 .145055 0.151331 .1494; 0.148652 .14965 0.148688 144913 .149
Worst 052.332 038.087, 1128.29 1058.965 067.895 1058.819 047.698 041.574 607.641 1048.247 163.9 1017.07 1031.198 1014.469 080.307 014.4
Mean 038.564 028.932 729.397 1042.631 049.375 1043.91 037.244 023.745 026.854 1033.374 32.3. 1015.736 1023.742 1013.643 074.335 1013.62
Std. 8.310502 7.352866 1467.315 11.72958 17.4982 9.801351 7.508635 10.29596 672.3382 8.631743 18.75465 1.350849 5.073422 0.529019| 3.519092 1.100531
Avg. Time 159.09949 193.58818 154.05176 152.56939 142.63854 167.19561 154.40044 198.15335 248.91338 170.52744 197.55572 147.68027 213.85650 158.82472 120.83944 167.61422
modelling, scenario modelling etc. are available at Appendix. The formulation of the objective function for the two cases,
The constraints have been the same as described in Problem 1 1) Minimization of real power loss and ii) Minimization
and the constraint handling mechanism remains the same. of voltage deviation is provided in Table 48 (Appendix).
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TABLE 19. Tabulation of the best solutions with statistical analysis and computational times of OPF for the IEEE 57-bus system with EV loading for all the
algorithms in comparative analysis.

Summarization of the IEEE 30 bus system and the lower
and upper bounds for the optimization is given in Table 49
(Appendix). The 25 different scenarios, the variations in

Case 1 SGO MSGO 1SGO HS-WOA | HS-WOA+ | GWO WOA SMA ChOA CLPSO | L-SHADE GABC EPSO MPEDE_| MEGWO | ME-SGO
Fit 470905 115010.2 46364.7) 464838 47481.9 49033.1 464012 489872 63858.7 51073.2 45130.6 451802 49056.1 449873 453423 448793
FC 4624259 134164.7]  45833.16 140289.9 472121 4713371 4504092 4856092  45249.53]  46136.05 451375 45180.17]  45221.16]  45009.72]  46080.43]  44915.54
Best |E 1453652 8.053042 1.410286] 8567442 1.567351 138718 1.773077 1.634094 1.861071 1.477945 1.59845 1.628544]  1.710992 1.641273 1.480864] 1512167
P Loss 2017187 174.268 19.83188 1867311 25.72846 1925134 23.10664] _ 32.74108 21.2422] 2291329 24.5242 2262108 24.73187] 2169524 18.62161 22.16468
VD 1.406834] _ 2.825995 1.38134] 2916777 1.877069 1612153 133714 1.323802 2.18973 1.486883 1.293693 1.294587 1.672443 1.285127 1.196973 1.293303
L-index 037903| __ 0417674] 0377198 044385 0.375893] 0380455 03763 0373603] _ 0393493]  0.393102 0382950]  0361098]  0.359947]  0.379477] _ 0.378146] 0373453
Worst 590734 222062.7 94044.6 52760.1 54698.1 554254 489405 63878.9 92364.8 58866.8 454954 45961.7 69371.3 454154 463404 44973.1
Mean 514962 1737733 59646.9 488482 51962.6 53027.6 47885.6 53743.0 75587.2 562394 450614 454376 59026.3 451949 458472 44918.1
Std. 4563.136] _ 38429.76]  19703.03| 2342403  2766.652| 2660451 1059365 6355.929 17115 3199.117 9052[ _307.0161 8724.053 164.8337]  593.8976]  39.40538
Avg. Time 169.7605 176.6597] __ 204.8056] _ 172.7428] 173.538 1814059 2037693 210.0997] 3485163 101.6477 52.62 1612724 2194665 165.4529 144243 186.2052
Case 2 SGO MSGO 15GO HS-WOA | HS-WOA+ | GWO WOA SMA ChOA CLPSO | L-SHADE GABC EPSO MPEDE | MEGWO | ME-SGO
Fit 30.0322 59.8535 35.8590 22.9254 65.8626 54.9227 19.5598 278715 75.1066 21.9833 173141 20.8635 23.3301 17.8393 23.7076 16.1845
FC 51588.05 1337783] 6119405  47803.77]  47696.24] 4645642 46990.76] _ 52260.13| _ 59760.92 58998.4 470335 4567951 59245.16]  46124.34]  57481.67] 4506036
E 1.713413] _ 8.041967|  2.484898 1.801691 2.010015 1.674835 1.216049 1.660419]  2.939638 1.870395 1259756 1.569467 1.807923 1397845 2.162117]  1.625308
Best [p Toss 30.03222 174.9026]  46.26557]  24.78529] _ 26.61039 24.9002 19539 36.49298]  43.57137 45.8009 26.5915] _ 21.13611 433613 19.79394] _ 38.64849]  25.15457
VD 1.279893] 2939145 1473843 257813 2.093178 1449744 1415928 1.662238] 2214218 26745 1.6735 1295223 1.97114] 1472072 1272774 1.449709
L-index 0370784 0.442054]  0.386525| 0484658 0388629  0.384331 0370729 0376159 040333 039211 037942] 0.364563 0.37592]  0.366839] _ 0.368753| _ 0.378041
Worst 5516476 99.40319]  67.30893|  42.82655 90.2439]  85.86901| _ 44.31852 454557 92.1285 35.9751 197317 315223 34.64768 1921389 5673801 19.26557]
Mean 37.95052 753924 4657177 28.81901 84.81551 64.58915  33.15024]  36.98464]  84.03333 26.5727 187692 249572 29.85312 1851018 34.98646]  17.07139
Std. 22.64826 418723 28.18099 19.53468]  32.48402]  20.63963 16.0351 194125 12.85514 14.9029 20991 1031889 16.06642 1353669 23.008] 1466966
Avg. Time 18202 179.34 21181 176.09 176.46 184.76 206.04 212.25 353.03 104.69 16530 20138 22752 171.53 149.65 237.84
Case 3 SGO MSGO 1SGO HS-WOA | HS-WOA+ | GWO WOA SMA ChOA CLPSO | L-SHADE GABC EPSO MPEDE_| MEGWO | ME-SGO
Fit 1.584263| 2347749 1637904  4.716206]  2.486106] 2326635 1.535374 1.65505 238586] 2174092 1.145559 1.820006] _ 1.116403 1.597811 1276371 1.155284
FC 4889033 1389989 5076036]  73126.72] _ 45494.82 63004.4]  45403.66]  48758.85|  57011.84 574877 47248 81 48650.56 483519]  46596.08]  55641.73| 4783837
Best [E 144926 8.460674 1.637904] 3272099 1.857599 235149 1535389 1.656741 2.652791 1.947555 1.480697 1.855667 1.116408 1.485754] 2090685 1.12969
P Loss 125115 183.643]  2425213]  66.89155 559263 42.62748 0.11263| 3284056  42.17692]  46.70873 23.621 25.52614] _ 20.20402] 2079153 847429 18.3848
VD 221416] 2963311 1.44331] 2313383 195809 1.068173 459121 1431541 2.164381 1.843836 1.496539 1.168856]  1.561037 1647826 400673 1.198078
L-index 381758 0.424362]  0.378292[ 0391116 389161 0370686 377016 0384123 0.400656] _ 0.380166 0382349 0379038 0.364649]  0.376823 382027 0371551
Worst 3871553 5.171925]  4.452366]  6.679223 148881 4911068 470333|_ 3.570854] 4341919 435771 2334985 4.846499]  3.236296]  2.448925 1606286] 2115909
Mean 3.07622| 4753459 3212678 5711154 324038]  3.337047]  4.521741 2.767805]  3.674184]  3.788256 1611616]  3.578712]  2.493817 1.924228 1.961848 1515651
Std. 1.789805] 3507365 1.910253]  2.824249 243214]  2.409467]  3.330986 1258408 2455043  2.822602 0459284 2137514  1.559347]  0.917704 1.01279] 0963511
Avg. Time 17355 178.66 209.99 17596 176.93 184.93 206.11 214.50 351.09 103.24 16442 198.22 23023 171.08 148.19 197.75
Case 4 SGO MSGO 1SGO HS-WOA | HS-WOA+ | GWO WOA SMA ChOA CLPSO | L-SHADE GABC EPSO MPEDE | MEGWO | ME-SGO
Fit 48670.6] 1229287 49605.1 502328 497514 49271.1 47566.8 489262 655614 52684.9 472602 46808.0 485323 470008 475306 469053
FC 4650655 9761531 4672649 47257.6]  47261.19]  46872.56] 4515843  44916.66 474734 4759028 4523332 45071.52]  45225.22 45008.0 460083]  45040.09
Best |E 1.44246]  5.238261 1513071 1.484517 1.618087 1.596128 1421257 1.556245 1.944545 1.591843 1.693077] _ 1.428393 1.805315 1.625566 1.560156 1420811
P Loss 21.64009]  108.6983]  21.64523 20865  25.05174] _ 23.12586 19.72161 20.12882] 2247676 3036122 20.33981 21.30668 23.6475 21.0545 1920352 20.15759
VD 1439574 2.844386] _ 1.102612]  2.051375| _ 2.172268 122607 1.273997 1.535769|  2.284318] 2616786 1337142] 1393597 1.698037 1.373977 1.434851 1.242456
L-index 0376203 0425504 038145 0.364621] 0381959 0369787  0.382437]  0.378613] _ 0.397218] 0416715 0373134] _ 0.369802 035744]  0.375076]  0.384662] _ 0.372958
Worst 725723 2373228 69637.1 607322 58980.4 57510.8 50845.3 529014 101130.1 60683.9 573268 47887.2 66524.0 50406.5 48967.6 484710
Mean 60701.1 181004.1 57034.2 57387.9 534734 53389.0 494115 50929.9 830116 55784.3 50629.2 47419.0 56823.9 48193.0 48159.8 473555
Std. 9919.429]  45875.13]  9096.789 41118 3695.228]  3461.838 1624.754 1673.96 1580089 3471.658 4275382 390.8797 6568.65 1407.134| _ 5724356] __ 746.7003
Avg. Time 235.05 26131 283.61 257.90 263.35 27057 305.91 311.95 524.06 15121 285.61 241.71 332.64 24720 22120 256.10
Case 5 SGO MSGO 1SGO HS-WOA | HS-WOA+ | GWO WOA SMA ChOA CLPSO | L-SHADE GABC EPSO MPEDE | MEGWO | ME-SGO
Fit 514359 1417911 467012 474938 48076.9 462779 46528.7 472089 87144.6 50851.5 45695.6 45082.1 55449.1 453132 459418 44990.1
FC 481074]  129474.1 4655342 48131.53]  46527.57|  46011.26] 4632497 466544 51183.12] 5559937 45522.76]  45407.63 455106] 4574244 45401.7] 4489931
Best |E 1521617 7.657626] 1382187 1540015 1.685159 1.698608 1.460346 1583475 223443 1.89572 1.727919 1.36341 1.788605 1.635294 1.636324] __ 1.487879
P Loss 22.19091 165.4258 1833647 2570182  30.35684]  25.89103|  22.61932|  20.86886]  31.86871 4629041 23.19437 1918309 24.11444]  26.19838]  23.47226]  21.46148
VD 1.575845|  2.844244]  1.284318]  2.207762 1381912 1.400939 1430554 1486759 2303997  2.978235 1523155 1.539392 1.938163 1.175802 1.29394]  1.320027]
L-index 0372872 0437289]  0.375636]  0.381283| 0380255  0.372448] _ 0.380509]  0.373132] _ 0.389861 0.422588 0376115 0367341 0373185 0376772 _ 0.380136] _ 0.371187
Worst 593974 2032623 57912.1 54947.6 713525 52202.8 52161.9 532218 1157863 64183.6 471128 455172 737844 457833 46682.5 45826.0)
Mean 545238 169648.9 537755 499093 545703 49137.1 491004, 50455.1 98296.8 58027.0 464329 452535 629585 454672 463518 45212.1
Std. 2990.063| __ 24505.61 4240.638|  3255.854] 9720825  2554.359 2281.52] 2651641 1339583 4854.977 706.9567 166.1306] _ 9716.819 183.1974]  265.8783| 4094793
Avg. Time 23193 26629 309.50 263.71 256.14 27245 309.49 321.64 52052 153.25 288.00 24522 32876 24785 217.89 24836
Case 6 SGO MSGO 15GO HS-WOA | HS-WOA+ | GWO WOA SMA ChOA CLPSO | L-SHADE GABC EPSO MPEDE_| MEGWO | ME-SGO
Fit 47474.1 105300.5 457653 456713 46378.1 49814.7 472165 473233 80601.9 505874 45553.6 451270 496035 45182.1 458183 44956.5
FC 4733244 1212957 249798 5116941 50143.98]  47895.14]  46044.18 470572]  49933.87 543802 452586 455025]  47377.56 45074.7]  49555.12]  44857.83
Best [E 1.815622[  7.033547 1.449553 1.877232 1.882888 1.541269 1475116 1.367982 2.16680 1.52811 1.76377 1.605782 1.200034] 1711811 1.44670 1.45100
P Loss 26.89475 159.0813]  21.39951 2887124 27.7841 22.06131 19.92621 25.8620 29.0436 33.9974 23.6628] 2731383 189578]  25.10935] 2400335  21.35757
VD 1.416787]  2.506798 1.283404 225081 21471 1.426042 1.39421 1308156 234142 229961 1.43865 1.153169 1.613887 1303191 1.256158 1.27495
L-index 0372245 0441035]  0.375275|  0.389799] 0380525  0381716] _ 0.372098] _ 0.381435 039329 044291 037282 037798]  0.367412[ _ 0.367235] 0371882 0375976
Worst 62987.5 180316.2 70984.3 54156.2 524022 619568 51287.5 51798.1 97973.6 63046.1 46686.2 479757 671374, 454244 491535 45183.7)
Mean 580217 148394.1 55258.8 49344.2 489134 52980.4 49043 4 49435.1 89084.5 55838.6 46383.0 457459 57352.8 452495 46314.3 45039.5
Std. 6737.604| _ 35287.66]  9901.876]  3081.287]  2223.012] 5118491 1764.901 1695.427]  6486.714 5043.1 2029 1248.029] 8401912  57.72317 1330.906] 1058475
Avg. Time 264.18 265.72 308.58 257.58 256.67 269.13 306.63 319.78 505.53 151.25 291.06 239.64 329.06 24598 21202 263.02
Case 7 SGO MSGO 1SGO HS-WOA | HS-WOA+ | GWO WOA SMA ChOA CLPSO | L-SHADE GABC EPSO MPEDE_| MEGWO | ME-SGO
Fit 52430.8 103175.2 48665.1 48610.8, 50282.9 48604.6 459735 47537.1 63602.5 524567 45969.1 449055 56022.0 450723 45688.0 449149
FC 49136892 128475.841] _ 47039.605]  63402.201] _ 46032461| _ 47596.034] _ 45919.858] _ 46291.792]  49564.711] _ 69167.833|  45949.519|  45165.958]  47582.172]  45159.838] _ 45595929] 4486846
Best [ 1.4974221| 7.62654753|  1.4813886]  2.554184] 14764533 1706522 1.4456519]  1.4767864]  2.1744233| 26011265 15884438  1.7173888  1.2495829]  1.7104115]  1.5280845 15153
P Loss 24.37322| 165907912] 18575179  50.321316] 23590073 29.164869]  19.567665|  21.432282|  29.769652|  68.000086]  23.924689]  27.093766] 21.571937|  27.503934|  20.810063|  20.648351
VD 13035133 2.61880175]  1.8025118] 2.3099044]  2.330449| 14214223 1.2397036]  1.5107243] 2.1775215|  1.6944507| 12039229  1.6749556]  1.9427552 1.3711188]  1.1323834] 15308575
L-index 03676725 042991643 0.3784037| _ 0.396772] _ 0.3846547| 03707335 _ 0.3872429] _ 0.3679003| _ 0.4051225] _ 0.376428] 03770062 _ 0.370031] 0377474 _ 0.3686529]  0.3775691| _ 03876748
Worst 91020.9]  176095.9 694233 63304.8 675725 60873.9 483603 52868.8 307432 617538 49154.5 465552 67908.2 454857 48636.2 44983.0)
Mean 67345.0] 1434364 56897.2 55445.0 547093 53968.7 47144.1 493946 709722 55426.3 478655 455053 62480.8 452023 472004 449447
Std. 14906482 30422.1844]  7760.1553]  6148.5291|  7291.8561| 4788.5714]  904.49738| 2351.4124]  6921.4323|  3793.6347|  1202.9422| 634.22811] 56937494 164.11823]  1115.3282|  35.679722
Avg. Time 26192 26449 301.08 25517 25545 269.06 308.88 308.94 50247 150.04 285.30 239.22 32737 245.72 21202 28551
Case 8 SGO MSGO 15GO HS-WOA | HS-WOA+ | GWO WOA SMA ChOA CLPSO | L-SHADE GABC EPSO MPEDE | MEGWO | ME-SGO
Fit 087489 1314177]  0947386]  0.867118]  0.877342 0.76481 0930045 090522 1334332 0967618 0.76900 0.79554]  0.738848]  0.725267|  0.766733| _ 0.698257
FC 7746727 139558.1 7138394 64014.34]  46283.96]  54454.68|  48588.33|  76080.18]  51055.86 59361.3 51174.37]  60242.97]  52919.11 4632847 49056.64 46393.1
Best |E 3531291 8503072 2.953806]  2.457907 1437213 1.774682 1451649 3.491641 2.151557] 2018588 2205882 2.477028 1742531 1817771 1.534486] 1741472
P Loss 68.71333 185.8973|  60.32383|  54.00544]  22.78219]  42.02103| 2512552  84.50794]  40.86976]  49.66917 3721704 51.10564] 3039233  39.76151 62.80557|  42.41244
VD 0.87489 279196] _ 0.947386] 1514162, 1.804974] 0775069 _ 0.960903[  0.957758 1.541778]  2.475228 0.774521 0.888123]  0.738889]  0.825756 1.132536] _ 0.730941
L-index 0366155 0431231 0381752 0374121 0378877] _ 0371269]  0.362797]  0.375848] _ 0.388543| 0423943 0366919]  0370958]  0.374678] _ 0.371455| _ 0.376177] 0376513
Worst 1.06290]  1.647234 1157475 1.007057 1.083967] _ 0.796809 1.072034 1121556 1.445233 1.105013 0.877273 0.89685 1018463 0.806681 0877312 0.715857
Mean 098140 1495167 1.014351] 0945841 0989432 078408 1.007912 1.057076 1.39395 1.041196 0.828977]  0.836225]  0.881658]  0.763481 0.818537] _ 0.705231
Std. 0.071406] _ 0.127539] _ 0.085375] _ 0.051338] _ 0.084904] _ 0.012927] _ 0.057033| _ 0.086519] _ 0.044439] _ 0.053894 0.040889]  0.041289]  0.119936] _ 0.032058] __ 0.054105] __0.007561
Avg. Time 25322 263.80 301.46 256.54 254.19 26831 307.18 314.55 50024 150.00 28237 23721 33031 243.16 20144 286.74
Case 9 SGO MSGO 15GO HS-WOA | HS-WOA+ | GWO WOA SMA ChOA CLPSO | L-SHADE GABC EPSO MPEDE_| MEGWO | ME-SGO
Fit 50702.1 104515.3 51490.8 47186.1 51049.0 47741.6 461175 45749.4 69141.6 541200 46463.9 455312 593114 453884 45864.1 453212
Best [FC 4697132 126614.7 457947 519638 45622.36] 4719602  45356.75 45247.1 467235 49382.92 4605238 45111.76]  45213.15]  45064.27|  45757.13| 4492824
E 1.600995] _ 7.338807 1.736301 1.895413 1456291 1.576782 1.794756 1.679243 1.852101 1.608671 1.433802 1.449611 1.740641 1.39431 1.655189]  1.595312
P Loss 2568659 168.1893]  25.80581 31.52395]  22.02106]  22.54173]  2230179] _ 23.01131 2030871 26.91048 2184252 21.1591 2570048 21.38334]  27.93819] 2329527
VD 1.613216]  2.836551 1.496675| 2196883  2.046321 1.308957 138518 1.270981 2.164107 1.770673 1237652 1.218376]  2.007308 1641555 1337391 1.55910
L-index 0376609 0.449168]  0.392765|  0.383004] 0366554  0.385463] _ 0.377006 036439]  0.398163] 0358431 0373793] 0367032  0.359205]  0.373784] _ 0.369776] _ 0.376258
Worst 70591.0]_ 176879.6 66496.1 562373 53494.9 52791.5 52318.7 52885.5 118956.7 60470.0 545214 461064 74780.9 46287.0 472879 45546.8)
Mean 58749.2 142622.5 58107.6 50083.1 526323 50236.3 47980.0 483520 83768.1 580164 484634 45856.4 691005 455095 46469.9 453925
Std. 7487.646] _ 25681.03]  6728.882|  3573.293 973.627 1920.082]  2472.547]  2830.778]  20266.26] _ 2660.907 3433.926] 2549736 6044.952[  208.1156] _ 591.8971 104.5972
Avg. Time 25122 26148 311.03 256.55 25545 27296 30239 302.36 487.32 150.75 294.89 23858 32644 248.34 210.25 292.84
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loading and renewable power and the scenario probabilities
are given in Table 50 (Appendix). The decision variables
for the best-performing algorithms for all the 12 scenarios
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FIGURE 1. Daily load curves with various levels of EV loading at VIT
campus.

are given in Table 51 (Appendix) followed by the decision
variables for the best-performing algorithms for the next
13 scenarios in Table 52 (Appendix) respectively.

Optimization of two cases i.e., minimization of real power
loss and voltage deviation respectively with 19 decision vari-
ables for 25 cases is done through the 16 algorithms. The
number of function evaluations has been set to 20,000 and
30 independent runs have been set for all the algorithms. The
best results for 25 scenarios have been tabulated in Table 20.
In Table 20, P Loss denotes the real power loss in MW,
VD denotes the voltage deviation in p.u.

Analysis of Results:

1) ME-SGO had the best performance for 13 out of the
25 scenarios and ISGO had the best performance for
8 cases respectively. The ORPF with uncertain EV
loading and renewable power is a complex optimiza-
tion problem and can be the most demanding on the
optimization algorithm. For the same power loss and
voltage deviation, there could multiple combinations of
decision variables on account of the high non-linearity
associated with it.

2) It is necessary for the algorithm to be quickly able
to explore the search source to determine the feasible
areas and exploit it sufficiently to ensure a better result
for all cases. ME-SGO in this regard has been good at
covering the various feasible zones and quickly con-
verging to the global best solution. The learning rate
has been crucial to adapt to these multi-constrained
landscapes and prevent an early entrapment.

3) HS-WOA performed poorly for most of the cases
as it does not include multiple adaptive strategies
and measures to strategically adapt to the complex
landscapes.

C. OPTIMAL DYNAMIC CHARGING (0ODC)

The third problem in EV optimization is the dynamic opti-
mization strategy of EV charging based on [55] with 3 lev-
els of EV loading. The grid data considered is based on
the average loading data of Vellore Institute of technology,
VIT-Campus, Vellore for a period of over a month depicted
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FIGURE 2. Flowchart of ME-SGO.

in Figure 1. The objectives with the current problem are to
lower the power curtailment i.e., Minimization of power devi-
ation from the actual load to the ideal load and improve the
degree of satisfaction of the EV owners while the constraints
include the EV charging power limits, battery and SoC limits,
transformer and branch power transmission limits etc. The
mathematical model, simulation details and constraints are
provided in Table 53 (Appendix).

In the current model, 3 cases of EV loading i.e., I00EVs,
200EVs and 300 EVs are considered as the additional load
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TABLE 20. Tabulation of the best solutions of ORPD for the IEEE 30-bus system with EV loading for all the algorithms in comparative analysis.

SGO I1SGO MSGO HSWOA HSWOA+ MEGWO GABC CLPSO EPSO MPEDE L-SHADE _|GWO WOA EMA ChOA ME-SGO
s1 PLoss 1.932971 1.929629 2.635937 2.545767 2910331 2.053861 1.918048 1.912805 1.903143 1.823973 1.807311 1.872238 1.810626 1.834286 2.029472 1.272131
VD 0.198797 0.149998 0915121 0.796091 0.56602 0.183419 0.112141 0.499419 0.162914/ 0.181687 0.100303 0.12888 0.172939 0.178485 0.637095 0.079769|
s2 PLoss 3.034607 2.911068 4.02092 3.261284 3.831528 2.912598 2.939793 5.386464 5.478234 4.98187 5.100201 5.035536 5.03191 13.61675 5.350959 2.385291
VD 0.108001 0.186065 0.891866 0.462253 0.750468 0.177401 0.147563 0.467235 0.436899 0.280665 0.232322 0.290414 0.310049 0.889528 0.481416 0.10425
s3 PLoss 4.050435 4.018547 5.56512 5.481558 5.215132 3.962584 4.189747 4.45478 4.508071 4.083299 4.16278 4.24444 4.247537 4.197261 4425146 4.073138
o VD 0.226095 0.237933 1.001946 0.854046 0.91595 0.261811 0.203121 0.601284 0.432995 0.304434 0.220081 0.200693 0.218107 0.244802 0.607802 0.300165
s4 PLoss 5.121291 5.005016 7.144435 6.933936 5.776784 5.163818 5.047568 5.515535 5.361118 5.001507 5.025104 5.242311 5.151873 7.180748 5.346155 5.008897
VD 0.287569 0.355815 1.242914] 0.999261 0.245351 0.25677 0.303228 0.779034 0.44091 0.328735 0.314506 0.237176 0.286075 1.623881 0.659814 0.288696
s5 PLoss 2.286954 2.239111 3.081891 2.973421 2951506 2.325981 2.325929 2.328858 2.389046, 2.244215 2.258494 2.249694 2.248763 2.25476 2.833351 2.224851
VD 0.119634 0.125692 0.772443 0.652224 0.632727 0.171576 0.175292 0.309516 0.081013 0.106733 0.09226 0.140925 0.140738 0.091981 0.506008 0.098317]
s6 PLoss 3.390527 3.293096 4.539185 4.415615 4.399017 3.25084 3.252435 8.760638 8.670653 7.92667 8.015465 7.984193 7.967401 8.154562 8.642578 1.447803
VD 0.175959 0.140274] 0.946991 0.805703 0.618252 0.172625 0.152564 0.638255 0.543061 0.308051 0.311256 0.362066 0.363704 0.274356, 0.339196 0.103240|
§7 PLoss 1.989736 1.983439 2.753536 1.940648 2.560121 1.977352 3.077462 3.242586 3.389104 3.162368 3.003847 3.160032 3.144108 3.0674 3.448322 1.214170|
VD 0.134996 0.133103 0.798072 0.429147 0.707025 0.125744 0.265814 0.492368 0.528928 0.280143 0.193155 0.124587 0.136362 0.159601 0.424843 0.193152
S8 PLoss 1.141306 1.090563 1.601544 1.506319 1.522143 1.65846 1.226584 2323261 2.346949 2.27332 2.154397 2.2919 2.248363 2.280959; 2.343086 1.950551
) VD 0.086546 0.070346| 0.721633 0.589116 0.539044 0.148342 0.200648 0.439583 0.187689; 0.12606 0.260392 0.156464 0.135609 0.107132 0.682068 0.079359
) PLoss 3.839295 3.805768 5.426217 5.209118 5.24395 3.805169 4.662669 3.89672 3.781944 3.538782 3.568678 3.70476 3.70494 3.538519 3.94805 2.360044
VD 0.226823 0.324267 1.234898 1.04583 0.742731 0.262616 0.465464 0.537731 0.728631 0.251918 0.215254 0.142626 0.139281 0.270207 0.65813 0.150974
s10 PLoss 6.814422 6.560179 9.221888 6.830912 9.101093 6.568557 6.676938 3.192303 3.445345 2.975293 3.044854 3.066962 3.019415 4.226896 3.190877 4.316651
VD 0.228835 0.337514 1.090287 0.423508 1.339842 0.302907 0.282563 0.448578 0.682059 0.186337 0.12894 0.172523 0.165084 0.925048 0.569316 0.333765
s PLoss 7.285111 7.170113 10.18293 10.09424 8.230743 7.138713 7.434624 2.103569 2.101277 2.03624 2.023726 2.046331 2.008073 2.809689 2.059152 0.927722
11 VD 0.268623 0.331752 1.25114 1.14634 0.396926 0.361588 0.219448 0.510754 0.095795 0.084278 0.155742 0.120506 0.133489 0.907331 0.448002 0.048104
s12 PLoss 1.802195 1.755863 2.475999 2.374096 2.420357 1.734714 1.855751 1.548686 1.525406 1.463571 1.461345 1.504354 1.489039 1.490994 1.680906 1.174276,
VD 0.105223 0.118498 0.784828 0.616257 0.728642 0.169616 0.153577 0.495822 0.088003 0.08686 0.093472 0.147833 0.126791 0.145714 0.490055 0.082227
S13 PLoss 1.851006 1.755857 2.406851 2.246572 2.371681 1.879733 1.796959 4.706261 4.716069 4.357286, 4.343612 4.450841 4.441455 6.268629 4.648865 1.781345
VD 0.121314; 0.086189 0.638227 0.604262 0.543867 0.193533 0.091846 0.679503 0.502908 0.286516 0.292968 0.264514 0.245298 1.265736 0.499669 0.073202
s14 PLoss 2.656599 2.469085 3.473983 3.430008 3.139891 2.464964 2.502635 3.759602 3.529041 3.409013 3.4928 3.595024 3.48801 3.38585 3.569835 2.844847
VD 0.104897 0.226025 0.797188 0.666531 0.395873 0.238173 0.141584 0.471429 1.055427 0.235003 0.152769 0.133578 0.201524 0.287583 0.70434 0.131042
s15 PLoss 0.855361 0.786201 1.211928 1.214002 1.216695 0.802893 0.922211 7.244401 7.264662 6.645432 6.633843 6.787607 6.760767 6.658298 7.113343 2.429782
VD 0.065856 0.105743 0.526076 0.494324 0.5743 0.088033 0.379619 0.658685 0.459197 0.409473 0.277644 0.274493 0.37045 0.328217 0.502298 0.099792
s16 PLoss 3.33883 3.212729 4.395847 4.356915 4.272798 3.121005 3.232748 3.227419 3.296063 3.025668 2.964146 3.071703 3.00211 2.998384 3.347443 1.828701
VD 0.155376 0.143366 0.979574 0.903694 0.722348 0.287702 0.113599 0.434201 0.081484 0.173131 0.211939 0.158381 0.204347 0.214506 0.523215 0.087598|
s17 PLoss 3.107156 3.040167 4.283999 3.116984 3.826696 311164 3.426614 2.431957 2.435403 2.367062 2.334645 2.356833 2.316162 3.255189 2.728368 1.749486
VD 0.277889 0.303713 0.925192 1.146546 0.432349 0.175227 0.119076 0.347192 0.185815 0.109249 0.125139 0.151824 0.139186 0.890467 0.550189 0.088672
s18 PLoss 4.503983 4.383404 6.17592 6.049884 5.405976 4.495184 4.593919 1.459092 1.427615 1.440354 1.392526 1.427021 1.400719 2.080497 1.672819 1.792577
VD 0.313412 0.365397 0.89148 0.696642 0.606691 0.192799 0.146378 0.465867 0.096833 0.163955 0.100518 0.140483 0.142421 1.03589 0.648113 0.12625
s19 PLoss 2.154121 2.059824 2.939623 2.851163 2.884273 2.101232 2.150284 2.159701 2.202006 2.056937 2.095277 2.142969 2.068944 2.930009 2.305237 1021149
VD 0.108327 0.238906 0.855344 0.714645 0.778489 0.177179 0.136751 0.335823 0.083416 0.135803 0.083819 0.119535 0.105888 0.884103 0.569699 0.082698
$20 PLoss 3.827775 3.872621 5.338196 5.333235 4.762114 3.810682 3.867942 2478729 2.462797 2.382787 2348174 2.406634 2.289443 3.357834 2.453255 2.240514
VD 0.327862 0.249712 0.902199 0.887312 0.455082 0.313254 0.248009 0.557394 0.284875 0.113053 0.120709 0.124417 0.253808 1.016908 0.646436 0.087961
s21 PLoss 0.913847 0.808554| 1.247455 1.01399 1.142741 0.845886 2.369438 3.962935 3.96641 3.640292 381112 3.831252 3.749689 3.698089 3.945832 3.546075
VD 0.178804 0.053719] 0.588724 1.339684 0.485596 0.114285 0.202575 0.443355 0.40396 0.332624 0.176232 0.186432 0.319769 0.281261 0.653483 0.213248
s22 PLoss 1.671204 1.650933 2.334466 2.29353 2.172087 1.748394 1.642929 2.481381 2.515785 2.414473 2.441825 2.482936 2.439284 2.412195 2.44764 1.882837
VD 0.154236 0.126303 0.909153 0.828443 0.553282 0.147601 0.154896 0.432517 0.193513 0.221046 0.10165 0.143014 0.116392 0.113182 0.582481 0.132173
<23 PLoss 3.529168]  3.371869]  4.796614 3461212 5.045929 3.458185] _ 3.472509 1.889181 1.888849 1.834584 1.814342 1.827532 1.796291 1.779429 1.894392]  2.014286)
VD 0.150612 0.27852 0.873188 1.17193 0.482619 0.185568 0.205268 0.405637 0.089744 0.093478 0.090991 0.138747 0.149605 0.156463 0.806631 0.161605
<24 |PLoss 1.995408] _ 1.976460] _ 2.753628] _ 2.660848 2.558383 1.999088 3.27234] _ 3.131247 3.24859 2.94712]  2.896174] 3.011492]  2.960594]  3.041809]  3.393585  4.233568
VD 0.13713] _ 0.156287| 0.92767|  0.759748 0.855368 0.134269] _ 0.136567| _ 0.384725] _ 0.070696] _ 0.125078 0.194749]  0.147166] _ 0.161156] _ 0.125712] _ 0.428606]  0.422484
$25 PLoss 3.33787 3.206056 4.587765 4.420839 4.509799 3.342147 3.204957 4.022699 4.027331 3.700981 3.918119 3.77492 3.9348064 3.724272 4.376438 2.225839]
VD 0.242227]  0.283588]  0.922232]  0.630881 0.885908 0.121437]  0271207]  0.583483]  0.378261]  0.261458]  0.124275]  0.292347]  0.285487] 0.278223]  0.572486]  0.118801
TABLE 21. Tabulation of the best solutions with statistical analysis of ODC with 100 EVs for all the algorithms in comparative analysis.
Case 1 (100 EVs) SGO MSGO 1SGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
F 22.71266 22.72253 22.73018 22.74626 22.63343 22.68725 22.63225 22.63153 22.74269 22.63705 22.6834 22.69211 22.64236 22.62973 22.68626 22.62964
Best |P 5.6696E+07| 5.6763E+07| 5.6782E+07| 5.6791E+07| 5.6516E+07[ 5.6675E+07| 5.6526E+07| 5.6524E+07| 5.6767E+07| 5.6516E+07| 5.6665E+07| 5.6677E+07| 5.6546E+07| 5.6531E+07| 5.6658E+07| 5.6526E+07
EVe 86 85 86 86 85 85 86 86 87 85 86 85 86 86 86 86,
F 22.7127 22.7440 22.7489. 22.7463 22.6378 22.6976 22.6333 22.6355 22.7455 22.6372 22.6912 22.6956. 22.6450, 22.6389 22.6914/ 22.6363
Mean (P 5.6717E+07| 5.6811E+07| 5.6829E+07| 5.6805E+07| 5.6535E+07| 5.6687E+07| 5.6536E+07| 5.6539E+07| 5.6808E+07| 5.6541E+07| 5.6685E+07| 5.6693E+07| 5.6560E+07| 5.6549E+07| 5.6681E+07| 5.6537E+07
EVe 85 84 84/ 84 84 83 84 84 85 84 85 84/ 85 84 85 85
F 227127 22.7562 22.7678 22.7463 22.6407 22.7020 22.6340 22.6382 22.7478 22.6376 22.7002 22.7091 22.6458 22.6446 22.7038 22.6407
Worst | P 5.6738E+07[ 5.6847E+07| 5.6876E+07| 5.6822E+07| 5.6558E+07| 5.6711E+07| 5.6542E+07| 5.6552E+07| 5.6826E+07| 5.6551E+07| 5.6707E+07| 5.6729E+07| 5.6571E+07| 5.6568E+07| 5.6716E+07| 5.6558E+07
EVe 84 83 81 83 83 82 83 81 83 83 84 83 84/ 82 84 82
std F 2.46E-05 1.40E-02 1.42E-02 3.18E-05 3.95E-03 6.56E-03 9.36E-04 3.58E-03 2.61E-03 2.18E-04 7.33E-03 7.56E-03 1.46E-03 7.77E-03 7.77E-03 6.01E-03
td. P 1.8940E+04| 3.0789E+04| 3.5267E+04| 1.2233E+04| 1.6105E+04| 1.5757E+04| 6.6354E+03| 1.0173E+04| 2.3772E+04| 1.4479E+04| 1.8330E+04| 2.0673E+04| 1.1333E+04| 1.6813E+04| 2.3746E+04| 1.3400E+04
Avg. Time 260.231343| 253.736602| 247.207147] 292.273444] 269.194838] 277.414758| 291.296135 30236924 351.428327) 281.693554| 288.754031| 275.790107| 288.137164| 298.989763| 251.379349| 298.786541
and are set to arrive at the campus during any period of the day Analysis of Results:

with the morning times being the most crowded. It is assumed
that each EV requires 6kW of charging power from the grid.
The optimization of the power demand for every 15 minutes
starting from 08:00 Hrs. to 20:00 Hrs. is performed and
it is assumed that the EV’s have a battery level randomly
distributed between 0.1 and 0.9 with randomized charging
times.

For the three cases considered, 20,000 Function eval-
uations have been set with all the 16 algorithms given
30 independent runs. The tabulation of the best solutions with
statistical analysis and computational times of ODC with
100 EVs, 200 EVs and 300 EVs for all the algorithms in
the comparative analysis are given in Table 21, Table 22 and
Table 23 respectively. The notations F, P, EVc stand for the
fitness value, power curtailment minimized and the number
of EVs fully charged.
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Case 1 with 100 EVs had ME-SGO followed by
MPEDE deliver the best performance in terms of min-
imization of the total cost function and a higher degree
of satisfaction among the EV owners. ChOA on the
other hand recorded the highest number of EVs fully
charged although the cost function was higher com-
pared to that of ME-SGO and MPEDE.

L-SHADE dominated case 2 with the best cost function
and highest number of EVs fully charged. Although
ME-SGO had the least power curtailment, the DoS was
lower compared to the other algorithms.

In case 3, a competitive performance was noted
between ME-SGO and EPSO with ME-SGO outper-
forming EPSO by a small margin.

All three cases recorded a competitive perfor-
mance with the 16 competitive algorithms with the
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TABLE 22. Tabulation of the best solutions with statistical analysis of ODC with 200 EVs for all the algorithms in comparative analysis.

Case 2 (200 EVs) SGO MSGO ISGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
F 22.7804 22.8668 22.9940 22.9839 22.7559 22.8798 22.9494 22.7674 22.8476 22.8721 22.7415 22.7545 22.7353 227511 22.8711 22.7545
Best |P 5.6864E+07| 5.7085E+07| 5.7418E+07| 5.7317E+07| 5.6831E+07| 5.7079E+07| 5.7332E+07| 5.6782E+07| 5.7078E+07| 5.7043E+07| 5.6810E+07| 5.6771E+07| 5.6797E+07| 5.6810E+07| 5.7137E+07| 5.6755E+07
EVe 137 142 138 143 147 140 145 141 143 138 145’ 142 145 142 143 136
F 22.8480 22.8924 23.0335 23.0323 22.7862 22.8835 23.0261 22.7744 22.8821 22.9001 22.7653 22.7606 22.7782 22.7671 22.9045 22.7626
Mean (P S.6971E+07| 5.7156E+07| 5.7498E+07| 5.7456E+07| 5.6894E+07| 5.7136E+07| 5.7459E+07| 5.6846E+07| 5.7164E+07| 5.7134E+07| 5.6844E+07| 5.6834E+07| 5.6866E+07| 5.6863E+07| 5.7183E+07| 5.6809E+07
EVe 136 141 137 141 145 139 143 138 142 137 143 140 144 141 142 134
F 22.8649 229129 23.0598 23.0444 22.8010 22.8860 23.0453 22.7761 229186 229072 22.7713 227622 22.7895 22.7799 229129 22.7680
Worst | P 5.7121E+07| 5.7241E+07| 5.7608E+07| 5.7570E+07| 5.6962E+07| 5.7174E+07| 5.7572E+07| 5.6899E+07| 5.7256E+07| 5.7227E+07| 5.6887E+07| 5.6864E+07| 5.6933E+07| 5.6909E+07| 5.7241E+07| S5.6879E+07
EVe 134 139 135 139 143 139 141 137 140 135 142 138 143 140 141 133
std. F 3.78E-02 2.37E-02 3.60E-02 2.70E-02 2.11E-02 3.42E-03 4.29E-02 3.87E-03 2.60E-02 1.57E-02. 1.33E-02 3.43E-03 2.40E-02 1.03E-02 1.87E-02 7.36E-03
g 9.8529E+04| 6.8260E+04| 7.4413E+04| 9.4863E+04| 5.6441E+04| 3.8934E+04| 89910E+04| 4.5660E+04| 6.5127E+04| 6.5180E+04| 3.2515E+04| 3.7025E+04| 6.1870E+04| 3.9018E+04| 4.2540E+04| 54129E+04
Avg. Time 468.489404|  456.797049| 445.042199] 526.174173| 484.626209| 499.424371| 524.414743| 544.349437| 632.669553| 507.127403| 519.838242| 496.499543| 518.727709| 538.265431| 452.553332| 537.899574
TABLE 23. Tabulation of the best solutions with statistical analysis of ODC with 200 EVs for all the algorithms in comparative analysis.
Case 3 (300 EVs) SGO MSGO ISGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
F 23.0469 23.2846 23.2073 23.1350. 23.1442 23.2249 23.1963 23.2107 23.2169. 23.1294 22.9856. 232128 23.0051 23.0778 23.1299 23.0017
Best |P 5.7412E+07| 5.7635SE+07| 5.7842E+07| 5.7794E+07| 5.7765E+07| 5.7734E+07| 5.7646E+07| 5.7650E+07| 5.7864E+07| 5.7774E+07| 5.7324E+07| 5.7878E+07| 5.7268E+07| 5.7644E+07| 5.7765E+07| 5.7373E+07]
EVe 201 196 197 192 191 201 200 196 195 195 196 196 192 191 199 194]
F 23.0615 232914 23.2324 23.1968 23.1834 23.2613 232194 23.2165 23.2243 23.1938 22.9950. 23.2295 23.0328 23.1685 23.1615 23.0088
Mean P 5.7509E+07| 5.7944E+07| 5.7961E+07| 5.7901E+07| 5.7883E+07| 5.7958E+07| 5.7854E+07| 5.7869E+07| 5.7955E+07| 5.7906E+07| 5.7400E+07| 5.7960E+07| 5.7440E+07| 5.7873E+07| 5.7825E+07| 5.7448E+07
EVe 189! 187 185 185 178 188 186 177 185 183 187! 190 184/ 185 189 184
F 23.0690 23.2986 233127 23.2326 232198 232778 23.2267 23.2241 23.2393 23.2287 23.0002 23.2376 23.0662 23.2071 23.2088 23.0161
Worst |P 5.7594E+07| 5.8170E+07| 5.8226E+07| 5.8019E+07| 5.7976E+07| 5.8120E+07| 5.8006E+07| 5.8001E+07| 5.8030E+07| 5.8006E+07| 5.7441E+07| 5.8017E+07| 5.7589E+07| 5.7970E+07| 5.7958E+07| 5.7493E+07
EVe 175 173 169 175 172 171 176 170 175 176 180 181 172 179 174 175]
std F 9.11E-03 6.16E-03 4.51E-02 4.40E-02 3.64E-02 2.09E-02 1.31E-02 5.63E-03 9.15E-03 4.63E-02 5.82E-03 9.73E-03 2.96E-02 5.41E-02 4.10E-02 6.38E-03
g 7.1508E+04| 1.9467E+05| 1.5613E+05| 9.4638E+04| 8.9525E+04| 1.7338E+05| 1.5176E+05| 14974E+05| 6.3392E+04| 1.0479E+05| 4.7463E+04| 6.0164E+04| 1.1887E+05| 1.3690E+05| 8.2845E+04| 4.4964E+04]
Avg. Time 613.037566| 597.737640| 582.355937| 688.520447| 634.153236 653.517236| 686.218161| 712.303525| 827.874013] 663.596970| 680.229623| 649.689979| 678.776444| 704.342353| 592.184563| 703.863615
TABLE 24. Tabulation of the best solutions with statistical analysis of EEC with UDDS for all the algorithms in comparative analysis.
Case 1 S0C 0.7 SGO MSGO ISGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
"Cn Co 3442.525 5639.155 4153.224 5176.26, 3761.032 5523.486 542531 7198.863 6755.925 5641.464 2876.074 3677.406 5810.096 3008.699 15580.74] 2756.489
"Pb 1678880.6. 1545947 1761028 1673392 1654236 1786455 1675401 1508944 1673079 1496516 2872.003 1702139 1345327 576358 1061028 580095.9|
Best |§0C,m,, 0.496736 0.501626 0.504167 0.502739 0.500576 0.50374 0.505122 0.506303 0.505432 0.500084 2714.078 0.505445 0.503117 0.506047 0.501449 0.501504
PE - Pb 9839.4 18375.32 380.3415 69085.62 107229 150982.7 428819.1 16440.95 167371.5 1313647 2705.405 366372.5 1250163 515350 489240.6| 526226.6,
Pe 681838.0; 859496.5 717813.6 709993.7 607453 729005.5 918174.3 989807.2 577799.9 839615.8 2696.32 583930 1000716 5455359 2640725 491890.2
[Cu Co 3516.849 5760.303 4384.09 5405.873 4006.595 5655.621 5840.964 7613.794 7033.568 5873.237 2876.074 3885.288 6399.647 3028313 16107.17 2827.506
Pb 1650463.3 1527161 1739740 1621572 1576808 1735012 1619860 1426643 1441333 1381085 2872.003 1666237 1540192 5419558 274403 565657.2
Mean [SOCpean 0.499021 0.499099 0.497913 0.50046 0.498973 0.501022 0.503755 0.501093 0.499965 0.496584 2714.078 0.499454 0.50177 0.501962 0.49749| 0.498569
PE - Pb 12250.2 17791.84 4209.437 82911.77 6319.97 174970.2 472634.1 2161347 278232.9 1440710 2705.405 3941354 1139287 5065074 58702.81 510793.5
[Pe 612666.1 889592 775348.7 7514859 680482.6 769316.9 994207 1092275 809545.8 987742 2696.32 628097.2 1111592 5547919 2824878 516834.6
Worst 3591.405 5965.865 4503.475 5614.856| 4324.434 5896.957 6018.182 8117.021 7603.128 6140.331 3061.564 4276.021 6953.713 3061.564 16575.81 2934.736|
Std. 70.234226 134.3455 149.6847 194.2422 249.1214 144.7148 241.8929 351.6697 336.3761 180.2292 20.44363 229.8677 467.202 20.44363 381.9342 80.92142
Avg. Time 0.00033 0.001224] 0.00085 0.000999 0.001142 0.00067 0.000657 0.001936 0.001108; 0.00073 0.00043 0.001298 0.001721 0.00043 0.001194] 0.000393
Total Time 0.45229 1.177038 1.164022 1.368562 1.564219 0.917503 0.900262 2.652742 1.517435 1.000124 0.588902 1.777696 2.357968 0.588902 1.636053 0.53874
Case 2 SOC 0.5 SGO| MSGO ISGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
"Cu Co 3084.823 4746.878 3630.526 4464.598 3865.89 3501.828 3292.931 5369.004 6409.183 5000.185 2624.962 3446.037 3835.611 2724.672 15578.55 2678.178
||Pb 1654452.3 1391383 1703776 1540885 1610089 1521874 1332705 1261072 1474082 1312674 554650.2 1678337 1726962 499698.7 816033.7 5711342
Best |_SOC,,,M,, 0.399981 0.403115 0.403816 0.400476 0.401368 0.40106 0.40131 0.401381 0.401425 0.400662 0.402718 0.401108 0.403095 0.402222 0.399549 0.404408
PE - Pb 9962.0 15151.88 1175.759 35560.94] 12410 44002.93 132698.6 784.8351 2672073 1262520 522682.9 332366.6. 1014608 5321933 3728528 538114.7
Pe 606388.8 7049322 572112.5 594922 651470.7 464423.7 575478 7419354 776796.8 754363 490862.1 548740.2 523917.1 492633.1 2654024 4882158
[Cu Co 3174.856, 4856.287 3789.49 4599.467 4116.336 3716.807 3711.734 5620.88 6682.646 5285.362 2692.114 3596.601 3976.717, 2763.894 16097.38 2696.872
Pb 1643811.6. 1361287 1609362 1505632 1541966 1481562 1256672 1158604 1414907 1244599 533617.7, 1629560 1681579 488513.3 930297.5 530756.7
Mean [SOCpean 0.398095 0.401015 0.400453 0.39968 0.398832 0.400376 0.399359 0.399562 0.399659 0.399372 0.401 0.399958 0.399057 0.398799 0.340213 0.400613
PE - Pb 10108.3 16068.87 11567.92 41496.26 7319.619 60551.68 188147.7 1091.634 295253.7 1348574 516399.1 3744364 1047903 5131015 2451488 519983.4
[Pe 5571758 7237179 653084.7 639660 716323.6 515867.3 631019.1 824236.5 835971.7 888331.4 495061.9 589693.2 569300.4 507943.5 2788380 2678.178
Worst 3389.301 4996.988 4060.089 4870.7 4315.961 4235.29 4008.607 5836.233 7034.323 5556.846 2714.337 3793.977 4154.702 2815363 16404.65 2715276
Std. 124.680526 111.7612 196.8657 165.4908 176.3947 301.5232 291.1801 184.9051 259.075 218.5733 37.80737 166.5203 116.99 39.88838 325.6451 14.61866
Avg. Time 0.00033 0.00132 0.000827 0.001096 0.001253 0.000735 0.00069 0.002475 0.001417 0.000933 0.000550 0.001659 0.002200 0.000550 0.001527 0.000502
Total Time 0.45230 1.289984 1.126515 1.502052 1.716794 1.006997 0.981985 3.391526 1.940038 1.278657 0.752910 2.272781 3.014658 0.752910 2.091691 0.688778
TABLE 25. Tabulation of the best solutions with statistical analysis of EEC with HWFET for all the algorithms in comparative analysis.
Case 1 SOC 0.7 SGO MSGO ISGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
|Cu Co 4006.228 4325.012 4410.168 8200.329 4049.083 4694.555 3908.112 7130.809 6198.935 4382.867 2730.841 4172.73 7196.788 2928.704 9217.388 2719.115
Pb 311879.2 452817.9 303273.4 703384.2. 513401.5 555839.3 444020.7 1170626 684600.8 9281129 559555.9 349759.8 1527797 554626 234367.6 567082.3
Best  [SOCuean 0.500876 0.5026 0.50379 0.501522 0.508993 0.506337 0.504193 0.501979 0.50779 0.505899 0.50074 0.508402 0.505066 0.506921 0.500326 0.501297
PE - Pb 510824.2 10735.96 502641 2244115 2485729 86399.08 134162.9° 10602.96 3551925 3534448 5244419 259971.2 708887 512205.7 968174.6 510363.8|
Pe 838084.0 942070.9 829318.8 1598761 801689.2 967452.4 811741.2 1535399 1067626 787151.9 497876.1 731873.2 1148798 539042.7 1794798 490681.8|
[Cu Co 4101.970 4380.21 4490.181 8434.34 4166.835 5083.413 4122.217 7487.454 6670.77 4443.779 2791.133 4297.78 7241.702 2976.48 9663.46 2803.447
Pb 294580.0 422012.9 294564.5 633220.8 507316 499510.1 3713453 1107920 611934 955752.1 543413.5 331604.6 1611916 541509.3 1584234 552867.3
Mean [SOCpean 0.498994 0.499046 0.499827 0.497329 0.499512 0.501218 0.50053 0.499948 0.499481 0.502818 0.499459| 0.501067 0.501466 0.500923 0.496923 0.4982
PE - Pb 509517.8 12074.97 511273 202743.6. 231340.2 89922.3 148238.9° 19605.53 366831.1 299313.9 509480.2 221074 647252.4 507144.6 440151.1 504421.6
Pe 819022.2 958810.8 873506.3 1681367 812824.1 1036308 908143.1 1644717 114873 836111.7 514108.9] 753442.7 1184050 549996 1951353 511510.5]
‘Worst 4208.105 4441.158 4628.284 8645.64 4261.253 5341.49 4356.555 7710.581 7034.05 4567.718 2869.041 4346.84 7304331 3034.276 9980.759 2859.671
Std. 65.35865 46.66645 85.59708 177.8557 78.58796 237.6411 163.3483 221.3676 331.645 78.56748 55.08298 72.29783 43.51447 40.48634/ 279.3467 59.06853
Avg. Time 0.000369 0.000616 0.000845 0.000985 0.001143 0.000668 0.00066 0.00196 0.001163 0.00073 0.000406 0.001315 0.001666 0.000412 0.001194 0.00039
Total Time 0.281982. 0.451151 0.646996 0.754248 0.875257 0.511814 0.505811 1.501245 0.890698 0.559025 0.310805 1.007175 1.275858 0.315877 0.914273 0.298642
Case 2 SOC 0.5 SGO MSGO ISGO HS-WOA | HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
[Cu Co 3803.633 3905.413 4027.966 6174.763 3780.749 3806.089 3698.932 4803.83 4181.746 4199.019 2692.484 4077.571 3734.939 2718.841 9214.903 2667.734
Pb 272103.6 249302.7 295895 415825.8 529646.2 290018.5 382376.2. 562936.4 293683.5 856224.6. 541873.8 316760.8 753495.7 509960.7 975446.6 548507.8
Best  [SOCpean 0.400997 0.401206 0.403992 0.402115 0.403198 0.40171 0.402317 0.402589 0.402396 0.400956 0.402608 0.403465 0.402355 0.401694| 0.400726 0.402887|
PE - Pb 513308.0 506464.5 502391.8 203463 304430.6 32212.86 102617.5 4404.063 180522.7 292850.2 512839.2 276011.7 2121654 518333.4] 219388.3 5222283
Pe 767115.7 723132.0 768698.6 1104438 744698.4 782401.2 791862.9 947647.3 720795.1 7833504 487084.6| 699740.3 675007.6 498621.8 1741859 485733.7)
[Cu Co 3862.653 4241.984] 4150.948 6327.431 3884.083 3961.17 3853.209 5070.163 4483.373 4224.506 2717.233 4118.365 3821.522 2764.841 9432.391 2690.159
Pb 2672935 388154.1 253180.5 396930.3 5130654 263769.1 315158.6 484230 232509.7 893102.2 532169.1 294563 773848.2 493946.4/ 837661.9 529708.8
Mean [SOCean 0.399669 0.515485 0.400826 0.400548 0.400374 0.39967 0.399148 0.399772 0.400469 0.399086 0.401136 0.401345 0.400683 0.40034 0.37955 0.401165
PE - Pb 512000.6 515434.6 513803.8 125180.6. 284850.3 444524 119171.9° 9985.23 161019 277339 506089.9 254198.6 171088.9 5111379 156772 508878.8
Pe 754218.4 831512.0 797421.1 1175162 765013.6 800566.9 851956.4 1021028 769307.5 814136.8 499474.3 720278.3 707886.7 506426.4 1823271 492809.3
Worst 3905.413 4225211 4268.02 6463.974 3984.915 4055.931 3968.656 532191 4631.96 4241.05 2771.99| 4192.682 4015.565 2832.104 9661.591 2719.504
Std. 36.89517 71.15616 85.41863 134.054 76.91295 99.38997 103.68 210.2776 182.349 16.93726 31.74047 45.7914 110.7032 42.89745 198.2991 20.14817]
Avg. Time 0.000353 0.000398 0.000882 0.001928 0.002237 0.001308 0.000687 0.002249 0.001335 0.000838 0.000466 0.001509 0.001912 0.000473 0.00137 0.000448
Total Time 0.270573 0.291652 0.716517 1.476446 1.713322 1.001879 0.616542 1.722848 1.022177 0.641544 0.356684| 1.155847 1.464191 0.362505 1.049232 0.342725
multi-population and multi-strategy based adaptive algorithms, although ME-SGO ‘s computational times
techniques having the overall best performances. The were marginally higher for case 3 due to the high
computational times were also similar for most of the dimensionality of the current problem.
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TABLE 26. Tabulation of the best solutions with statistical analysis of EEC with FTP-75 for all the algorithms in comparative analysis.

Case 1S0C0.7 SGO MSGO ISGO HS-WOA HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
[Cu Co 8214.700; 12912.16 8922.819: 9336.732 8631.937 11265.76 9849.948 8589.473 1352542 9381.196 5954.676 8893.741 10511.8 6272.151 21974.15 5976.296
Pb 4737449.7 3625024 4930998 1509195 1495691 2394273 2317673 1912419 2323028 2060590 1492379 2543732 2338715 1502731 2583103 371339.5
Best  [SOCpean 0.499367 0.504128 0.503128 0.50183 0.506335 0.503157 0.500862 0.500706 0.503646 0.502041 0.503653 0.503696 0.503615 0.502851 0.503631 0.505104
PE - Pb 1486908.6 0 1465563 193565.1 264108.8 391062.1 621322.1 852.73 627554.6 1577598 1497890 1015357 1769906 306106.9 1172049 307009.6
Pe 1752568.3 2865391 1672493 1538757 1609405 2106173 2047180 1777671 2147162 1953850 1145745 1591473 2159186 1167014 3964837 1157606
[Cu Co 8362.601 1344542 8981.421 9455.957 8806.87 11913.99 10300.02 8835.263 13704.64 9536.581 5981.106 9064.265 10761.12 6300.725 2254448 5991.907
Pb 4830448.2 3514974 4891328 1489599 1484928 2239152 2164661 1852773 2231672 2032301 1241878 191520.5 2251067 1495462 2064671 344676.4
Mean [SOCpean 0.501255 0.501765 0.499834 0.499084 0.502118 0.501396 0.498767 0.49975 0.50062 0.4998 0.458982 0.501318 0.498881 0.499991 0.498736 0.501246
PE - Pb 1476720.8 0.038285 1484012 147873.8 208435.5 4237572 668383.4 2924.946 670225.5 1590941 780377.6, 971930.4] 1814423 280449.7 458858.3 293005.3
Pe 1659196.4 2975038 1702432 1598828 1657202 2216021 2149353 1829642 2208541 2009170 1157416 1639552 2227936 1176520 4266666 1162267
Worst 8575.122, 13630.67 9088.576 9581.39 8912.814 12446.63 10860.29 9005.71 14195.28 9655.499 6019.878 9460.763 1122548 6364.517 23088.62 6040.27
Std. 152.33470 301.0112 64.64157 87.40027 126.3131 538.3169 381.5202 178.9859 279.3613 100.8436 23.76907] 233.1718 280.4066 37.83896, 471.3631 27.15613
Avg. Time 0.00035 0.001171 0.000574 0.001019 0.001162 0.000655 0.000656 0.001943 0.001115 0.000722 0.000425| 0.001328 0.001718 0.000413 0.001194 0.00039
Total Time 0.65138 1.594904 1.076278 1.909868 2.177909 1.2283 1.229215 3.642292 2.0909 1.354426 0.77475 2.489795 3.220497 0.775002 2.238063 0.731128
Case 2 SOC 0.5 SGO MSGO ISGO HS-WOA HS-WOA+ GWO WOA SMA ChOA CLPSO L-SHADE GABC EPSO MPEDE MEGWO ME-SGO
[Cu Co 7698.288 9129.112 8279.462 6881.158 6456.447 8774.891 7902.885 7326.538 8116.494 6933.825 5676.965| 7441.224 7629.663 6017.444 14207.05 5931.023
Pb 4899507.5 4387955 4928457 1423209 1481083 1798818 1774848 1618144 1520121 1550878 1491915 130690.9 1676057 1496268 3987899 1492045
Best  [|SOCpean 0.400703 0.401731 0.401917 0.4012 0.401373 0.402512 0.401054 0.40039 0.401545 0.401757 0.500617] 0.400915 0.402597 0.401075 0.401037 0.401398
PE - Pb 1471863.7 0 1479325 244035.1 223489.2 153826.5 293964.4 803.0337 157250.7 1013007 1458560 1300572 1087647 324304.2 2645844 1543698
Pe 1589969.6 2101074 1571620 1222859 1241451 1675752 1699035 1529224 1448910 1492909 1151724 1363817 1592277 1154089 2228897 1149228
[Cu Co 8017.368 9239.633 8341.271 7191.782 6645.568 8922.681 7978.001 7469.404 8203.492 7166.306 5850.003 7606.208 7783.056, 6045.452 14651.42 5964.841
Pb 4875667.5 4360876 4912627 1413398 1471753 1750408 1754079 1571049 1485303 1536350 1245990 87341.32 1639481 1480101 3860693 1482047
Mean [SOCpean 0.399770; 0.399614 0.399717, 0.400248 0.399777 0.400723 0.399573 0.399519 0.399907 0.399935 0.420134] 0.400354 0.400053 0.399491 0.400355 0.400706
PE - Pb 1483853.2 633.108 1487210 170424/ 192150.6 174695.6, 326785.1 1414.057 167083.8 1090511 533704.6, 1238371 1166515 304421.3 2545201 1512779
Pe 1553860.0; 2128153 1591932 1301908 1269646 1727277 1730948 1547918 1462172 1513219 1162104 1388732 1616350 1167910 2324797 1154385
Worst 8191.978 9350.197 8433.808 7371.896 6778.176 9200.845 8125.522. 7583.555 8343.064 7320.165 5985.923 7705.515 8034.036 6067.737 14933 5988.283
Std. 232.68091 88.68591 58.06853 188.2746 121.4073 161.9627 91.61926. 109.6031 92.31207 156.9984 150.0233 98.86344| 169.8732 21.2034 287.9228 24.13439
Avg. Time 0.00034 0.001329 0.000599 0.001998 0.002278 0.001284/ 0.000682 0.003783 0.002171 0.001406 0.000828 0.002586 0.003345 0.000804 0.002325 0.000759
Total Time 0.64260 1.498418 1.219651 2.744473 4.269993 2.408196 1.398495 3.092151 4.071331 2.637294 1.508568 2.848047 4.270845 1.509058 3.357882 1.423628
TABLE 27. Tabulation of the most cited publications on multi-strategy and multi-population ensemble-based advanced meta-heuristics from the
literature.
S.No | Authors and Year Name For king Real-World Appli Improvements
o | 7K. Cochranetal MPGA Two-stage S”bp"g‘i‘lli‘;“:’“ evolution with NA Multi-objective scheduling problems for | MPGA outperformed MOGA in terms of
: in 2003 [6] parallel machines with 2 and 3 objectives optimality
. . Optimal reactive power dispatch for IEEE P . .
02. Zhao et al. in 2005 MAPSO Lamce-base.d agent-agent !(nowledge NA 30 and 118-bus systems with penalty Improved optlmallty with lower execution
91 sharing and evolution A times
function approach
03. |A. Augeretal. [17] [POP-CMA-ES Population size increment technique for CEC2005 for 10, 20 and 50 dimensions N/A Higher ugtlmallty for 29 out of 60 cases
every restart against local restart strategy.
04 W.Duetal. in MEPSO Two-part Gaussian local search and 2 Multi-modal functions with multiple case N/A \'ar‘(&bufi(iiccf:igz‘lﬁc :rfgﬂfE:cslgr“?aks
B 2008 [10] differential mutation schemes studies ying Y u pe
was observed.
26 numerical optimization problems . . .
Y. Wang et al. in Four PSO strategies with self-adaptive (unimodality, economic load dispatch (ELD) with a scaled Robust performance in terms of optimality
05. SLPSO R . . P . . 10-160 generator problem with both valve
2011 [11] learning multi-modality, rotation, ill-condition, mis- N . and convergence were noted.
. points and multiple fuels
scale and noise)
06 Quetal. in 2012 NCDE Euclid ehbourhood-based 14 basic multimodal and 15 composite N/A Out of the 29 problems, improvements were
: [14] > multimodal problems noted for a majority of them
07 H. Wang et al. in MEABC Three distinct ABC search strategies are 12 standard test functions and CEC2013 NA MEABC performed competitively
; 2013 [7] ically allowed to coexist. sifted and rotated test suite throughout the benchmarking process.
. 1 I Al <o T ST S . Performance improvements were noted for
08. H. Wang et al. in DNSPSO Diversity and local sedrch systems with 15 benchmark functions dnd.CECZOOS and N/A the 15 test functions and CEC2005 test
2013 [12] greedy selection. CEC2010 test suites suite
f , e . . A set of 28 Euclidean sample problems . . .
09. W. Deng et al. in MGACACO GA and ACO based multi-population N/A (TSP) with sizes ranging from 29 to 18,512 Improved optm.mllty, fast convergence was
2016 [8] approach. nodes observed with the proposed method.
10. G. Wuetal. in MPEDE Reward bz_ised resource allocation Wll]1 three CEC2005 test suite N/A An overall competitive performance of
2016 [15] mutation strategies and populations. MPEDE was noted.
G. Wuetal. in ST o ; . CEC2005 (50D and 100D) and CEC2014 Competitive performance compared to the
11 2018 [16] EDEV Reward based DE strategy adaption. (30D and 50D) test suites. NA variants of DE was observed.
W. Deng et al. in . . . TSP with eight instances and 20 gate IC.MPACO prOV.Ed effeCtlve with be."er
12 ICMPACO Multi-population-based co-evolution N/A : = optimal results with higher computational
2019 [18] assignment problems have been utilized. times
13. H. Chenetal. in CMDHHO HHO with chaos the?ry followed by the DE CEC2017 (50D) CEC2011 (8 real world issues) Competitive perfom‘lancf: wasI qbserved
2020[19] throughout the kin,
M. Wang et al. in Combination of chaotic and multi-swarm Breast cancer, diabetes, and erythemato- | Superior classification performance with the
14. CMWOA N/A .
2020 [20] approaches squamous data sets were used proposed method was obtained.
. . . . Competitive performance across most
15. | Y-Guoetal.in QPSO_FM Multi-population and multi-stage 28 standard benchmark functions N/A benchmarking functions has been
2020 [13] - perturbation strategies
demonstrated.
. MEGWO showcased robust optimization
16. Q. Tuetal. in 2019 MEGWO Enhanced global-best lez{d strategy and an 30 benchmafk 1f:st prob]‘ems from the 12 feature selection datasets results for both benchmarking and feature
[21] adaptable cooperative strategy CEC2014 suite selection.

D. ENERGY EFFICIENT CONTROL OF PARALLEL HEV

The fourth problem on EV optimization deals with the
energy-efficient control (EEC) of a parallel HEV based
on [56]. The objective includes the minimization of electricity
cost and fuel cost with the maximation of the battery SoC
(State of Charge) during the trip duration. The ICE (Internal
Combustion Engine) of the PHEV is capable of delivering a
maximum power of 30kW and the motor can deliver 15kW
with a battery capacity of SAh. The mathematical models
require the determination of the optimal cumulative cost
of operations ICE and EM, optimal battery power, optimal
engine power, and the power transferred from the engine
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to battery to sustain the Soc with constraints on battery
power consumption, engine power limits are modelled. The
mathematical model, simulation details and constraints are
provided in Table 54 (Appendix).

The optimization is performed for 3 driving cycles namely
HWEFET, UDDS and FTP 75. Two cases of investigation
with the first case having the SoC limits between 0.7 and 0.3
and the second case with the Soc limits between 0.5 and
0.3 are investigated. The optimization is done through all
the 16 algorithms with 50 NFEs provided during every time
interval for the drive cycle and 30 independent runs have
been considered to validate the results. The tabulation of
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TABLE 28. A brief literature survey of the various improved and advanced meta-heuristics applied to the optimization of the various EV domains.

S.No Authors and Year Problem Description Optimization Algorithm Used
o1. X. Wuetal.in 2011 The optlmal. drivetrain component sizing problem with respect to the driving performance for a PHEV considering Ni-MH and Li-ion batteries Parallel chaos optimization algorithm (PCOA)
[57] over three different all electric range (AER) cases.
B o The optimal siting and sizing problem of the distribution generators (DGs) in distribution systems considering the intermittencies associated with S enetic
02. Z Liu EE;;] in 2011 PHEV charging and discharging schedules, PV and wind power generation and uncertain load demand has been investigated for an IEEE37- Monte Carlo blm;ldgl':?x]]imbEdded genetic
node test feeder system. &
03 J. Zhao etal.in 2012 | The economic dispatch model accounting for the uncertainties with the PHEV loading and wind power generation (Rayleigh distribution) based Enh: 4 PSO
: [59] on a simulation study to derive the PHEV charging/discharging behaviour is investigated for an IEEE 118-bus system. nhance
04 J.P. Trovdo et al. in The multi-level energy management system for a multi-source electric vehicle (battery and super-capacitor powered) with a strategic rule-based Simulated Annealing (SA)
. 2013 [60] restriction of search space to optimize the energy and power sharing is tackled.
05 J. Zheng et al. in The optimal large scale EV charging strategy considering an aggregation charging model to lower the power fluctuation levels due to EV Standard GA
: 2013 [61] loading while tracking the variations in the EV charging characteristics is developed.
06. J.Shenetal. in 2014 | The problem of the optimal slzm‘x‘cr3 (s.lze volume zjnd cost) of a hybrid energy storage system (HESS) with battery/ultracapacitor (UC) and extend Dlviding RECTangles (DIRECT) algorithm
[62] the battery cycle life for EV is
07 J. Tan et al. in 2014 The optimal integration of PHEVs into the residential dlslnbullon grid through a fuzzy logic based stochastic driving pattern model followed by Two-layer evolution strategy PSO (ESPSO)
) [63] a load profile modelling framework to improve the power quality and lower various cost associated with is proposed. algorithm
08 D. Goeke et al. in The optimal routing of a mixed fleet of commercial EVs and non EV’s utilizing a realistic energy consumption model including the speed, Adaptive Large Neighbourhood Search
: 2015 [64] gradient and cargo load distribution to maximize the driving range and lower recharging times is tackled. (ALNS) algorithm
09 H. Yang etal. in The EV route optimization with the time-of-use electricity pricing for fast-charging and regular-charging to lower the total distribution costs of Learnable partheno-genetic algorithm
3 2015 [65] the EV route with respect to the constraints on charging, battery use and capacity, electricity pricing, charging constraints etc. is investigated. P & 8
10 M. Keskin et al. in The EV routing problem with time windows with a practical partial recharge strategies with mechanisms for removal of stations and insertion of Adaptive Large Neighbourhood Search
} 2016 [66] stations with respect to the charging amount based on the recharging decisions is proposed to improve the routing decisions. (ALNS) algorithm
1 Q. Kangetal. in The centralized charging of EVs considering battery swapping strategy and scheduling with charging prioritization and spot electricity pricing is Hybrid of particle swarm optimization
: 2016 [67] designed to lower the total charging cost, power losses and voltage deviation of an IEEE 30-bus test system and genetic algorithm (PSO-GA+)
S. Suganya et al. in The simultaneous co-ordination of distinct PHEV charging stations for a two-area distribution system with different mobility patterns is chosen . . . .
12. 2017 [68] for the scheduling of EVs in an IEEE 69-bus radial distribution system. Modified PSO with a multi-evolutionary phase
13 A. Awasthi et al. in The optimal planning of EV charging stations at the Indian city, Allahabad distribution system to lower the deteriorating effects (voltage profile Hybrid of GA and improved PSO known as
; 2017 [69] and power quality) of EV loading on the utility distribution system has been invest GAIPSO
H. Wu et al. in 2018 Thve‘parkmg lot (PL) dynamic resource all(.)cauon system Wl[h EV chafgmg faci ties through tm’lesloﬁ s(?hedulmg with respect to elecv:tn‘clty Heuristic fuzzy particle swarm optimization
14. pricing to lower the cost of EV charging prices through optimal scheduling constrained by the EV’s charging rate and the transformer limit of .
[70] the PL is i . 5 (PHFPSO) algorithm
W. Zhao et al. in The parametric optimization of an elecmc-hyd}'aul?c hybrldv steering system to improve the EV’s energy management system by lowgrlng the shuffled particle swarm optimization algorithm
15. 2018 [71] energy consumption of the actuators by adaptive intervention while considering the aspects of steering economy, steering road feeling, and (SPSO
steering sensitivity is tackled
16. T. Zhu et al. in 2019 T.he Pow)er‘gam paravmé.:ler optimization design of to improve the driving, performance economy and vehicle performance dynamics for PEVs are Chaotic PSO (logistic map) known as CPSO
rough Cruise software.
17 H. Zhang et al. in A large-scale problem of locating EV charging stations with service capacity with service risk factors (service capacity and user anxiety) for Improved Whale Optimization Algorithm
) 2019 [73] optimal planning and reduction of social costs is investigated.
Y. Lietal. in 2020 The parameter optimization of gear ratios of two-speed transmission to improve the performance of the drive motor and transmission system . .
18. . . . N Improved genetic algorithm
[74] with respect to the economy and dynamics of the EV is proposed.
19 C.A. Folkestad et al. The optimal charging and repositioning of EVs in a free-floating carsharmg system for an improved distribution of cars to maximize the revenue | Hybrid Genetic Search with Adaptive Diversity
) in 2020 [75] and customer service while marginally raising the operational costs is Control algorithm
20 Y’g'ojzl? F_I,Ga]l' n The capacitated EV routing problem (CEVRP) is implemented in two levels with the first level being the optimal routing based on the demands A bilevel ant colony optimization algorithm
) of customers and the second being charging schedule with respect to the electricity constraint is considered. (BACO)
TABLE 29. Detailed description of the variants of SGO from the recent literature.
Authors and i . . i o e N PP
S.No Year Description of the impr hybridized, algorithm Optimization problem tackled Outcome
. . i - . - i The proposed hybrid technique was used on combination with support | The proposed method recorded the highest
Ash K. Singh A hybrld ASGO (HSGO.) incorporating a mutation phd;e to_enable vector classifier for the COVID-19 infection detection from chest X-Ray | accuracy at 99.65% compared to 12 other deep
. continuous improvement in the population through the selection of a subset | . P . 4 N S ; .
L. etal. in 2021 . P images for the Kaggle repository” COVID-19 Radiography Database learning and  bio-inspired algorithms ~ while
of features from a member of population and comparing it with the worst B AR f h . L P
[33] . . I N with 219 COVID-19 positive images, 1341 normal images, and1345 | recording higher precision, sensitivity and FIS F1
person to enhance the population diversity is considered. . L
viral pneumonia images. scores.
Two hybrid variants benefitting from the synergy of SGO and whale
K.V.L optimization algorithm (HS-WOA and HS-WOA+) to improve the balance of | Extensive benchmarking analysis with standard benchmark functions, | HS-WOA+ outperformed the parent algorithms
5 Narayana otal, | S<Ploration and exploitation with a strong immunity to the curse of | composition functions, five standard engineering problems and eight | and other modern meta-heuristics while HS-WOA
} in 2)(,)20 32] | dimensionality are proposed. HS-WOA was aimed towards improving the | cases of a multi-unit production planning problem were considered for | had a competitive perforce for the various cases of
convergence behaviour while HS-WOA+ was aimed at enhancing the quality | the validation of the proposed method. benchmarking tests.
of exploration.
A modified SGO (MSGO) incorporating a probabilistic selection between a o PP P . . MSGO had a robust performance compared to
. . . N L . . The design optimization of various civil engineering structures (concrete s k
S.Dasetal.in | self-improvement phase with chaotic maps (logistic map, iterative map and . . - SGO, PSO and ALO with the least possible error
3. o N h cantilever beam, 31-member bridge truss, G+3-storey frame, ASCE 5 L
2020 [77] tent map) and a position updating phase to ensure a global best oriented . B . . rates, noise  contamination and  faster
S benchmark structure) for different case studies was investigated. . .
search is improved has been proposed. computational times.
Modified SGO (MSGO) with a modified acquiring phase incorporating a | Donchmarking analysis with 7 unimodal, 6 multi-modal and 10 fixed- | 6 ag compared with 20 modern meta-
B L B > o dimensional multi-modal test functions with higher number of problem L. -
A. Naik et al. self-awareness probability factor to improve the learning capabilities of the . . . L . e heuristics and performed competitively and
4. . N s . . e N N dimensions is conducted and statistically validated. Additionally, . .
in 2020 [30] population while boosting the explorative and exploitative potentials with re- . . obtained lower values of the cost function for the
HASTR . . MSGO was deployed for the optimal short-term hydrothermal .
initialization within the lower and upper bounds is proposed. s STHS problem in two out of three cases.
problem (STHS) (3 cases).
. . An improved SGO (ISGO) with population division in the improving phase | ISGO is deployed for the transformer fault diagnosis model using an ISG?SVM diagnostic m?del had higher f couracy
J. Fang et al. in S S . L . s A . N of 3% compared to SGO’s model and 14% higher
5. and elimination — re-initialization system in the acquiring phase to extend its | optimal hybrid dissolved gas analysis features subset with support
2018 [27] . P N ; . N H . accuracy compared to the GA model and recorded
explorative abilities and avoid local entrapment is developed. vector machine classifier to improve the accuracy of the fault diagnose. . : . o .
the highest fault diagnosing accuracy of 92.86%.
) | A discrete version of an improved SGO (ISGO) with a historical learning | ISGO is combined with the cluster head multi-hop routing protocol in | COmPared to the GA and the basic CECA
Y. Liuetal. in . . . A . . . L protocols, ISGO’s protocol had higher number of
6. phase to improve the population diversity following the improving and | WSN for the data transmission in a multi-hop manner to prolong the I . .
2018 [28] s . o - . surviving nodes at the end of the lifecycle with
acquiring phases is developed. lifetime of the network is investigated. X . -
lower overall lifecycle energy consumption.

the best solutions with statistical analysis and computational

Analysis of Results:

times of EEC with UDDS, HWFET and FTP-75 drive cycles
for all the algorithms in the comparative analysis are given
in Table 24, Table 25 and Table 26 respectively for both
the cases investigated. The notations, Cu Co stands for the
cumulative cost, Pb is the total power delivered by the
battery in watts, SOCpean is the average state of charge,
PE-Pb is the total power transferred from engine to battery
in watts, Pe is the total power delivered by the engine in
watts.
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The performance of ME-SGO, MPEDE and L-SHADE
has been the best for UDDS with ME-SGO and
L-SHADE delivering the best performance for cases 1
and 2 respectively. MPEDE and ME-SGO remained
robust with the least standard deviations for cases 1
and 2 respectively.

ME-SGO dominated for the HWFET drive cycle with
the least cumulative costs incurred for both cases. The
performances of MPEDE and L-SHADE were similar
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TABLE 30. Description of the algorithm-specific tuning parameters for all the algorithms used in the comparative analysis.

Algorithm Tuning / Algorithm-specific Parameters Value
SGO Self-introspection factor (c) Setto 0.2
Strategy ABC/best/1
0.6xSNxD
Limit Where,
SN stands for population scale and
GABC D is the number of problem dimensions
[ random number in the range [~1,1]
Chaotic iteration (K) with sinusoidal iterator 300
Acceleration constants (cc; and cc) Both set to 1.49445
Inertia weight (w) 0.9~ [1 to NFE ] *(0.7/ NFE,,0.)
CLPSO Refreshing gap (m) Setto 7
Particles from 1 to 30 have a Pc value ranging from 0.05 to 0.5 based on
Learning Probability (Pc) 12 - 1]
Pc; =0.054 045 X ——— " -——=
. (exp(10) — 1)
. . . Constriction Acceleration . N
Algorithm Inertia Weight (w) Coefficients 1 Coefficients ¢, cs, ¢ Neighbourhood size
Inertia weight PSO 0.9-0.2 - =2, c;=2 -
LIPS - 0.729 3
FDR-PSO 0.9-0.2 0.729 -
EPSO CLPSO 0.9-0.2 - _
OLPSO 0.9-0.2 - N
HPSO-TVAC - - -
sHPSO 0.72 - ) _
CLPSO with gbest 0.9-0.2 - ¢;=2.5-0.5,¢,=05-25 -
Arc rate () Sett0 2.6
Poesi Tate (p) Setto 0.11
L-SHADE
Memory size (H) Setto 6
N Setto 18
Ratio (4;) Set to 0.2
MPEDE Generation gap (ng) Set to 20
Initial crossover rate (uCR) Set to 0.5
Initial value of scaling factor (uF) Setto 0.5
Self-introspection factor (c) Setto 0.2
MSGO
Self-Awareness probability (SAP) Set to 0.7
Social interaction factor (s) Adaptive (0.8 to 1)
HS-WOA,
HS-WOA+
Count 20 iterations
Self-introspection coefficient () Set to 0.2 where (u—U(0, 1)), ‘U’ stands for uniform distribution
ISGO
A random number in 0 and 1 (0 <A< 1)
¢ (Linear control parameter) Decreases linearly from one to zero.
— I Oscillates randomly between /—a, a/ and tends to zero eventually where a is set based on the
SMA vb (Oscillation control parameter) iteration count.
t
Control Vector (a) a = arctanh [7 (?) + 1]
GWO Control Vector (d) to balance exploration and exploitation phases Follows a ]mea.rly d§crementmg nature from an initial value of 2 to a final value of 0 over the
progression of iterations.
Control Vector (d) to balance exploration and exploitation phases Linearly decreased from 2 to 0 over the course of iterations
WOA
Coefficient Vector (4) Randomized in the interval [-1, 1]
Chaotic Vector (m) Tent chaotic map
ChOA
Control Vector (f) Reduced non-linearly from 2.5 to 0 through the iteration process
Scale factor (p) Set between 0.5 and 0./’ based on p ~N (0.5, 0.1°)
Global-best guidance rate (GR) Setto 0.8
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TABLE 30. (Continued.) Description of the algorithm-specific tuning parameters for all the algorithms used in the comparative analysis.

MEGWO Dispersion rate (DR) DR,x = 0.4, DR,yin =0
SR SRy = 1, SRy = 0.6
Control Vector (d) to balance exploration and exploitation phases Follows a ]mea.rly dé.:crementmg nature from an initial value of 2 to a final value of 0 over the
progression of iterations.
Initial value of the self-introspsection factor (C;,) 0.2
ME-SGO
Learning rate (rate) 10

TABLE 31. Description of the 10 CEC2019 benchmark functions (composition functions) used to determine the algorithms’ ability to avoid local

entrapment.
Fu;c;t.mn Function F/'=F(X") Dimensions Search Range Properties
. Multimodal with one global minimum
Fl Storn's Chebyshev Polynomial Fitting Problem 1 9 [-8192, 8192] . Very highly conditioned
. Non- ble; full: -depend
. Multi-modal with one global minimum
F2 Inverse Hilbert Matrix Problem 1 16 [-16384, 16384] . Highly conditioned
. N fully -d d
F3 Lennard-Jones Minimum Energy Cluster Problem 1 18 [-4.4] : I:/yl;iu-modz:l‘w:l;l;](;ne global mu}lmun':
. Multi-modal
F4 Shifted and Rotated Rastrigin’s Function 1 10 [-100,100] . Non-separable
. Local optima’s number is huge and the penultimate op is far from the global optimum.
FS Shifted and Rotated Griewank’s Function 1 10 [-100,100] ° Multi-modal
. Non-separable
. Multi-modal
Fo6 Shifted and Rotated Weierstrass Function 1 10 [-100,100] . Non-separable
. Local optima’s number is huge
. Multi-modal
F7 Shifted and Rotated Schwefel’s Function 1 10 [-100,100] . Non-separable
. Local optima’s number is huge
. . - . Multi-modal
F8 i:ﬁfﬁ,zﬂd Rotated Expanded Schaffer’s F6 1 10 [-100,100] . Non-separable
. Local optima’s number is huge
. . . Multi-modal
F9 Shifted and Rotated Happy Cat Function 1 10 [-100,100] . Non-Separable
F10 Shifted and Rotated Ackley Function 1 10 [-100,100] *  Multimodal
. Non-Separable
TABLE 32. The optimization model for the pressure vessel design.
F. Objective Function and Constraints Range of decision variables
SE1 Pressure Vessel Design
Minimize 0(X) = 0.6224%,x3x, + 1.7781x,%3 + 3.161x7x, + 19.84x7x;
Subject to the constraints 0<x <99
0<x,<99
7 10 < x3 <200
=— <
cl()f) x; +0.0193x; < 0 10 < x, < 200
c2(X) = —x3 + 0.00954x; < 0
o 5 4 .
c5(X) = —mxdx, — 37X +1,296,000 <0
54()?) =x;—x <0
Description:
The pressure vessel design requires the optimization (minimization) of the cost through four decision variables to be optimized. The four decision variables (x; x, x; and x,) include the length of the cylindrical section, the thickness of the
head, the inner radius and the thickness of the shell within specified lower and upper bounds. Four inequality constraints with respect to three decision variables (x;, x; and x,) are present.

3)

with MPEDE being consistent at delivering results
with lower deviation. It is evident that adaptive and
multi-strategy adoption by the three of these algorithms
has resulted in better overall performance.

FTP-75 witnessed L-SHADE followed by ME-SGO
delivering the best performances with ME-SGO falling
behind L-SHADE. The reason for L-SHADE being the
top performer is due to its maintenance of historical
memory of a diverse set of parameters that govern its
performance. It is worth mentioning that ME-SGO’s
learning rate and has been competitive through the
performance despite its historical memory update for
the self-introspection factor only.

12112

VI. CONCLUSION
A. MERITS AND DEMERITS

In order to have a fair conclusion of the performance of
the proposed method, it essential to highlight the merits and
demerits.

1) MERITS

1y

2)

The implementation of multiple strategies in a system-
atic and a synergetic sequence through the enhanced
improving phase and adaptive acquiring phases
improved the performance for complex landscapes and
enhanced the population diversity.

Distance-based strategy adaption and success-based
control parameter adaption has been effective at
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TABLE 33. Tabulation of the best fitness values and the optimal decision variables for the pressure vessel design from the 30 independent runs for the
sixteen algorithms.
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Algorithms - Optu:jl values of the decision variables olltjamed - Optimal Cost obtained
ME-SGO 0.7781682812 0.3846490202 40.3196187249 199.9999999886 5885.3312509799
L-SHADE 0.7781683194 0.3846491385 40.3196217546 199.9999624281 5885.3315367749
SMA 0.7781911246 0.3846677408 40.3207947733 199.9836302354 5885.3917725061
EPSO 0.7790682789 0.3835390181 40.3265516100 200.0000000000 5885.4126540000
MPEDE 0.7781789626 0.3847126600 40.3198059635 200.0000000000 5885.6218583630
ISGO 0.7785492563 0.3848373619 40.3393535046 199.7254605381 5885.9827864557
SGO 0.7789828775 0.3850503833 40.3617615120 199.4172011306 5886.8003560724
GWO 0.7803944074 0.3872439173 40.4336569413 198.5037376570 5895.5021011051
MEGWO 0.7800290558 0.3913500990 40.4036169655 198.8907289971 5908.1870610321
HS-WOA+ 0.783800008 1 0.3870227515 40.3373777525 200.0000000000 5935.9986303480
CLPSO 0.7928677716 0.3959403175 40.9811503347 191.0991108127 5938.5252788359
HS-WOA 0.8022162404 0.4003687934 41.5135426984 186.1506228021 5994.6720636824
GABC 0.8370596646 0.4172763510 43.1007838727 165.5321749367 6061.6997485320
WOA 1.0527661415 0.6463225819 50.6670821362 93.1393072078 7483.3366637680
ChOA 1.3044609620 0.6310950066 65.8855370475 10.0000000000 7684.2457795734
MSGO 3.1071272384 0.9799390596 61.9663152398 49.1466155266 25951.381319747
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FIGURE 4. Box-plots for the ten best performing algorithms for the CEC2019 test suite (i)-F1, (ii)-F2, (iii)-F3, (iv)-F4, (v)-F5, (vi)-F6, (vii)-F7, (viii)-F8, (ix)-F9,
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achieving a better balance of exploration and exploita-
tion as evident by the performance of the proposed
method in the CEC2019 benchmarking suite and the
5 standard engineering problems.

Linear population reduction enabled higher settings
of population size and iterations and expanded the
exploration range while allowing a smoother transition
from exploration to exploitation towards the end of the
search process.

4) The performance of ME-SGO for the four complex EV

optimization problems has been excellent with higher
optimality and better robustness to complex and com-
posite landscapes.

2) DEMERITS

1) Slower convergence as a consequence of increased

emphasis on exploration over exploitation has been
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TABLE 34. The optimization model for the welded beam design.

Objective Function and Constraints

Range of decision variables

SE2 Welded Beam Design Optimization

Minimize 0(X) = (1.10471x2x,) + (0.04811x3x, (14 + x5))

Subject to the constraints,

(%) = B(X) = Brax <0
2(8) = £(X) — eax <0
ea(%) = 5(K) = Sax <0
c4()?) =x—x,<0
cs(X)=P-P.<0
c6(X)=0.125-x, <0

Where

X2 xp +x3\?
k= l*(lz %)

4
E(X) = rxaz

7.6
X3Xq
4.013E 36

PC()?) = 2

and

P =60001b,

L = 14in.,

Smax = 0.25in,,

E =30 % 1°psi,

G =12 x 10%psi,
PBmax = 13,600 psi,
Emax = 30,000 psi

¢;(X) = (1.10471xx,) + (0.04811x3x,(14 +x,)) = 5 < 0

BR) = J B2 + 2885 + (g2

(48

and

and

and

i _ MR

o P R —
B = B = ],M—P(L+

J=2 {ﬁxlxz [;%22 + (#)2]}

o 6P
5(X) = Tl

x;)
2

01<x <2
01<x,<10
01<x3<10
01<x,<2

Description:

The welded design requires the optimization (minimization) of the cost of fabrication of a welded beam through four decision variables to be optimized. The four decision variables (x, x», x; and x,) include the thickness of the weld, the
length of the clamped bar, the height of the bar and the thickness of the bar within specified lower and upper bounds. Four inequality constraints with respect to the four decision variables which include the bending stress (o), shear stress
(B), buckling load (y) and the end deflection of the beam (&) are laid down.

TABLE 35. Tabulation of the best fitness values and the optimal decision variables for the welded beam design from the 30 independent runs for the

sixteen algorithms.

Algorithms Optimal values of the decision variables ob d Optimal Cost obtained
x; X3 X3 Xy
SGO 0.205729639786 3470488665628 9.036623910359 0.205729639786 1.724852308598
MEGWO 0.205729639786 3470488665626 9.036623910355 0.205729639786 1.724852308598
ISGO 0.205729639788 3.470488665660 9.036623910327 0.205729639788 1.724852308612
MPEDE 0.205729639735 3.470488669290 9.036623910305 0.205729639807 1.724852309168
EPSO 0.205729644130 3470488609296 9.036623814935 0.205729644135 1.724852324311
L-SHADE 0.205729629722 3.470488896939 9.036624008583 0.205729640035 1.724852343100
ME-SGO 0.205725750736 3470558060199 9.036674973861 0.205730611484 1.724871835211
SMA 0.205541813735 3.474503364184 9.036715217272 0.205730204073 1.725122680601
GWO 0.204870439260 3.490952548125 9.035353447526 0.205789373499 1.726513146163
HSWOA+ 0.204724947482 3483357707177 9.121718429369 0.205449315717 1.737592490297
HSWOA 0.207753495745 3453823510348 8.987618310416 0.208528668208 1.738433726812
CLPSO 0.206915230712 3492138784588 9.018734517472 0.207430907271 1.739503230175
GABC 0.195750406663 3.704450494020 9.024346408909 0.206319614941 1.742705066714
ChOA 0.191848464674 3.943629737186 9.365289959508 0.207876774719 1.840979960093
WOA 0.177997882467 4.785982588218 9.999795096353 0.201381484025 1.987548929145
MSGO 0.375219107067 3.700188877333 7.282550204390 0.379608105450 2.929635331295

TABLE 36. The optimization model for the cantilever beam design.

F. Objective Function and Constraints

Range of decision variables

SE3 Tension/Compression Spring Design

Minimize 0(X) = 0.6224(x; + %, + X3 + x4 +X5)

Subject to the constraints

()?) 61+Z7+19+7+1
A= 971
W e T TR

0.01 < x; < 100
0.01 < x, < 100
0.01 < x; < 100
0.01 < x, < 100
0.01 < x5 < 100

Description:

are design parameters for this problem.

In this problem, the goal is to minimize the weight of a cantilever beam with hollow square blocks. There are five squares of which the first block is fixed, and the fifth one bur- dens a vertical load, box girders, and lengths of those girders

witnessed for simple unimodal and multi-modal land-
scapes.

2) The learning rate proposed for parameter adaption may
be slower to adapt to other complex landscapes and
could require experimentations with different settings
to extract the best performance.

VOLUME 10, 2022

B. SUMMARY
1) ME-SGO ranked second for the CEC2019
suite and performed competitively with the other
state-of-the-art optimization algorithms outperform-
ing the wvariants of SGO and other modern
meta-heurists.
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TABLE 37. Tabulation of the best fitness values and the optimal decision variables for the cantilever beam design from the 30 independent runs for the
sixteen algorithms.

Algorithms Optimal values of the decision variables Optimal Cost obtained
X7 x; X3 Xy X5
ME-SGO 6.01608629860 5.30925862922 4.49419514159 3.50148343800 2.15263613412 1.33995636163
L-SHADE 6.01783656600 5.30578411755 4.49542100073 3.50215706739 2.15246713975 1.33995675163
ISGO 6.02314820845 5.30528663031 4.48993912642 3.50579287053 2.14955936336 1.33996051482
MPEDE 6.02652833984 5.31031885086 4.48184310132 3.50260431886 2.15251419350 1.33996566939
EPSO 6.01407065947 5.30833739598 4.49230687738 3.51496334790 2.14415588256 1.33996725179
SGO 6.02323475221 531174073707 4.48628321258 3.50250811775 2.14995824565 1.33996944407
GWO 6.02373635714 5.30852104375 4.50460241729 3.49251391494 2.14463461785 1.33997812110
MEGWO 6.00458011307 5.32307332981 4.50257342622 3.47953686645 2.16446466231 1.33999185203
CLPSO 5.97585307641 5.33140624108 4.55080298565 3.47420660533 2.14431005664 1.34013852742
HSWOA 6.05177969552 5.31537111398 4.43524922699 3.50883134274 2.17025214016 134044457161
HSWOA+ 5.85901302713 548242025719 4.47372880705 3.54249350809 2.13815663351 1.34133868334
GABC 6.07549533032 4.96762959059 4.90540806006 3.61497880957 2.04760998181 1.34853399859
ChOA 5.74001572365 5.72804605094 4.42899251827 3.71626044711 2.01114920858 1.34936655039
WOA 5.52172189427 5.63614527974 6.16663606745 3.05547988002 2.12241737286 1.40414979085
SMA 5.01493032737 5.01493032737 5.01493032737 5.01493032737 5.01493032737 1.56465826214
MSGO 11.02138451371 7.61351236354 5.01551690644 3.27943902759 1.61871395751 1.78143056637

TABLE 38. The optimization model for the tension/compression spring design.

F. Objective Function and Constraints Range of decision variables
SE4 Tension/Compression Spring Design

Minimize 0(X) = (x; + 2)x,x3
Subject to the constraints

. 3 < <
CI(X):I—%;;JC: <0 8;22;2;?28
A etsen N 2.00 < x3 < 15.0
(%) = 1256605,%% — x5 T 5108%2 = °
(B =1- 14045%,
xx3 T
co(¥) = x11+5x2 -1<0
Description:

The tension/compression spring design requires the optimization (minimization) of the weight of a compression spring through three decision variables to be optimized. The three decision variables (x; x» and x;) include the wire
diameter, mean coil diameter and the number of active coils within specified lower and upper bounds. Four inequality constraints with respect to the three decision variables which include the surge frequency, deflection and shear stress
are laid down. In this problem, the ints are normalized and the static penalty method is utilized to generate a feasible optimal solution.

TABLE 39. Tabulation of the best fitness values and the optimal decision variables for the tension/compression spring design from the 30 independent
runs for the sixteen algorithms.

Algorithms - Optimal values of the diczlsmn variables - Optimal Cost obtained
ME-SGO 0.0516890623 0.3567177688 11.2889640502 0.0126652328
L-SHADE 0.0516873555 0.3566767027 11.2913732742 0.0126652342
ISGO 0.0516506892 0.3557953157 11.3432502045 0.0126652597
WOA 0.0519380089 0.3627363483 10.9447913663 0.0126665028
SGO 0.0513475016 0.3485560775 11.7840089895 0.0126673813
MPEDE 0.0512826588 0.3470152271 11.8821951184 0.0126691577
SMA 0.0521846822 0.3687580726 10.6168506086 0.0126700574
MEGWO 0.0525558860 03779317526 10.1456296980 0.0126787413
GWO 0.0509080021 0.3378948775 12.5072812460 0.0127039784
EPSO 0.0501031302 0.3197440986 13.8386810681 0.0127130944
GABC 0.0523911704 0.3732778932 10.4101998788 0.0127153186
HSWOA+ 0.0527609586 0.3829447589 9.9436215508 0.0127320260
CLPSO 0.0531718848 0.3928439008 9.4714616898 0.0127409815
HSWOA 0.0500000000 0.3169559645 14.0958906338 0.0127542214
ChOA 0.0500000000 0.3167878406 14.2154142695 0.0128421152
MSGO 0.0651257759 0.6998258154 5.0748812286 0.0209997891

TABLE 40. Problem description for the 10-bar truss design.

Description:

In truss bar optimization, it required to minimize the structural weight of the truss bars with respect to the constraints on the design, stress, deflection, displacement etc. The decision variable corresponding to the dimensions so the truss
bars whose count can be 10, 15, 25, 50, 72, 200. The truss bar optimization applies to the continuous and discrete decision variables and the 10-bar truss optimization for continuous variables is considered in the current testing. A detailed
description of the mat} ical formulation, the objective function is available at [78]. The basic description of the ints and the range of the decision variables are provided below.

Description of the constraints:

The variation of cross-sectional areas is from 0.1 in’ to 35.0 in’.

The unit weight of the material is 0.1 Ib/in*

The modulus of elasticity is 107 psi.

The design constraints are as follows.
The maximum allowable stress for any member of the truss : £25 psi.
The maximum deflection at any node : 2.0 mm.

TABLE 41. Tabulation of the best fitness values and the optimal decision variables for the 10-bar truss design from the 30 independent runs for the
sixteen algorithms.

Algorithms Optimal values of the decision variables op Weight
Xy X3 X3 Xy X5 X5 X7 Xg Xy X1
MPEDE 30.5682 0.1000 23.1626 15.2303 0.1000 0.5597 21.0124 7.4589 0.1000 21.5336 5060.870
ME-SGO 30.3120 0.1012 23.1092 15.0945 0.1000 0.5769 21.0972 7.4622 0.1003 21.7555 5061.302
SMA 309114 0.1000 22.8725 14.9962 0.1000 0.5441 21.0258 7.4980 0.1000 21.6299 5061.370
EPSO 30.9635 0.1000 23.3302 15.0945 0.1004 0.5181 21.0176 7.4638 0.1000 21.2615 5061.430
L-SHADE 30.1575 0.1015 23.1219 15.2116 0.1002 0.6079 21.2881 7.4871 0.1001 21.5443 5061.767
GWO 314315 0.1391 23.3237 14.6359 0.1095 0.3263 21.1417 7.5177 0.1082 21.4640 5076.252
GABC 31.2108 0.1000 24.4742 15.0265 0.1000 0.1000 20.1160 8.1739 0.1000 21.3679 5089.668
HSWOA+ 27.7942 0.1076 23.3847 14.7782 0.2115 0.1076 21.6980 8.7994 0.1089 23.1653 5130.602
ChOA 33.5000 0.1053 20.2883 17.1178 0.1438 0.3481 21.4468 8.8938 0.1280 19.7748 5147.704
CLPSO 27.2978 0.1885 25.4958 14.4022 0.1160 0.4145 21.5567 8.2853 0.4442 22.4650 5152.701
MEGWO 23.1222 0.1264 29.3687 18.3397 0.1179 1.2017 27.1991 7.5460 0.1265 18.7025 5345.136
SGO 33.5000 0.1000 18.4241 11.7326 0.3903 0.1000 18.8339 10.8065 0.4987 33.5000 5552.864
WOA 23.0609 0.1052 21.2476 17.5273 0.8970 0.1000 24.5312 21.6694 0.1000 24.7826 5884.731
HSWOA 28.6169 5.3381 24.1371 11.0118 0.2042 16.9766 18.2720 10.1768 4.0180 29.1434 6244.410
ISGO 25.6920 8.8942 26.2481 12.1754 0.1000 3.6401 16.2450 21.8636 22.0966 13.2559 6504.340
MSGO 31.8284 6.8907 23.2485 7.5114 7.6822 11.6410 14.9534 16.7718 14.1246 16.2059 6909.093
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TABLE 42. Description of the problem formulation, objectives and constraints for the OPF (IEEE 30 and IEEE 57 bus systems).

Problem Formulation
The combination of power flow equation and economic dispatch equation can be simplified into non-linear function. Standard OPF problem can be formulated to minimize the objective in the system and satisfy system equality and
i i ins as: i\ i , OPF is as:
Minimize : f(x,u)
. Lgw) <0 A(l)
subject to : h(xu) = 0
‘where,
u is the vector of control or independent variables, x is the vector of state or dependent variables. f (x, u): objective functions of OPF, g (x, u): set of inequality constraints, A (x, u): set of equality constraints.
Control (independent) variables
The set of variables that can control the power flow in the network is represented in vector form as:
u = [Pg,. Poyg Ve Voo Q.. Qene: Tr.Tur | AQ2)
where,
Pg; is the ith bus generator active power (except swing generator). Selection of bus 1 as swing bus is representative only and swing bus can be any one of the generator buses. V; is the voltage magnitude at ith PV bus (generator bus), T; is
the jth branch transformer tap, Qcx is the shunt compensation at kth bus. NG, NC and NT are the number of generators, shunt VAR compensators and transformers respectively. A control variable can assume any value within its range. In
reality, taps are not i However, the tap settings expressed here are in p.u. and absolute value of voltage is not accounted for. Hence for study purpose and to compare with past reported results, all control variables
including tap settings are considered continuous for most of the study cases. Discrete steps for transformers and shunt capacitors are accounted only in one special study case.
State (dependent) variables
The state of power system is defined by the state variables which can be expressed by vector x as:
= [Poy Vi, Vi Q1. S Stus ] AG)
where,
Pg, is the generator active power at slack (or swing) bus, Qg is the reactive power of generator connected to bus i, VLp is the bus voltage of pth load bus (PQ bus) and line loading of gth line is given by Si; . NL and nl are the number of
load buses and transmission lines respectively.
Objectives
Minimization of fuel cost
NG
FGw) =Y a b, + ciPf, A®)
Case 1
where,
a;, b; and ¢; are the cost coefficients of the ith generator producing output power P,
Enhancement of voltage stability of the network
If a power system has NL number of load (PQ) buses and NG number of generator (PV) buses, the value of L-index Lj of bus j is defined as:
LI
= ‘1 - z Fyot AG)
=
where j=1,2, .... ,NL
and
Fi = =[] [Yi6)
‘where,
Case 2 sub-matrices Y, and Y, are obtained from system YBUS matrix after separating load (PQ) buses and generator (PV) buses given as follows.
IL] _ Y YLC] [VL] 6
Iel ™ Yoo YollVe
Z-index of each bus serves as a good indicator of power system stability. The value of the index varies from 0 to 1, with 0 being the no load case while 1 signifies voltage collapse.
The L-index is calculated for all load buses and maximum value out of those acts as the global indicator for the system stability.
Therefore, the objective function of system stability is given by:
FO0) = Ling = max(Ly) AD)
where j=1,2, ... ,NL
Minimization of fuel cost
NG
f(x,u) = Emission = Z [(at + BiPs, +viP) X 0.01 + (‘)[e(“‘PGL)] A®)
Case 3 i=1
where,
a;, Bi, Vi, w; and y; are all emission coefficients.
Minimization of real power loss
n
Case 4 fxu) = Pross = Z Gq(l/)[vi2 + Vi2 -2V COS(‘;U)] A©)
a=1
where,
8;j = 8; — &j, , is the difference in voltage angles between bus i and bus j and G is the transfer conductance of branch g connecting buses i and j.
Minimization of fuel cost considering valve point effect
NG
Cases Flrw) = Z @+ P, + 6P, + |dy x sin (e x (P — Bg,))| AQI0)
=1
where,
d; and e; are the coefficients that represent the valve-point loading effect.
Minimization of fuel cost and real power loss
NG
- 2
Case 6 flru) = IZ]: a; + biPg, + ¢iP¢, + Ap X Pioss A(11)
where,
Pyyss is is the real power loss in the network calculated and value of factor A, is chosen as 40.
Minimization of fuel cost and voltage deviation
Voltage deviation is expressed as:
NL
Vb = Z|VL»’ 1] AU12)
p=1
Case 7
The combined objective function of fuel cost and voltage deviation is:
NG
flx,w) = [Z a; + b;Pg, + ¢;P, [+ Ayp X VD A(13)
=
where,
‘weight factor Ay is assigned a value of 100 based on the previous implementations.

VOLUME 10, 2022 12117



IEEEACC@SS A. K. V. K. Reddy, K. V. L. Narayana: Investigation of ME-SGO Algorithm for Optimization of Energy Management in EV

TABLE 42. (Continued.) Description of the problem formulation, objectives and constraints for the OPF (IEEE 30 and IEEE 57 bus systems).

Minimization of fuel cost and enhancement of voltage stability
NG
Case8 fleu) = [Z @+ biPo, + €| + Ay X Linas A1)
(=1
where,
value of weight factor 4, is 100.
i of fuel cost, emission, voltage deviation and losses
Case 9 e,
Faou) = [Z s+ biPg, + GiP2| + [Ag X Emission] + [Ayp X Lmax] + [ X Pioss] A(15)
=)
where,
the weight factors are selected as Az = 19, Ayp = 21 and A, =22 based on the previous implementations.
Constraints
In OPF, power balance equations are the equality constraints and those are represented as:
NE A(16)
Pg; = Pp, = sz Vi[Gyj cos(8i;) + By sin(8y;)] = 0
=
. NE, A7)
Equali "
o 0, — Qo= Vi ) YlGyysin(8,) - Byycos(5,)] = 0
=
where,
&ij = 8: —6y, is the difference in voltage angles between bus i and bus j, NB is the number of buses, Pp and Qp are active and reactive load demands, respectively. G is the transfer conductance and By is the susceptance
between bus i and bus j, respectively.
(a) Generator Constraints : A(18)
V@ < Vg, S V@
Pt < Pg, < PG
Qmin < Qg, < QX
(b) Transformer constraints: A(19)
Inequality "t < Ty S T
Constraints
(c) Shunt compensator constraints: A(20)
QN < Qq, < Qe
(d) Security constraints: AQ21)
Vit <V, SV
Siy S S
TABLE 43. Summary of the IEEE 30 bus system with EV loading at the residential buses.
Summary of IEE 30-Bus System
Bus System IEEE 30-bus system
Quantity Details
Buses 30
Branches 41
Generators 6 Buses: | (swing), 2,5, 8, 11 and 13
Shunt VAR p i 9 Buses: 10, 12, 15, 17, 20, 21, 23, 24 and 29
Transformer with tap changer 4 Branches: 11, 12,15 and 36
Control variables 24 -
Connected load - 283.4 MW, 126.2 MVAr
Load bus voltage range allowed 24 [0.95—1.05] p.u.
Residential buses 19 2.3,5,6,7.8,9,10,13,14,15,16,17,20,21,23,24
Commercial buses 5 4,11,12,18,19
Industrial buses 6 22,26,27,28,29,30
TABLE 44. Summary of the IEEE 57 bus system with EV loading at the residential buses.
Summary of IEE 57-Bus System
Bus System IEEE 57-bus system
Quantity Details
Buses 57
Branches 80
Generators 7 Buses: Buses: 1 (swing), 2,3, 6, 8,9 and 12
Shunt VAR p i 3 Buses: 18, 25 and 53
Transformer with tap changer 17 Branches: 19, 20, 31, 35, 36, 37, 41, 46, 54, 58, 59, 65, 66, 71, 73, 76 and 80
Control variables 33 -
C load - 1250.8 MW, 336.4 MVAr
Load bus voltage range allowed 50 [0.94 —1.06] p.u.
idential buses 42 2.3.5.6.8.9.10,12,13,14,15,16,17,18,19.20,23,25,27,28,29,30,31,32,33,35,38.41.,42.43.44,47.59.50,51,52,53.54.55.56.57
Commercial buses 8 4,7,11,21,22,24,26,34
Industrial buses 7 36,37,39,40,45,46,48

TABLE 45. Lower and Upper bunds for the OPF (IEEE 30 and IEEE 57 bus systems).

[20 15101012 0.950.950.950.950.950.950000000000.90.90.90.9]

Bus System IEEE 30 Bus System IEEE 57 Bus System
Dimension of

optimization 24 33

problem (D)

Optimization cases 9 Cases 9 Cases

Lower Bound (Ib)

[3040 30 100 30 100 0.95 0.95 0.950.950.950.950.950000.90.9 0.90.90.90.90.90.90.9 0.9 0.9

0.90.90.90.90.90.9]

[8050353040 1.1 1.1 LI .1 1.1 1.1555555555 1.1 1.1 1.1 1.1]

Upper Bound (ub) [100 140 100 550 100410 1.1 1.1 1.1 .1 1.1 1.1 1.1
111

202020 1.1 1.1 LI LI LI LT LT LT LT LTI
1111
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TABLE 46. Tabulation of the best solutions of OPF with EV loading for the IEEE 30-bus system.

Decision Variables Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Algorithm with ME-SGO MPEDE EPSO ME-SGO ME-SGO MPEDE ME-SGO ME-SGO MPEDE

the best Fitness
PG2 (MW) 50.09724 66.23146 7258317 79.99757 5237577 5820856 5041160 50.29838 5354648
PG5 (MW) 21.84629 3829814 50.00000 50.00000 19.50602 39.63774 22.14769 21.84235 32.53365
PGS (MW) 2411942 19.14397 35.00000 34.99980 11.18321 34.95943 24.93002 23.75930 34.97054
PG11 (MW) 12.89832 18.17935 30.00000 29.99994 10.02351 29.98700 13.72408 1292313 29.91544
PGI3 (MW) 12.10041 16.10453 40.00000 40.00000 12.02962 30.25099 12.02439 1230661 2322247
V1 (pu) 1.08464 1.06250 1.06357 1.06293 1.09134 1.07075 1.04499 108488 1.07066
V2 (pu) 1.06483 1.04935 1.05750 1.05792 1.06773 1.05868 1.02609 1.06437 1.05788
V5 (p.u) 1.03398 1.01886 1.03773 1.03807 103310 1.03390 101228 103279 1.03011
V8 (pu.) 1.03741 1.04100 1.04201 104312 103439 1.04037 1.00414 1.03714 1.04146
V1l (pu,) 108404 109760 1.09193 106199 108212 108964 105313 1.09057 103158
V13 (pu) 1.04557 106867 105050 1.05704 1.04071 1.04844 0.98911 104233 102362
Qc10 (MVAD) 373786 4.86662 5.00000 499111 0.00000 478691 5.00000 130638 021191
Qc12 (MVAD) 0.00000 046287 5.00000 0.63304 278767 155766 0.00000 344145 452639
Qcl5 (MVAD) 404332 4.92593 5.00000 423643 4.12650 4.98683 4.95915 5.00000 118132
Qc17 (MVA) 476420 252490 4.25269 4.99661 4.09129 0.10129 0.04391 4.69254 458424
0c20 (MVAr) 3.89588 323265 5.00000 353728 434602 473458 4.97178 326727 425975
Qc21 (MVAr) 492043 445622 4.99810 498550 479385 475366 4.98735 470800 430023
Qc23 (MVA) 3.61329 4.94168 0.00000 324956 278302 2.66965 4.98697 235132 430145
Qc24 (MVAI) 496530 0.00000 4.90768 4.99459 4.58987 481017 4.97979 5.00000 482381
0c29 (MVAI) 2.09811 0.04732 245834 2.02607 211116 2.56025 239889 195373 152983
T11 (p.u) 1.07846 104111 1.01054 1.07277 1.03424 1.08473 1.07430 1.06145 1.08499
T12 (p.u) 0.90000 091971 1.03748 0.90282 0.92788 0.90006 0.90047 0.90429 094522
T15 (p.u) 0.96465 1.01994 0.98656 0.99249 0.95933 0.97674 093591 096778 101222
T36 (p.u.) 0.97269 0.95636 097750 0.97408 0.97713 0.97428 0.96879 0.96859 0.99440
Fuel cost ($/h) 839.0224 914.7841 9804872 9943924 842.6901 900.2565 842.1262 839.0393 871.4625
Emission (t/h) 0.380702 0264215 0208744 0.209634 0.442874 0.232734 0378727 0380442 0255242
Ploss (MW) 949952 6.809632 3.629422 3514513 11.11823 4.913702 10.29822 9503517 5.931483
VD (p.u) 0.872397 0.87015 0.822999 0.881501 0.650641 0.822314 0.116209 090461 0334295
Lr-index (max) 0.140281 0.13955 0.141495 0.140809 0.142891 0.141016 0.150708 0.139828 0.143638
Fitness 838.9998 0.139465 0208744 3513195 872.8843 1095.754 852.2779 852.9959 1013.00
Computational 78.69122 159.09770 201.30660 164.53972 160.93747 173.72671 183.94840 79.27672 158.82472
Time (Sec)

TABLE 47. Tabulation of the best solutions of OPF with EV loading for the IEEE 57-bus system.
Decision Variables Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Algorithm with ME-SGO ME-SGO EPSO GABC ME-SGO ME-SGO GABC ME-SGO ME-SGO

the best Fitness
PG2 (MW) 9442275 30.00000 100.00000 82.89066 97.07436 99.98141 8837982 77.86440 90.36065
PG3 (MW) 50.97090 135.99660 140.00000 53.42610 4822898 43.99692 46.00397 4255337 42.81557
PG6 (MW) 67.93696 100.00000 100.00000 93.13912 93.88533 9856691 92.86857 57.65268 91.69903
PGS (MW) 49534330 344.76490 299.88020 456.41190 47133810 47200580 451.92760 471.85510 466.95830
PGY (MW) 98.17355 95.83190 100.00000 100.00000 100.00000 99.82678 100.00000 90.59551 100.00000
PGI2 (MW) 386.10320 409.97620 38736120 41000000 380.89750 379.76440 41000000 259.31380 400.52470
V1 (p.u) 0.99502 0.99331 1.09811 1.03548 0.97649 0.99830 1.07383 1.03292 1,00417
V2 (pu) 0.98606 0.98323 1.08077 1.02284 0.96797 0.99462 1.06476 095054 0.99619
V3 (p) 097157 0.98922 1.05887 1.01981 0.96559 098722 1.04845 1.01046 0.99305
V6 (pu) 0.98692 0.99350 1.06333 1.05619 0.99649 1.00266 1.05337 0.99985 099513
V8 (p.u) 1.00370 099175 1.06900 1.09264 1.00700 1.01061 1.05389 101274 0.99894
V9 (pu) 097359 0.96764 1.03973 1.05413 0.97134 0.97330 1.02895 1.06662 097382
V12 (pu) 0.98087 098154 1.02191 1.05197 0.97936 0.96966 1.04009 0.99468 0.99292
Qc18 (MVAD) 095174 17.49478 19.99520 15.48706 16.58017 16.90480 0.00000 278452 13.64522
Qc25 (MVAr) 12.67660 17.76321 935225 5.83905 17.68960 11.16725 4.72516 19.26765 13.64125
Qc53 (MVAD) 5.86649 15.02542 1275411 228212 14.01502 14.10361 16.01252 19.42521 13.76410
T19 (p.u) 091341 1.04653 0.97321 0.90000 0.97662 091034 0.96050 1.03780 0.90000
720 (p.u.) 0.90469 093643 1.04262 1.10000 0.90738 1.00138 0.94428 0.95410 1.01869
T31 (p.u) 1.07233 1.05469 1.10000 1.03890 1.00254 0.95503 1.10000 0.96021 094374
T35 (p.) 1.05762 091454 1.00784 0.93839 1.05691 1.07126 1.02892 1.08984 0.92967
736 (p.u.) 0.90535 1.09236 1.02842 0.92144 1.01855 0.90020 0.90000 1.02730 0.99004
737 (p.u.) 1.04181 097257 1.10000 1.04747 1.03979 1.02416 1,02944 1.01050 0.99250
T41 (p.u.) 091515 0.96547 0.99015 0.98292 0.93296 0.93491 1.01109 097427 0.93044
T46 (p.u.) 0.94340 0.90000 0.90000 0.95732 094538 097954 0.95884 0.90939 0.98537
T54 (p.u.) 092907 0.90895 091815 0.90000 0.90000 0.90297 090425 090322 091743
758 (p-u.) 090281 0.90921 0.98741 0.98873 0.90000 090322 0.98949 0.90381 092938
759 (p.) 0.90207 0.90036 0.94641 0.95351 0.91385 0.90147 097216 0.99780 0.90052
765 (p.1) 091382 0.90063 1.08841 1.03655 0.90262 090142 0.96045 1.00211 0.96662
766 (p.11) 0.90429 0.90391 092735 0.97246 0.90000 0.90000 0.90000 0.90165 0.90000
771 (p.u) 0.90000 0.90240 1.01384 0.97759 0.92881 0.90350 1.01823 097388 0.90213
T73 (p.u.) 095748 1.09264 0.90000 0.98747 1.05687 0.97407 1.04952 1.04051 1.01094
776 (pu.) 091596 091734 1.10000 0.98816 0.96821 093492 0.90000 0.90255 0.93658
T80 (pu.) 095225 0.94319 1.10000 103208 0.93794 0.94958 0.98591 1.04792 091495
Fuel cost ($/h) 44915.54 45060.36 48351.90 45071.52 4489931 44857.83 45165.958 46393.1 4492824
Emission (t/h) 1.512167 1.625308 1.116408 1.428393 1.487879 1.45100 1.7173888 1.741472 1.595312
Ploss (MW) 22.16468 25.15457 2020402 2130668 21.46148 21.35757 27.093766 4241244 2329527
VD (p.u) 1.293303 1449709 1.561037 1393597 1320027 1.274951 1.6749556 0.730941 1.55910
L-index (max) 0373453 0378041 0.364649 0.369802 0371187 0375976 0370031 0376513 0376258
Fitness 448793 16.1845 1.116403 46808.0 44990.1 44956.5 449055 0.698257 453212
Computational 186.20 237.84 23023 24171 24836 263.02 239.22 286.74 292.84
Time (Sec)

2) ME-SGO achieved the perfect precision of 10 digits
for 6 out of the 10 functions from CEC2019 suite
and scored 68 points out of 100 in the 100-digit

competition.

VOLUME 10, 2022

3) The performance of ME-SGO for the five engineering
problems weas very completive with L-SHADE and
MPEDE with lower standard deviations compared to
the other state-of-the-art optimizers.
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TABLE 48. Description of the objective functions for the two cases, i) Minimization of real power loss and ii) Minimization of voltage deviation for the

ORPD (IEEE 30 bus system).

Minimization of real power loss
nl
Case1 FG10) = Pass = D Goap |V + V2 = 2V cos(5,)] A@2)
q=1
where,
8ij = 8; — &, , is the difference in voltage angles between bus i and bus j and G ;) is the transfer conductance of branch q buses i and j.
of voltage
Voltage deviation is expressed as:
NL
Case 2 Fw=VD= Z v, - 1| AQ23)
p=1
where,
V1, is the bus voltage of pth load bus (PQ bus) and NL is the number of load buses.
TABLE 49. Lower and upper bunds for the ORPD (IEEE 30 SYSTEM).
Bus System IEEE 30 Bus System
Dimension of optimization problem (D) 19
Optimization cases 2 Cases with 25 Scenarios
Lower Bound (Ib [0.950.95 0.95 0.95 0.950.950.90.90.90.9000000000]
Upper Bound (ub) [L11111111111 1111 1.11.1555555555]
TABLE 50. Description of the 25 different scenarios adopted with EV loading for the ORPD.
Scenario % Loading (Residential load+ EV load Wind MW PV MW Scenario probability, A
number o Loading (Residential loa oad) ind power ( ) power (| ) cenario probability, A
1 105.784 0 50 0.001
2 55.714 26.566 36.349 0.001
3 73.165 42.772 23.805 0.007
4 77.665 0 40.164 0.001
5 99.491 35.666 46.795 0.001
6 60.573 0.912 30.363 0.004
7 97.292 15.645 18.283 0.001
8 58.378 35.892 16.324 0.038
9 98.092 29.805 0 0.006
10 77.942 14.248 37.580 0.002
11 41.386 9.580 9.073 0.004
12 65.615 16.561 43.456 0.001
13 90.475 33.496 22.067 0.003
14 66.773 40.393 50 0.001
15 61.498 32.470 27.564 0.009
16 68.935 18.629 0 0.478
17 67.603 35.103 6.942 0.093
18 71.770 38.528 18.992 0.044
19 79.921 13.102 33.639 0.004
20 72.351 28.152 20.560 0.037
21 78.322 10.458 10.058 0.048
22 66.073 50.441 3.813 0.027
23 74.465 0 11.464 0.071
24 63.754 1.416 25.904 0.012
25 64.487 65.994 13.756 0.106
TABLE 51. Tabulation of the best solutions of ORPD (Scenario 1-12) with EV loading for the IEEE 30-bus system.

Decision Variables Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 10 Scenario 11 Scenario 12
Algorithm with ME-SGO | ME-SGO 1SGO MPEDE ME-SGO | MESGO | ME-SGO 15GO ME-SGO woa ME-SGO ME-SGO
V1 (p-u.) 0.99299 1.02113 1.04503 1.06843 1.02073 1.00935 1.00851 1.00287 1.02291 1.03323 1.00124 1.00922
V2 (p.u.) 1.00402 1.01974 1.03723 1.05916 1.01958 1.01105 1.00989 1.00749 1.02054 1.02790 1.00840 1.01273
V5 (p.u.) 1.00249 0.99781 1.01348 1.03371 0.99804 0.99829 0.99688 1.00328 1.00675 1.00772 1.00694 1.00425
V8 (p.u.) 1.00414 1.01010 1.02262 1.03714 1.00790 1.00294 1.00124 1.00176 1.00462 1.00766 0.99983 0.99828
V1l (p.u.) 0.99121 1.00417 1.05646 1.05642 1.00651 1.01156 1.01207 1.00447 1.02079 1.00806 1.01238 1.01111
V13 (p.u.) 1.01150 1.01128 1.02509 1.01679 1.00443 1.00733 1.00247 1.01147 1.01736 1.00972 0.99529 0.99859
T11 (p.u.) 0.99268 1.01579 1.01474 1.07584 1.01883 1.02444 1.01783 1.02774 1.03874 1.00696 1.02414 1.01586
T12 (p.u.) 0.97340 0.98455 1.03000 0.97168 0.96578 0.95643 0.95318 0.94886 0.92720 1.00732 0.95304 0.95069
T15 (p.u.) 1.00447 0.99586 1.02781 1.02804 1.00488 0.98529 0.97176 1.00812 0.99348 1.00434 0.98557 0.98509
T36 (p.u.) 0.98592 0.98300 1.00892 0.99466 0.97860 0.97901 0.98888 0.97897 0.98659 1.00589 0.98049 0.98407
Qcl0 (MVAr) 2.28992 3.71194 2.39395 1.73534 0.00000 2.67366 0.38855 1.45856 0.50780 3.70941 0.14787 0.00000
Qcl2 (MVAr) 0.33523 0.20268 2.42402 4.41238 3.07541 0.00000 0.00000 1.54003 0.10806 4.23152 4.86486 3.21748
Qcl5 (MVAr) 1.77177 1.89005 2.52317 1.97585 3.66046 2.22016 1.70649 1.21367 2.43453 4.19032 2.35296 1.66138
Qcl7 (MVAr) 1.09672 3.06188 2.60997 4.99526 1.63098 233127 2.32257 3.22228 2.51590 4.16834 1.82592 2.03201
Qc20 (MVAr) 3.35680 4.07665 1.15299 4.73806 3.79895 4.12359 4.03523 4.45266 4.14615 0.93161 3.19843 3.85607
Qc21 (MVAr) 4.64387 4.22944 3.70266 4.88739 4.79967 4.54014 3.79062 2.03641 4.84669 3.19365 4.60140 4.99242
Qc23 (MVAr) 2.03336 2.33615 3.47532 4.76948 1.57123 3.06564 2.44527 1.10049 3.20386 4.40819 2.38414 2.39577
Qc24 (MVAr) 3.55026 4.74509 1.50001 4.99313 4.77354 5.00000 5.00000 1.60649 5.00000 4.40239 3.90612 3.90111
Qc29 (MVAr) 0.36652 0.61534 3.28166 1.83736 0.66649 1.63663 0.92889 2.29999 1.92872 1.92074 1.06620 1.26533
Ploss (MW) 1.272131 2.385291 4.018547 5.001507 2.224851 1.447803 1.214170 1.090563 2.360044 3.019415 0.927722 1.174276
VD (p.u.) 0.079769 0.10425 0.237933 0.328735 0.098317 0.103240 0.193152 0.070346 0.150974 0.165084 0.048104 0.082227

Computational
Time (Sec) 82.62656 75.39838 108.5183 119.5629 98.60157 93.70196 92.84911 103.8306 92.7024 107.2191 98.26654 97.01964
4) The first problem on EV optimization saw ME-SGO 5) In the second problem on EV optimization, ME-SGO

outperform the other algorithms for 5 out of 9 cases
for the IEEE30 bus system and 6 out of 9 cases for the
IEEE 57 bus system.

12120

had the best solutions for 13 scenarios followed by
ISOG for 9 scenarios. In this regard, the performance of
ME-SGO has been better compared to L-SHADE and
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TABLE 52. Tabulation of the best solutions of ORPD (Scenario 13-25) with EV loading for the IEEE 30-bus system.

Decision Variables | Scenario 13 | Scenario 14 | Scenario 1S | Scenario 16 | Scenario 17 | Scenario 18 | Scenario 19 | Scenario 20 Scenario 21 Scenario 22 Scenario 23 Scenario 24 Scenario 25
Agorithin 1SGO 1860 1560 ME-SGO | MESGO | L-SHADE | ME-SGO | MESGO 15GO 1860 SMA 1560 ME-SGO
V1 (pu.) 1.01108 1.04716 1.01784 1.01597 1.01462 1.00667 1.00620 1.02078 1.00549 1.02047 1.02105 1.02222 1.02277
V2 (p.u.) 1.01171 1.04527 1.02013 1.01568 1.01413 1.00798 1.01023 1.01951 1.00822 1.01938 1.02156 1.02067 1.01993
V5 (pu.) 0.99425 1.02329 1.00945 1.00236 0.99573 0.99309 1.00315 1.00998 1.00199 1.00606 1.00652 1.00521 1.00237
V8 (p.u.) 1.00010 1.02593 1.01024 1.00297 1.00089 0.99772 1.00167 1.00060 0.99757 1.00369 1.01094 1.00826 1.00475
V11 (p.u.) 1.02950 1.00571 1.01000 1.00943 1.00622 1.02986 1.01285 1.00997 1.00130 1.01420 0.99814 1.07504 1.00508
V13 (p.u.) 1.00944 1.01932 0.98464 1.01316 0.99712 1.01084 0.99997 1.01397 0.99018 1.02961 1.02473 1.01568 1.01466
T11 (p.u.) 1.01105 1.04192 1.03239 1.01571 1.02017 1.03050 1.01860 1.01449 0.98214 1.00354 1.00161 1.04412 1.01851
T12 (p.u.) 0.98222 0.98081 0.98133 0.96255 0.95257 0.92780 0.95647 0.94600 0.99330 0.98216 0.95748 1.00804 0.94549
T15 (p.u.) 1.00838 1.00127 0.97006 1.00251 0.97200 0.97436 0.98553 1.00325 0.97770 0.99733 1.00703 0.99545 0.99843
T36 (p.u.) 1.00085 0.99432 0.99045 0.97955 0.98718 0.95382 0.97611 0.98405 0.97985 0.97000 1.00365 0.97068 0.97251
Qc10 (MVAr) 3.81022 427715 1.10240 4.64379 0.10427 0.77515 0.62909 0.14268 1.06214 2.24626 2.89596 2.86244 0.40865
Qcl2 (MVAr) 1.10000 1.68589 4.53514 3.23311 3.58419 2.15531 3.66962 2.03747 4.07441 2.35277 2.34567 4.53740 1.24638
Qcl15 (MVAr) 2.13514 0.64807 4.29994 3.82990 1.40536 2.17645 2.55429 3.23290 297133 1.71689 2.54835 1.19948 2.71433
Qcl7 (MVAr) 1.40178 1.45448 2.55389 2.65876 0.98555 4.65907 2.86424 3.14120 1.47377 1.65535 2.72846 3.30000 3.26257
Qc20 (MVAr) 1.52463 3.12359 1.50150 4.55005 3.20667 4.12471 3.71616 4.60227 246121 2.81622 2.61725 1.36669 4.25684
Qc21 (MVAr) 3.14712 0.69325 1.92586 5.00000 4.59253 2.11047 4.89490 4.93629 2.60137 2.90000 2.84492 2.13975 4.91229
Qc23 (MVAr) 1.92792 0.81469 1.68288 3.22640 1.67712 1.95505 1.72880 3.39927 2.06146 2.89237 2.47846 3.50000 2.56685
Qc24 (MVAr) 3.75965 1.63580 4.32888 4.96871 3.86721 4.94755 4.64516 4.98287 3.67396 231164 2.50523 2.38970 4.96260
Qc29 (MVAr) 2.99055 1.88325 0.52745 221111 0.57381 0.52516 1.35078 2.29317 1.64097 2.76574 2.64934 1.67409 1.72001
Ploss (MW) 1.755857 2.469085 0.786201 1.828701 1.749486 1.392526 1.021149 2.240514 0.808554 1.650933 1.779429 1.976460 2.225839
VD (p.u.) 0.086189 0.226025 0.105743 0.087598 0.088672 0.100518 0.082698 0.087961 0.053719 0.126303 0.156463 0.156287 0.118801

C"T"i‘tl:l‘e'"’s':;““' 98.529 98.58788 102.620 9821951 95.97415 145.8494 97.23369 99.66969 102.3035 102:4335 11313 88.67404 1147158
L Time (Sec)

TABLE 53. Description of the mathematical model, simulation details and constraints for the optimal dynamic charging problem.

Minimization of power deviation from the actual load to the ideal load

T

n,min

Jo=min(Py) = ) [P, — P AQ4)
=1
where, _
t =1,2,3..T, are the time intervals, P, stands for the power deviation, P, is the toal grid demand with EVs at time t and P is the average demand on the grid excluding the EV load
Maximization of owner’s degree of satisfaction
Objective "
-1 50C;
Jo =min(1—DoS) = 1— ):"’;V ! A(25)
whel
n =1,2,3..N, are the nodes in the power grid, SoC; stands initial level of SoC.
Combining, we have
J=ai+(A-a)), A(26)
where,
a is the weighing factor set to 0.7.
Initial charging time
The initial charging time follows normal distribution and is given by
© 1 _@-19? AQT)
c(t) =—=e" 2
\i
where,
7 is the rate of charging.
Simulation
System Number of EVs connected for charging
Ata time instant t, the number of EVs’ requiring charging is given by
t+at
Ne = Niy f c(t)dtl AQ28)
3
where,
N, is the number of EVs requiring charging at time t, N, are the total number of EVs at a given node.
EV charging power limits are expressed as:
Pimin < PYY < Piax AQ29)
Node voltage limits are expressed as:
Vamin < Vo < Vomax A(30)
Transformer ratio restraints are expressed as:
Constraints
[Tlnmin < |Tln < 1Tlnmax ABI)
Branch power transmission constraint is given as:
1Pl < IPlimax A(32)
EV battery energy storage limits are given as:
0.1xEEY . < EEV <09 X EEY 0 A(33)

MPEDE which have also integrated the linear popula-
tion reduction techniques.

6) For the third problem on EV optimization, the perfor-
mance of ME-SGO L-SHADE and MPEDE were quite
competitive with ME-SGO leading for two out of three
cases.

7) The fourth problem on EV optimization was a tie
between ME-SGO and L-SHADE with both the algo-
rithms leading for 3 cases each.
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C. FUTURE SCOPE

ME-SGO can be deployed to a wide spectrum of problems
falling under artificial intelligence, power systems, machine
learning etc. Practitioners are free to modify the proposed
method as per their requirements and hence to encourage
such an extendibility, simplicity has been embraced in the
design of ME-SGO. The proposed method can be applied to
various other optimization areas in power systems and EV
optimization. In computer science, the proposed method can
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TABLE 54. Description of the mathematical model, simulation details and constraints for the energy efficient control of parallel HEV.

Minimization of electricity cost and fuel cost
N N
Pg(t) Py(t)
= = At = = . A(34
J = E0O Zlcs(t) o Z [ppu o Peman] B¢ 64
where
Py mean(Fuge)pru
=q—+(1-ay)—F7— AB3s
pr =gy o+ (1-ag) e = (33)
Py(t) = Vp(8) X Ip(0) A(36)
Objective and
Function V() = Voc(0) = Vp(t) — Iz(D)Ry AGT)
Vo (t) = *EVn(f) +als(f) A(38)
where,
E, the energy consumption by the HEV, x is the control variable which denotes the power allocation from the vehicular energy management system, ¢, is the cost of the total energy consumption, At is the time interval,
N denotes the total number of time intervals, pr,,, pg; denote the price of fuel and electricity respectively, Pg(t) and Pg(t) are the engine and battery powers respectively, a, denotes the proportion of electricity from the
grid, py is the grid electrocute pricing, 75, and 1p are the efficiencies of charging of battery charging and battery pack, Fug is the fuel consumption rate of the engine when charging the battery, Vy is the terminal
voltage of the battery pack, I is the current of the battery pack, Vy is the open-circuit battery pack voltage, Vj, is the diffusion voltage of the battery RC circuit, C4 and R4 denote the capacitance and resistance of the
RC network.
Battery power consumption limits
PPN (SoC(t)) < Pa(t) < PP (SoC(t)) A(39)
where
1 ¢
S0C(t) = SoC(ty) ——flﬂ(r) dt A(40)
Qnom J
o
Constraints where,
Qnom is the nominal capacity of the battery pack.
Initial Soc
SoC(ty) = SoC, A(41)
Engine power limits
0< PEng(t) < ngg;‘ A(42)

be deployed towards neural networks (NN) training (feed-
forward NNs and convolution NNs). Image classification,
data classification, pattern recognition etc. can be optimized
through the proposed methods. A plan to deploy the current
method for the infection detection of COVID-19 from the
X-ray images via support vector classifier is in its roots.
Feature selection is a potential area of application of the
proposed methods through the formulation of a binary version
of ME-SGO. The realization of a multi-objective variant is
a possibility towards tackling problems requiring a Pareto-
optimal front.

APPENDIX
See Figures 2—4 and Tables 27-54.

ACKNOWLEDGMENT

The authors of this article hereby declare the interest and
willful consent to publish the article titled “Investigation of a
multi-strategy ensemble social group optimization algorithm
for the optimization of energy management in electric vehi-
cles” in IEEE Access journal. The authors hereby declare no
conflict of interest and would like to thank the encouragement
and support of VIT University in the publication of this paper.

REFERENCES

[1] E. Nowicki and C. Smutnicki, “A fast taboo search algorithm for the job
shop problem,” Manage. Sci., vol. 42, no. 6, pp. 797-813, Jun. 1996.

[2] Z.W. Geem, J. H. Kim, and G. V. Loganathan, ‘A new heuristic optimiza-
tion algorithm: Harmony search,” Simulation, vol. 76, no. 2, pp. 60-68,
Feb. 2001, doi: 10.1177/003754970107600201.

[3] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm: An
algorithm for optimization inspired by imperialistic competition,” in Proc.
IEEE Congr. Evol. Comput., Sep. 2007, pp. 4661-4667.

[4] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching-learning-based
optimization: A novel method for constrained mechanical design opti-
mization problems,” Comput.-Aided Des., vol. 43, no. 3, pp. 303-315,
Mar. 2011, doi: 10.1016/j.cad.2010.12.015.

12122

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

P. Niu, S. Niu, N. Liu, and L. Chang, “The defect of the grey wolf
optimization algorithm and its verification method,” Knowl.-Based Syst.,
vol. 171, pp. 37-43, May 2019, doi: 10.1016/j.knosys.2019.01.018.

J. K. Cochran, S.-M. Horng, and J. W. Fowler, “A multi-population
genetic algorithm to solve multi-objective scheduling problems for parallel
machines,” Comput. Oper. Res., vol. 30, no. 7, pp. 1087-1102, 2003, doi:
10.1016/S0305-0548(02)00059-X.

H. Wang, Z. Wu, S. Rahnamayan, H. Sun, Y. Liu, and J.-S. Pan, “Multi-
strategy ensemble artificial bee colony algorithm,” Inf. Sci., vol. 279,
pp. 587-603, Sep. 2014, doi: 10.1016/j.ins.2014.04.013.

W. Deng, H. Zhao, L. Zou, G. Li, X. Yang, and D. Wu, “A novel col-
laborative optimization algorithm in solving complex optimization prob-
lems,” Soft Comput., vol. 21, no. 15, pp. 4387-4398, Aug. 2017, doi:
10.1007/s00500-016-2071-8.

B. Zhao, C. X. Guo, and Y. J. Cao, “A multiagent-based particle
swarm optimization approach for optimal reactive power dispatch,” IEEE
Trans. Power Syst., vol. 20, no. 2, pp. 1070-1078, May 2005, doi:
10.1109/TPWRS.2005.846064.

W. Du and B. Li, “Multi-strategy ensemble particle swarm optimization
for dynamic optimization,” Inf. Sci., vol. 178, no. 15, pp. 3096-3109, 2008,
doi: 10.1016/j.ins.2008.01.020.

Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, and Q. Tian, ““Self-adaptive
learning based particle swarm optimization,” Inf. Sci., vol. 181, no. 20,
pp. 4515-4538, 2011, doi: 10.1016/j.ins.2010.07.013.

H. Wang, H. Sun, C. Li, S. Rahnamayan, and J. S. Pan, ““Diversity enhanced
particle swarm optimization with neighborhood search,” Inf. Sci., vol. 223,
pp. 119-135, Feb. 2013, doi: 10.1016/j.ins.2012.10.012.

Y. Guo, N.-Z. Chen, J. Mou, and B. Zhang, “A quantum-behaved particle
swarm optimization algorithm with the flexible single-/multi-population
strategy and multi-stage perturbation strategy based on the characteris-
tics of objective function,” Soft Comput., vol. 24, no. 9, pp. 6909-6956,
May 2020.

B.-Y. Qu, P. N. Suganthan, and J.-J. Liang, “Differential evolu-
tion with neighborhood mutation for multimodal optimization,” IEEE
Trans. Evol. Comput., vol. 16, no. 5, pp. 601-614, Oct. 2012, doi:
10.1109/TEVC.2011.2161873.

G. Wu, R. Mallipeddi, P. N. Suganthanc, R. Wang, and H. Chen,
“Differential evolution with multi-population based ensemble of muta-
tion strategies,” Inf. Sci., vol. 329, pp.329-345, Feb. 2016, doi:
10.1016/j.ins.2015.09.009.

G. Wu, X. Shen, H. Li, H. Chen, A. Lin, and P. N. Suganthan, “Ensemble of
differential evolution variants,” Inf. Sci., vol. 423, pp. 172-186, Jan. 2018,
doi: 10.1016/j.ins.2017.09.053.

A. Auger and N. Hansen, ““A restart CMA evolution strategy with increas-
ing population size,” in Proc. IEEE Congr. Evol. Comput. (IEEE CEC),
vol. 2, Sep. 2005, pp. 1769-1776, doi: 10.1109/CEC.2005.1554902.

VOLUME 10, 2022


http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.knosys.2019.01.018
http://dx.doi.org/10.1016/S0305-0548(02)00059-X
http://dx.doi.org/10.1016/j.ins.2014.04.013
http://dx.doi.org/10.1007/s00500-016-2071-8
http://dx.doi.org/10.1109/TPWRS.2005.846064
http://dx.doi.org/10.1016/j.ins.2008.01.020
http://dx.doi.org/10.1016/j.ins.2010.07.013
http://dx.doi.org/10.1016/j.ins.2012.10.012
http://dx.doi.org/10.1109/TEVC.2011.2161873
http://dx.doi.org/10.1016/j.ins.2015.09.009
http://dx.doi.org/10.1016/j.ins.2017.09.053
http://dx.doi.org/10.1109/CEC.2005.1554902

A. K. V. K. Reddy, K. V. L. Narayana: Investigation of ME-SGO Algorithm for Optimization of Energy Management in EV

IEEE Access

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

W. Deng, J. Xu, and H. Zhao, “An improved ant colony optimization algo-
rithm based on hybrid strategies for scheduling problem,” IEEE Access,
vol. 7, pp. 20281-20292, 2019, doi: 10.1109/ACCESS.2019.2897580.

H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi,
“Multi-population differential evolution-assisted Harris hawks optimiza-
tion: Framework and case studies,” Future Gener. Comput. Syst., vol. 111,
pp. 175-198, Oct. 2020, doi: 10.1016/j.future.2020.04.008.

M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted
support vector machine for medical diagnosis,” Appl. Soft Comput.,
vol. 88, Mar. 2020, Art. no. 105946, doi: 10.1016/j.as0c.2019.105946.

Q. Tu, X. Chen, and X. Liu, “Multi-strategy ensemble grey wolf optimizer
and its application to feature selection,” Appl. Soft Comput., vol. 76,
pp. 16-30, Mar. 2019, doi: 10.1016/j.as0c.2018.11.047.

A. Naik and S. C. Satapathy, “A comparative study of social group opti-
mization with a few recent optimization algorithms,” Complex Intell. Syst.,
vol. 7, no. 1, pp. 249-295, Feb. 2021, doi: 10.1007/s40747-020-00189-6.
J. J. Jena and S. C. Satapathy, “A new adaptive tuned Social Group
Optimization (SGO) algorithm with sigmoid-adaptive inertia weight for
solving engineering design problems,” Multimedia Tools Appl., 2021, doi:
10.1007/s11042-021-11266-4.

A. Naik, S. C. Satapathy, A. S. Ashour, and N. Dey, “Social group
optimization for global optimization of multimodal functions and data
clustering problems,” Neural Comput. Appl., vol. 30, no. 1, pp. 271-287,
Jul. 2018, doi: 10.1007/s00521-016-2686-9.

R. S. M. L. Patibandla and N. Veeranjaneyulu, ‘‘Performance analysis of
partition and evolutionary clustering methods on various cluster validation
criteria,” Arabian J. Sci. Eng., vol. 43, no. 8, pp. 4379-4390, Aug. 2018,
doi: 10.1007/s13369-017-3036-7.

S. Satapathy and A. Naik, “Social group optimization (SGO): A new
population evolutionary optimization technique,” Complex Intell. Syst.,
vol. 2, no. 3, pp. 173-203, 2016, doi: 10.1007/s40747-016-0022-8.

J. Fang, H. Zheng, J. Liu, J. Zhao, Y. Zhang, and K. Wang, ““A transformer
fault diagnosis model using an optimal hybrid dissolved gas analysis
features subset with improved social group optimization-support vec-
tor machine classifier,” Energies, vol. 11, no. 8, pp. 1-18, 2018, doi:
10.3390/en11081922.

Y. Liu, D. Chen, F. Zou, W. Shan, S. Wang, and S. Luo, “Cluster head
multi-hop routing algorithm based on improved social group algorithm,”
in Proc. 3rd Asia—Pacific Electron. Elect. Eng. Conf. (EEEC), Jan. 2019,
pp- 31-38, doi: 10.12783/dtetr/eeec2018/26851.

A. Gautam, R. N. Sharma, and V. Kumar, “Short-term hydrothermal
scheduling using improved social group optimization algorithm,” in Proc.
IEEE 4th Int. Conf. Comput., Power Commun. Technol. (GUCON), no. 4,
Sep. 2021, pp. 1-5.

A. Naik, S. C. Satapathy, and A. Abraham, “Modified social group
optimization—A meta-heuristic algorithm to solve short-term hydrother-
mal scheduling,” Appl. Soft Comput., vol. 95, Oct. 2020, Art. no. 106524,
doi: 10.1016/j.as0c.2020.106524.

A. V. S. Swathi, V. V. S. S. S. Chakravarthy, and M. V. Krishna, “Circular
antenna array optimization using modified social group optimization algo-
rithm,” Soft Comput., vol. 25, no. 15, pp. 10467-10475, Aug. 2021, doi:
10.1007/500500-021-05778-2.

V. K. R. A. Kalananda and V. L. N. Komanapalli, “A combinatorial
social group whale optimization algorithm for numerical and engineer-
ing optimization problems,” Appl. Soft Comput., vol. 99, Feb. 2021,
Art. no. 106903, doi: 10.1016/j.as0¢.2020.106903.

A. K. Singh, A. Kumar, M. Mahmud, M. S. Kaiser, and A. Kishore,
“COVID-19 infection detection from chest X-ray images using hybrid
social group optimization and support vector classifier,” Cogn. Comput.,
pp. 1-13, Mar. 2021, doi: 10.1007/s12559-021-09848-3.

S. Verma, J. J. Jena, S. C. Satapathy, and M. Rout, “Solving travelling
salesman problem using discreet social group optimization,” J. Sci. Ind.
Res., vol. 79, no. 10, pp. 928-930, 2020.

V. K. R. A. Kalananda and V. L. N. Komanapalli, “A combinatorial
social group whale optimization algorithm for numerical and engineer-
ing optimization problems,” Appl. Soft Comput., vol. 99, Feb. 2021,
Art. no. 106903, doi: 10.1016/j.as0¢.2020.106903.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv.
Eng. Softw., vol. 69, pp. 4661, Mar. 2014, doi: 10.1016/j.advengsoft.
2013.12.007.

S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Adv.
Eng. Softw., vol. 95, pp. 51-67, Feb. 2016, doi: 10.1016/j.advengsoft.
2016.01.008.

VOLUME 10, 2022

(38]

(391

(40]

[41]

[42]

(43]

(44]

[45]

[46]

(47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]

S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, *“Slime
mould algorithm: A new method for stochastic optimization,” Future
Gener. Comput. Syst., vol. 111, pp. 300-323, Oct. 2020, doi: 10.1016/j.
future.2020.03.055.

M. Khishe and M. R. Mosavi, “Chimp optimization algorithm,” Expert
Syst. Appl., vol. 149, Jul. 2020, Art. no. 113338, doi: 10.1016/j.eswa.
2020.113338.

J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281-295,
Jun. 2006, doi: 10.1109/TEVC.2005.857610.

G. Zhu and S. Kwong, “Gbest-guided artificial bee colony algorithm
for numerical function optimization,” Appl. Math. Comput., vol. 217,
pp- 3166-3173, Dec. 2010, doi: 10.1016/j.amc.2010.08.049.

R. Tanabe and A. S. Fukunaga, “Improving the search perfor-
mance of SHADE using linear population size reduction,” in Proc.
IEEE Congr. Evol. Comput. (CEC), Jul. 2014, pp. 1658-1665, doi:
10.1109/CEC.2014.6900380.

K. V. Price, N. H. Awad, M. Z. Ali, and P. N. Suganthan.
(Nov. 2018). Problem Definitions and Evaluation Criteria for the
100-Digit Challenge Special Session and Competition on Single
Objective Numerical Optimization. [Online]. Available: http://www.
ntu.edu.sg’/home/EPNSugan/index_files/CEC2019

J. Brest, M. S. Maucec, and B. Boskovic, ““The 100-digit challenge: Algo-
rithm jDE100,” in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019,
pp. 19-26, doi: 10.1109/CEC.2019.8789904.

F. Lezama, J. Soares, R. Faia, and Z. Vale, “Hybrid-adaptive differen-
tial evolution with decay function (HyDE-DF) applied to the 100-digit
challenge competition on single objective numerical optimization,” in
Proc. Genet. Evol. Comput. Conf. Companion, Jul. 2019, pp. 7-8, doi:
10.1145/3319619.3326747.

S. X. Zhang, W. S. Chan, K. S. Tang, and S. Y. Zheng, ‘“Restart
based collective information powered differential evolution for solving
the 100-digit challenge on single objective numerical optimization,” in
Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019, pp. 14-18, doi:
10.1109/CEC.2019.8790279.

A. Viktorin, R. Senkerik, M. Pluhacek, T. Kadavy, and A. Zamuda,
“DISH algorithm solving the CEC 2019 100-digit challenge,” in
Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019, pp. 1-6, doi:
10.1109/CEC.2019.8789936.

A. Epstein, M. Ergezer, I. Marshall, and W. Shue, “GADE with fitness-
based opposition and tidal mutation for solving IEEE CEC2019 100-
digit challenge,” in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019,
pp. 395402, doi: 10.1109/CEC.2019.8790159.

J. Lu, X. Zhou, Y. Ma, M. Wang, J. Wan, and W. Wang, “A novel artificial
bee colony algorithm with division of labor for solving CEC 2019 100-
digit challenge benchmark problems,” in Proc. IEEE Congr. Evol. Comput.
(CEC), Jun. 2019, pp. 387-394, doi: 10.1109/CEC.2019.8790252.

D. Molina and F. Herrera, “Applying memetic algorithm with improved
L-SHADE and local search pool for the 100-digit challenge on single
objective numerical optimization,” in Proc. IEEE Congr. Evol. Comput.
(CEC), Jun. 2019, pp. 7-13, doi: 10.1109/CEC.2019.8789916.

T. Kadavy, M. Pluhacek, R. Senkerik, and A. Viktorin, “The ensem-
ble of strategies and perturbation parameter in self-organizing migrat-
ing algorithm solving CEC 2019 100-digit challenge,” in Proc.
IEEE Congr. Evol. Comput. (CEC), Jun. 2019, pp.372-375, doi:
10.1109/CEC.2019.8790012.

P. P. Biswas, P. N. Suganthan, R. Mallipeddi, and G. A.J. Amaratunga,
“Optimal power flow solutions using differential evolution
algorithm integrated with effective constraint handling techniques,”
Eng. Appl. Artif. Intell., vol. 68, pp.81-100, Feb. 2018, doi:
10.1016/j.engappai.2017.10.019.

S. K. Injeti and V. K. Thunuguntla, “Optimal integration of DGs into
radial distribution network in the presence of plug-in electric vehicles to
minimize daily active power losses and to improve the voltage profile of the
system using bio-inspired optimization algorithms,” Protection Control
Mod. Power Syst., vol. 5, no. 1, pp. 1-15, Dec. 2020, doi: 10.1186/s41601-
019-0149-x.

P. P. Biswas, P. N. Suganthan, R. Mallipeddi, and G. A. J. Amaratunga,
“Optimal reactive power dispatch with uncertainties in load
demand and renewable energy sources adopting scenario-based
approach,” Appl. Soft Comput., vol. 75, pp.616-632, Feb. 2019,
doi: 10.1016/j.as0c.2018.11.042.

12123


http://dx.doi.org/10.1109/ACCESS.2019.2897580
http://dx.doi.org/10.1016/j.future.2020.04.008
http://dx.doi.org/10.1016/j.asoc.2019.105946
http://dx.doi.org/10.1016/j.asoc.2018.11.047
http://dx.doi.org/10.1007/s40747-020-00189-6
http://dx.doi.org/10.1007/s11042-021-11266-4
http://dx.doi.org/10.1007/s00521-016-2686-9
http://dx.doi.org/10.1007/s13369-017-3036-7
http://dx.doi.org/10.1007/s40747-016-0022-8
http://dx.doi.org/10.3390/en11081922
http://dx.doi.org/10.12783/dtetr/eeec2018/26851
http://dx.doi.org/10.1016/j.asoc.2020.106524
http://dx.doi.org/10.1007/s00500-021-05778-2
http://dx.doi.org/10.1016/j.asoc.2020.106903
http://dx.doi.org/10.1007/s12559-021-09848-3
http://dx.doi.org/10.1016/j.asoc.2020.106903
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.future.2020.03.055
http://dx.doi.org/10.1016/j.future.2020.03.055
http://dx.doi.org/10.1016/j.eswa.2020.113338
http://dx.doi.org/10.1016/j.eswa.2020.113338
http://dx.doi.org/10.1109/TEVC.2005.857610
http://dx.doi.org/10.1016/j.amc.2010.08.049
http://dx.doi.org/10.1109/CEC.2014.6900380
http://dx.doi.org/10.1109/CEC.2019.8789904
http://dx.doi.org/10.1145/3319619.3326747
http://dx.doi.org/10.1109/CEC.2019.8790279
http://dx.doi.org/10.1109/CEC.2019.8789936
http://dx.doi.org/10.1109/CEC.2019.8790159
http://dx.doi.org/10.1109/CEC.2019.8790252
http://dx.doi.org/10.1109/CEC.2019.8789916
http://dx.doi.org/10.1109/CEC.2019.8790012
http://dx.doi.org/10.1016/j.engappai.2017.10.019
http://dx.doi.org/10.1186/s41601-019-0149-x
http://dx.doi.org/10.1186/s41601-019-0149-x
http://dx.doi.org/10.1016/j.asoc.2018.11.042

IEEE Access

A. K. V. K. Reddy, K. V. L. Narayana: Investigation of ME-SGO Algorithm for Optimization of Energy Management in EV

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

J. Yang, L. He, and S. Fu, “An improved PSO-based charging strategy
of electric vehicles in electrical distribution grid,” Appl. Energy, vol. 128,
no. 3, pp. 82-92, Sep. 2014, doi: 10.1016/j.apenergy.2014.04.047.

Z. Chen, R. Xiong, and J. Cao, “Particle swarm optimization-based
optimal power management of plug-in hybrid electric vehicles consid-
ering uncertain driving conditions,” Appl. Energy, vol. 96, pp. 197-208,
Feb. 2016, doi: 10.1016/j.energy.2015.12.071.

X. Wu, B. Cao, X. Li, J. Xu, and X. Ren, “Component sizing optimiza-
tion of plug-in hybrid electric vehicles,” Appl. Energy, vol. 88, no. 3,
pp. 799-804, Mar. 2011, doi: 10.1016/j.apenergy.2010.08.018.

Z. Liu, F. Wen, and G. Ledwich, “Optimal siting and sizing of dis-
tributed generators in distribution systems considering uncertainties,”
IEEE Trans. Power Del., vol. 26, no. 4, pp. 2541-2551, Oct. 2011, doi:
10.1109/TPWRD.2011.2165972.

J.Zhao, F. Wen, Z. Y. Dong, Y. Xue, and K. P. Wong, “Optimal dispatch of
electric vehicles and wind power using enhanced particle swarm optimiza-
tion,” IEEE Trans. Ind. Informat., vol. 8, no. 4, pp. 889-899, Nov. 2012,
doi: 10.1109/T11.2012.2205398.

J. P. Trovao, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes, “A multi-
level energy management system for multi-source electric vehicles—An
integrated rule-based meta-heuristic approach,” Appl. Energy, vol. 105,
pp. 304-318, May 2013, doi: 10.1016/j.apenergy.2012.12.081.

J. Zheng, X. Wang, K. Men, C. Zhu, and S. Zhu, “Aggregation
model-based optimization for electric vehicle charging strategy,” IEEE
Trans. Smart Grid, vol. 4, no. 2, pp.1058-1066, Jun. 2013, doi:
10.1109/TSG.2013.2242207.

J. Shen, S. Dusmez, and A. Khaligh, “Optimization of sizing and bat-
tery cycle life in battery/ultracapacitor hybrid energy storage systems for
electric vehicle applications,” IEEE Trans. Ind. Informat., vol. 10, no. 4,
pp. 2112-2121, Nov. 2014, doi: 10.1109/T11.2014.2334233.

J. Tan and L. Wang, “Integration of plug-in hybrid electric vehicles into
residential distribution grid based on two-layer intelligent optimization,”
IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1774-1784, Jul. 2014, doi:
10.1109/TSG.2014.2313617.

D. Goeke and M. Schneider, “Routing a mixed fleet of electric and conven-
tional vehicles,” Eur. J. Oper. Res., vol. 245, no. 1, pp. 81-99, Aug. 2015,
doi: 10.1016/j.€jor.2015.01.049.

H. Yang, S. Yang, Y. Xu, E. Cao, M. Lai, and Z. Dong, ‘““Electric vehicle
route optimization considering time-of-use electricity price by learnable
Partheno-genetic algorithm,” [EEE Trans. Smart Grid, vol. 6, no. 2,
pp. 657-666, Mar. 2015, doi: 10.1109/TSG.2014.2382684.

M. Keskin and B. Catay, ‘‘Partial recharge strategies for the electric vehicle
routing problem with time windows,” Transp. Res. C, Emerg. Technol.,
vol. 65, pp. 111-127, Apr. 2016, doi: 10.1016/j.trc.2016.01.013.

Q. Kang, J. Wang, M. Zhou, and A. C. Ammari, “Centralized charging
strategy and scheduling algorithm for electric vehicles under a battery
swapping scenario,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 3,
pp. 659-669, Mar. 2016, doi: 10.1109/TITS.2015.2487323.

S. Suganya, S. C. Raja, and P. Venkatesh, ““Simultaneous coordination
of distinct plug-in hybrid electric vehicle charging stations: A modified
particle swarm optimization approach,” Energy, vol. 138, pp. 92-102,
Nov. 2017, doi: 10.1016/j.energy.2017.07.036.

A. Awasthi, K. Venkitusamy, S. Padmanaban, R. Selvamuthukumaran,
F. Blaabjerg, and A. K. Singh, “Optimal planning of electric vehi-
cle charging station at the distribution system using hybrid opti-
mization algorithm,” Energy, vol. 133, pp.70-78, Aug. 2017, doi:
10.1016/j.energy.2017.05.094.

H. Wu, G. K.-H. Pang, K. L. Choy, and H. Y. Lam, “Dynamic resource
allocation for parking lot electric vehicle recharging using heuristic fuzzy
particle swarm optimization algorithm,” Appl. Soft Comput., vol. 71,
pp. 538-552, Oct. 2018, doi: 10.1016/j.as0c.2018.07.008.

W. Zhao, Z. Luan, and C. Wang, “Parametric optimization of novel
electric-hydraulic hybrid steering system based on a shuffled particle
swarm optimization algorithm,” J. Cleaner Prod., vol. 186, pp. 865-876,
Jun. 2018, doi: 10.1016/j.jclepro.2018.03.180.

T. Zhu, H. Zheng, and Z. Ma, “A chaotic particle swarm optimiza-
tion algorithm for solving optimal power system problem of elec-
tric vehicle,” Adv. Mech. Eng., vol. 11, no. 3, pp. 1-9, 2019, doi:
10.1177/1687814019833500.

H. Zhang, L. Tang, C. Yang, and S. Lan, “Locating electric vehicle charg-
ing stations with service capacity using the improved whale optimization
algorithm,” Adv. Eng. Informat., vol. 41, Aug. 2019, Art. no. 100901, doi:
10.1016/j.2¢i.2019.02.006.

12124

[74] Y. Li, B. Zhu, N. Zhang, H. Peng, and Y. Chen, ‘“‘Parameters opti-
mization of two-speed powertrain of electric vehicle based on genetic
algorithm,” Adv. Mech. Eng., vol. 12, no. 1, pp.1-16, 2020, doi:
10.1177/1687814020901652.

[75] C. A. Folkestad, N. Hansen, K. Fagerholt, H. Andersson, and G. Pantuso,
“Optimal charging and repositioning of electric vehicles in a free-
floating carsharing system,” Comput. Oper. Res., vol. 113, Jan. 2020,
Art. no. 104771, doi: 10.1016/j.cor.2019.104771.

[76] Y.-H. Jia, Y. Mei, and M. Zhang, “A bilevel ant colony optimization
algorithm for capacitated electric vehicle routing problem,” IEEE Trans.
Cybern., early access, Apr. 20, 2021, doi: 10.1109/TCYB.2021.3069942.

[77] S. Das, P. Saha, S. C. Satapathy, and J. J. Jena, ‘“Social group
optimization algorithm for civil engineering structural health monitor-
ing,” Eng. Optim., vol. 53, no. 10, pp. 1651-1670, Oct. 2021, doi:
10.1080/0305215X.2020.1808974.

[78] C. V. Camp and M. Farshchin, “Design of space trusses using mod-
ified teaching—learning based optimization,” Eng. Struct., vols. 62-63,
pp- 87-97, Mar. 2014, doi: 10.1016/j.engstruct.2014.01.020.

AALA KALANANDA VAMSI KRISHNA REDDY
received the B.Tech. degree in electrical and elec-
tronics engineering from Jawaharlal Nehru Tech-
nological University, Ananthapur, India, in 2017,
and the M.Tech. degree in electrical engineering
from Lovely Professional University, Phagwara,
India, in 2019. He is currently pursuing the Ph.D.
degree with the School of Electrical Engineering,
Vellore Institute of Technology, Vellore, India.

His research interests include swarm and evolu-
tionary computation, electric vehicles, and power systems.

KOMANAPALLI VENKATA LAKSHMI
NARAYANA (Senior Member, IEEE) received the
B.Tech. degree in electronics and instrumentation
engineering from Nagarjuna University, Guntur,
India, in 2001, the M.Tech. degree in electrical
engineering from the Motilal Nehru National Insti-
tute of Technology (MNNIT), Allahabad, India,
in 2006, and the Ph.D. degree in instrumentation
engineering from Andhra University, Visakhapat-
/ nam, in 2013.

He has 18 years of experience in both teaching and research. He is
currently a Senior Associate Professor with the School of Electrical Engi-
neering, Vellore Institute of Technology, Vellore, India. As a published
researcher, he has authored or coauthored over 50 research papers (five
papers in IEEE Sensors Journals and six more in other SCI journals) and
published in various peer-reviewed journals, book chapters, and conferences
of international repute. He has reviewed a good number of research papers
of IET Science, Measurement and Technology, IEEE Access, Artificial Intel-
ligence Review, Journal of Engineering Science and Technology (JESTEC),
and Recent Advances in Electrical and Electronic Engineering. His research
interests include sensors and signal conditioning, measurements, wireless
sensor networks, optimization, process instrumentation, and virtual instru-
mentation. He is also the recipient of the Gold Medal Award, 2016 for his
outstanding academic performance in M.Tech. Program at MNNIT.

VOLUME 10, 2022


http://dx.doi.org/10.1016/j.apenergy.2014.04.047
http://dx.doi.org/10.1016/j.energy.2015.12.071
http://dx.doi.org/10.1016/j.apenergy.2010.08.018
http://dx.doi.org/10.1109/TPWRD.2011.2165972
http://dx.doi.org/10.1109/TII.2012.2205398
http://dx.doi.org/10.1016/j.apenergy.2012.12.081
http://dx.doi.org/10.1109/TSG.2013.2242207
http://dx.doi.org/10.1109/TII.2014.2334233
http://dx.doi.org/10.1109/TSG.2014.2313617
http://dx.doi.org/10.1016/j.ejor.2015.01.049
http://dx.doi.org/10.1109/TSG.2014.2382684
http://dx.doi.org/10.1016/j.trc.2016.01.013
http://dx.doi.org/10.1109/TITS.2015.2487323
http://dx.doi.org/10.1016/j.energy.2017.07.036
http://dx.doi.org/10.1016/j.energy.2017.05.094
http://dx.doi.org/10.1016/j.asoc.2018.07.008
http://dx.doi.org/10.1016/j.jclepro.2018.03.180
http://dx.doi.org/10.1177/1687814019833500
http://dx.doi.org/10.1016/j.aei.2019.02.006
http://dx.doi.org/10.1177/1687814020901652
http://dx.doi.org/10.1016/j.cor.2019.104771
http://dx.doi.org/10.1109/TCYB.2021.3069942
http://dx.doi.org/10.1080/0305215X.2020.1808974
http://dx.doi.org/10.1016/j.engstruct.2014.01.020

