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ABSTRACT This paper investigates the challenging fault prediction problem in process industries that adopt
autonomous and intelligent cyber-physical systems (CPS), which is in line with the emerging developments
of industrial internet of things (IIoT) and Industry 4.0. Particularly, we developed an end-to-end deep learning
approach based on a large volume of real-time sensory data collected from a chemical plant equipped with
wireless sensors. Firstly, a novel recursive architecture with multi-lookback inputs is proposed to perform
autoregression on imbalanced time-series data as a preliminary prediction. In this process, a novel learning
algorithm named recursive gradient descent (RGD) is developed for the proposed architecture to reduce
cumulative prediction uncertainties. Subsequently, a classification model based on temporal convolutions
over multiple channels with decay effect is proposed to performmulti-class classification for fault root cause
identification and localization. The overall network is named the cumulative uncertainty reduction network
(CURNet), for its superior capacity in reducing prediction uncertainties accumulated overmultiple prediction
steps. Performance evaluations show that CURNet is able to achieve superior performance especially in terms
of fault prediction recall and fault type classification accuracy, compared to the existing techniques.

INDEX TERMS Cyber-physical systems, deep learning, fault classification, LSTM, multivariate multi-step
prediction, predictive maintenance, TCN, time-series, imbalanced data, uncertainty propagation.

I. INTRODUCTION
The digital transformation is recognised as the most impor-
tant driver in the era of Industry 4.0. In line with the
rapid development of industrial internet-of-things (IIoT),
manufacturing industries are equipped with wireless sen-
sors throughout their supply chains, acting as pivots of
their cyber-physical systems (CPS), which provide contin-
uous monitoring capabilities. These sensors can be either
fixed or mobile, built-in or external, uni-functional or
multi-functional. Locally deployed smart sensors which
build connections and transmit data to each other from
a wireless sensor network (WSN). A WSN is often used
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to monitor dynamic environments that change rapidly over
time, by accessing data using built-in machine learning tech-
niques. However, the challenges of data aggregation, relia-
bility, localization, node clustering, security, fault prediction
remain to be addressed in research [1].

In Industry 4.0 and IIoT, a large amount of information
and data are generated by WSN deployments in various
environments and distributed over scales. This leads to an
increasing demand of research on predictive maintenance
techniques for the new era of big data and deep learning,
which utilize the state-of-the-art approaches to address future
IIoT challenges especially on the safety and system security
level, such as anomaly and fault detection and early pre-
diction. Such services and deployments may save a huge
amount of system and financial resources if any fatal anomaly
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issue or fault can be potentially predicted by the system itself
and consequently avoided by taking precautious measures in
advance. One type of CPS fault is exclusively incurred by
adversarial attacks on the sensor nodes and can be categorized
as external faults. Due to the intrinsic vulnerabilities that
malicious agents can explore in order to harm the integrity
of the CPS, extensive research has been conducted on tack-
ling adversarial attacks under different conditions [2]–[10].
Specifically, the work in [2]–[5] have developed effective
algorithms for accurate secure state estimation for distributed
multi-agent CPS under adversarial cyber-attacks. [7] devel-
oped a two-level detector for deception-based sensor attacks.
The work in [9] proposed a new IoT infrastructure against
conventional cyber-attacks and its platforms are machine
learning compatible. ca10 proposed to exploit physical plant
state information to enhance both reliability and security
by continuously monitoring the plant state trajectory. The
work in [11], [12] study false data-injection attacks in CPS,
replying on all historical information to reveal the attacks.
The other type of CPS fault is induced only by mechanism
failures of internal physical components in the physical layer.
In chemical process CPS, continuous measurements of level,
pressure, temperature or flow rate from the process units
usually reflect a smooth and slow value change in a certain
time period when a component failure happens, which must
involve multiple time steps to detect the fault in advance
depending on the measurement frequency [13]–[16]. In the
following, we will focus on the internal CPS fault prediction
case, which is to predict chemical unit failures with the help of
direct sensory data measurements from those units. Since the
operators were not allowed to make physical damages to the
units in the plant, we manually injected false data tampered
with fluid dynamics equations. However, this data injection
process can also be regarded as a kind of cyber-attack even
though it is not adversarial but only for modelling the fault
characteristics of the physical layer faults. In another word,
if a model can successfully predict from injected false data,
then it also proves to be an effective solution against the false
data injection type of cyber-attacks or attacks that result in an
underlying long-time-range effect on the data.

While efficient big data handling tools have been devel-
oped to cope with data generated from future IIoT applica-
tions [17]–[19], machine learning has been well known for
learning underlying patterns from data and thereafter making
insightful predictions for difficult tasks in complex scenarios.
The conventional machine learning classification algorithms
including support vector machines (SVM), K-nearest neigh-
bors (KNN), Gaussian mixture model (GMM) have been
employed to provide satisfactory performances [20]–[25]
when the data size is small to moderate, with additional
expert domain knowledge or reasonable assumptions on the
distribution of fault data. A better solution is to employ
highly intelligent deep learning models that are capable of
performing data analysis tasks continuously and reliably.

In multi-step predictions, uncertainties accumulate over
the steps and lead to significant prediction errors. In [16],

a systematic approach that combines operable adaptive sparse
identification of systems (OASIS) and dynamic risk assess-
ment is proposed to realize multi-step prediction. In the
illustration experiment, their method is able to predict a
maximum of eight steps ahead for reactor over-pressure
caused by the change of temperature. However, their method
strongly relies on control system designs and effective risk
assessment analysis and there is no indication whether their
dataset is imbalanced or not regarding the fault data ratio.
Studies which use deep learning based approaches can be
found regarding time-series multi-step prediction while deal-
ing with cumulative errors: as an example, in [26], the authors
attempt to test multi-step prediction performance using rec-
curent LSTM network on different data patterns. However,
it is clearly stated that their prediction accuracy decreases
drastically as the time steps increases. In [27], the authors
are able to perform up to eighteen steps ahead for multi-step
prediction with minimum error rates using their datasets.
Their method requires data distribution with strong and clear
seasonality variations, where industrial process data usually
do not have. The studies in [28] and [29] compare differ-
ent time-series prediction strategies for a single LSTM unit
prediction whereas [30] proposes a stacked LSTM network
using multiple units to maintain higher prediction capacity.
However, the scope of those studies are simply on reduc-
ing autoregression errors rather than making precise fault
prediction. The work in [31] proposes an deep architecture
by stacking LSTM-autoencoders with internal cooperation
for anomaly prediction tasks in industrial processes. But this
proposed architecture has unknown complexity and does not
focus on the imbalanced data distributions.

In predictive maintenance, the majority of data usually
indicates a normal state of operation, whereas only a very
small fraction of the data indicates underlying or potential
faults. This class out-weighting imbalance limits the success
of data-driven based machine learning methods in predict-
ing faults, thus presenting a significant hindrance in the
progress of smart manufacturing and is a major challenge
for ML-based predictive analytics which rely on data for
learning. To work around this issue, efforts have been made
on data preprocessing (using techniques like windowing, nor-
malization [32]) and selecting imbalanced data (using a sep-
arate deep reinforcement learning method [33]), which adds
extra burden and opacity to the processes. In [34] and [35],
machine learning fault prediction models for imbalanced
industrial processes have been developed, which however still
lack capacity for long time range prediction. The other deep
learning models [36]–[39] have shown satisfactory anomaly
prediction results including prediction time ranges, but their
applicability on industrial process data remain unknown.

In order to reduce the efforts of domain-specific system
designs, a real-time end-to-end deep learning framework
must be developed to capture the long-range time dependen-
cies of features to predict future faults on realistically imbal-
anced fault ratio datasets obtained from industrial processes.
In this work, an interdisciplinary modular CPS system is
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FIGURE 1. Proposed high-level CPS model for industrial process
monitoring.

introduced to emulate intelligent and autonomous industrial
process monitoring with large capabilities. The focus of the
following sections is on the development of deep learning
strategies for fault prediction applications. The main contri-
butions of this paper include the following:

• A recursive deep architecture with multi-lookback
inputs is proposed. To the best of our knowledge, this
specific deep architecture has not been previously inves-
tigated in industrial process applications.

• We highlight that, as a main contribution, a novel learn-
ing algorithm, named recursive gradient descent (RGD),
which is both theoretically analyzed and empirically
tested to be highly effective at reducing cumulative pre-
diction uncertainties for the proposed architecture, pro-
viding fast learning and convergence rates in the system
training.

• Subsequently, a classification model based on temporal
convolutions over multiple channels with decay effect is
proposed to perform accurate multi-class classification
for fault root cause identification and localization, where
a flexible re-sampling process is also introduced.

• Finally, by integrating all the components, a novel data-
driven and data-based deep network (recurrence-first,
convolution-second) named the cumulative uncertainty
reduction network (CURNet) is developed, which gives
superior performance in both fault prediction and clas-
sification on imbalanced data.

The remainder of this paper is organized as follows:
Section II introduces the case study of the high-level
industrial CPS model. Section III introduces the modified
multi-lookback LSTM unit. Section IV introduces the pro-
posed CURNet. Section V illustrates the performancemetrics
based on numerical simulation results. Section VI discusses
the main conclusions and remarks.

II. CASE STUDY
A. THE CPS MODEL DESIGN
Specifically in the CPS system design, there are five mod-
ules that constitute this envisioned infrastructure as shown
in Fig. 1: the holistic system models and cooperative

control, massive connectivity and resilient network
communication, machine learning-based fault detection and
prediction, an intelligent adaptive decision making frame-
work, and a virtual reality system for visualization. This
modular infrastructure represents the complexity of industrial
processes with a large number of interconnected units oper-
ating in extreme environments, which includes hazardous
gas diffusion and material leakage, over-pressured tanks,
power outage, relating to a paramount health and safety
practice. The vertical integration of the modules inside the
plant to implement a flexible and reconfigurable production
system represents a blueprint of enhanced safety integrity
in industrial settings with CPS embedded at its core which
is centred on plant control and management of a real plant
through parallel operation and interaction of actual comput-
ing and operational functions defined by software. It extends
traditional simulations and attempts to realize the control and
management of actual and virtual plant through IIoT in a
timely manner.

In the physical layer, the wireless sensors directly and con-
tinuously take process measurements and share firsthand data
with the controller. Meanwhile, an artificial mobile robot
equipped with sensing hardware can also be employed for
periodic maintenance, surveillance, monitoring and to act as
sensor relays in deep fading areas where they are handled as
mobile multi-functional wireless sensors in the WSN. In the
cyber layer, a low-latency wireless communication network
is utilised to minimize the data transmission delay and over-
head. The measurement data are transmitted to the data centre
where the new data are stored along with the historical data.
Then, two independent sets of models take continuous data
inputs from the data centre, in order to perform both model
based and machine learning based fault detection and pre-
diction functionalities, by interactively accessing historical
data required for making predictions from the data centre.
The decision-making unit will update the model library based
on the outputs of those two blocks and instruct the process
on which actions could/should be taken. These decisions
are transmitted via the wireless communication network.
In addition, a virtual reality (VR) interface is utilized to
facilitate human operators to intervene through the cyber
layer to tackle necessary emergency situations as well as
for remote surveillance and control purposes of the physical
layer.

For the wireless sensors, it is envisioned that a new design
paradigm is needed to support large numbers of heteroge-
neous sensing devices with diverse requirements and unique
traffic characteristics. Comparing to the sensors in traditional
IoT networks, those deployed in extreme environments need
to operate in harsh (sometimes hazardous) conditions and are
prone to wear and tear, and cannot be easily replaced, posing
major challenges in designing resilient networks for robust
communications [40]. Our work assumes a centralised con-
trol mechanism where sensors are connected to a fusion node
via wireless links. The wireless links can also be used to send
commands to actuators within the plant. The network consists

VOLUME 10, 2022 10869



H. Ruan et al.: Deep Learning-Based Fault Prediction in Wireless Sensor Network Embedded CPS for Industrial Processes

of a heterogeneous set of periodic and event-triggered sensors
with mixed requirements, characteristics and traffic models.

For the machine learning component, the data center works
as a database that keeps a record of stable and continuous
data flow via receiving data from wireless sensors and deliv-
ering it to the model and machine learning based predic-
tors, which are embedded for existing fault type look-ups
and new fault predictions, respectively. Both predictors are
software (Python) defined and take input data streams into
computation as soon as they arrive tominimize the processing
latency and maintain continuous real-time predictions.

B. CPS FAULT MODEL AND PREDICTION CHALLENGES
The techniques employed for process monitoring and fault
detection have been primarily dominant by data-driven meth-
ods [41], [42]. These techniques rely on huge sets of his-
torical process data and often require little insight into
the system. Furthermore, they tend to be less affected by the
presence of noise and perform well within the range of the
collected data. In process industry, virtual sensing technol-
ogy is often used to construct inference models. Multiple
linear and partial least square regression are the most popular
approaches; however, they are not appropriate for modelling
observed defects. To overcome the limitations of these meth-
ods, Poisson regression, a discrete probability distribution
that expresses the probability values of non-negative integers,
is widely applied [43]. Therefore, we opt for modelling the
fault effect by injecting a number of Poisson data distribution
at spread time intervals, to model rapid process responses as
anomalous faults. Specifically, for the input-output sequence
{(Xm, ym)} (Xm ∈ RN where N is the feature variable dimen-
sion), the Poisson distribution p(ym|Xm) = e−λλym

ym!
models the

probability of a certain number of faults to happen within a
fixed time interval, which is defined by the rate parameter λ.
In our case, we aim to control the number of false data at
a very small ratio to model imbalance, and leave them in a
number of separate time intervals of centralized data points.
These time intervals have the same length where the data
points in each of them are modelled with Poisson distribution
to generate faults whose values are randomly scaled by a
factor of alpha. The faults are also supposed to be detectable
if they have taken place for a while and caused consequential
harms in real-time, by three additional system state variables
‘‘connection’’, ‘‘Alarm’’ and ‘‘E-Stop’’, all of which are in
Boolean values and used to indicate the operating states of the
CPS. The faults are only injected to the temperature, level and
one flow variables at different locations. These injected faults
are expected to correlatively emulate the long-time-range
dispersion behavioral characteristic of the system relating to
unexpected system state changes.

Fault prediction in predictive maintenance plays a key role
in the high-level CPS of industrial processes and usually val-
ues systems that are rather fault-sensitive than fault-tolerant.
This is because the principle of fault-tolerant predictions
is to focus on major fatal faults, but to neglect non-fatal

faults or glitches unless they escalate to a more serious level,
which is out of financial cost and maintenance complexity
consideration to deal with small faults every time as they
arise. Oppositely, the principle of fault-sensitive predictions
requires the system to capture and eliminate underlying faults
as many as possible, regardless of their levels of harm. Fault-
sensitive systems are usually highly vulnerable and require
stringent fault prediction methods to avoid any inevitable and
disastrous consequences to the system. Another challenge is
that datasets recorded from industrial processes are usually
highly imbalanced, with a very small fraction of the data
indicating faults, since systems operate in normal states for
the majority of time. This results in increased difficulties
for machine learning models to learn different fault types
efficiently prior to making predictions. On the other hand,
designing any end-to-end DNN in seek of a simple and uni-
fied solution for CPS is practically infeasible, due to the het-
erogeneous nature of CPS and non-stationary environmental
effects. Multi-step predictions are essential for most process
industries to earn sufficient time to take actions to prevent
faults from happening. However, reliability and performance
of the existingmulti-step predictionmethods are significantly
degraded due to the cumulative prediction uncertainties car-
ried over from multiple prediction steps. For the above rea-
sons, we develop a novel end-to-end deep learning data-based
data-driven approach to automatically and effectively learn
from both historical and new data and thereby predict the
underlying system faults with high sensitivity, which present
a long-time-range dispersion characteristic.

III. MODIFIED LSTM UNIT WITH MULTI-LOOKBACK
INPUTS
In the section, we introduce a modified LSTM unit which
can take multiple lookbacks as its input at once. We use
mathematical symbol notations to represent quantities in the
proposed architecture. Specifically, vectors and matrices are
denoted by lowercase and uppercase bold letters, respectively.
The time index and data sample index are represented by t and
m, respectively.
A single LSTM unit designed for multi-lookback inputs

(a windowed input frame covering more than one time
step) without peephole connections is considered as shown
in Fig. 2.

Assuming K is the number of lookbacks and N is the num-
ber of raw features denoting the sensor measurement types
(i.e., level, pressure, temperature or flow rate) at different
placement locations. Then we have

Xm(t) = [xTm(t), x
T
m(t − 1), · · · , xTm(t − K + 1)]T , (1)

where Xm(t) ∈ RK×N and xm(t − k + 1) ∈ R1×N

(k = 1, · · · ,K ) is the input. ym(t) ∈ R1×h is the output. i,
o and f denote the input gate, output gate and forget gate sub-
scripts, respectively. c(t) ∈ Rh is the cell state vector. The unit
parameters include the weight matrices Wi,Wo,Wf ,Wc ∈

Rh×N and Ui,Uo,Uf ,Uc ∈ Rh×h for the input and recurrent
vectors, respectively; the bias vectors bi, bo, bf , bc ∈ Rh, the
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FIGURE 2. A single LSTM unit with multi-lookback inputs.

activation functions σg, σy, σc ∈ Rh for the gates, output and
input are usually set as sgm(·), tanh(·) and tanh(·), respec-
tively. The following equations describe their relationships:

i(t) = σg
(
φi
(
WiXTm (t),K

)
+ UiyTm(t − 1)+ bi

)
, (2)

o(t) = σg
(
φo
(
WoXTm (t),K

)
+ UoyTm(t − 1)+ bo

)
, (3)

f (t) = σg
(
φf
(
Wf XTm (t),K

)
+ Uf yTm(t − 1)+ bf

)
, (4)

c(t) = f (t) ◦ c(t − 1)+ i(t) ◦

σc

(
φc
(
WcXTm (t),K

)
+ UcyTm(t − 1)+ bc

)
, (5)

ym(t) = [o(t) ◦ σy
(
c(t)

)
]T , (6)

where ◦ denotes the Hadamard product, (·)T denotes matrix
transpose, φi(·), φo(·), φf (·) and φc(·) are the lookback aggre-
gation functions that compute a vector of dimension Rh. For
instance, when φ∗(·,K ) (∗ ∈ {i, o, f , c}) is chosen as linear
aggregation of K :

φ∗(W ∗XTm (t),K ) =
K∑
k=1

W ∗XTm [:, k](t), (7)

where XTm [:, k] refers to the kth column of matrix XTm .
The above described LSTM unit will be used as a compo-

nent to built the proposed CURNet in the following section.

IV. THE PROPOSED CURNET
This section introduces the proposed CURNet architecture
illustrated in Fig. 3, where the time index t is omitted for
simplicity. The CURNet is designed in a novel two-phase
architecture which puts multi-level recurrences at phase one
and convolutions at phase two, distinguishable from all exist-
ing architectures [26]–[39], which (if any) put convolutions at
first and recurrences at second. The multi-level recurrences
include state self-recurrence of each individual LSTM unit
and an overall feedback from output to input of a fully con-
nected LSTM network. The decayed multi-channel convolu-
tions subsequently take the LSTM network outputs as input
and apply a time-based decay effect on them before extracting
and categorizing faults from convolutions. The multi-level
recurrences recursively eliminate the error accumulations in
small steps with the help of the RGD learning algorithm
which significantly reduce the obscurity of hidden faults and

expose them from the majority of normal data, and also facil-
itate the fault classification task in the convolution phase. The
CURNet showcases an effective end-to-end deep learning
architecture without any preliminary feature extractions and
can be directly built into the machine learning module in the
aforementioned CPS system model.

A. A RECURSIVE DEEP ARCHITECTURE WITH
MULTI-LOOKBACK INPUTS
The system input X ∈ Rm×K×N is considered as an online
3D data sample sequence given by

X = [[X1], [X2], · · · , [Xm]]. (8)

Each sample Xm is composed of K consecutive observations
in a time frame of the latest K (including the current) time
steps as defined in (1). Without losing generality, only one
data sample Xm is assumed to be input to the system at each
time step t throughout the online process. The output 3D
sequence Y ∈ Rm×L×N is represented by

Ŷ = [[Ŷ1], [Ŷ2], · · · , [Ŷm]]. (9)

Each output sample Ŷm ∈ RL×N composes of L instantaneous
prediction vectors as

Ŷm(t) = [ŷTm(t + 1), · · · , ŷTm(t + L)]
T , (10)

where L is the number of prediction time steps, ŷm(t + l) ∈
R1×N (l = 1, · · · ,L).

Instead of constructing a layout of RNN based connections
like in the previous work [44], we build full connections
between every two consecutive hidden layers of LSTM units
with multi-lookback inputs, whilst also enable feedback at
different phases, which can be seen in Fig. 3. It is remarked
that there is no inter-layer connection between the LSTM
units of the same layer. In order to allowmulti-step prediction,
the output feedback ŷTm recursively allows a maximum of
L recursions to take place exactly once for any given input
sample Xm. For the sake of simplicity, the time index t is
dropped in the equations as well. The system input after l
(l = 1, · · · ,L − 1) recursions is updated as

Xm(l + 1) = [XTm (l)[:, 1 :], ŷ
T
m(l + 1)]T , (11)

where XTm (l)[:, 1 :] refers to the second to the last columns
(excluding the first column) of XTm (l), which is the system
input in the lth recursion, ŷTm(l+1) is the system output in the
lth recursion. Once the recursions are completed, the output
is a stack of ŷm(l), l = 1, · · · ,L − 1 given by

Ŷm = [ŷTm(1), · · · , ŷ
T
m(L)]

T , (12)

Specifically, for a given input sample Xm ∈ RK×N , an
L-step (1≤L < K ) ahead prediction is given as in (10), with
an objective loss function J1(Ŷm(t),Ym(t)), where Ym(t) is
the ground truth output given by

Ym(t) = [yTm(t + 1), · · · , yTm(t + L)]
T , (13)

ym(t + l) = xm(t + l + 1), l = 0, · · · ,L − 1. (14)
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FIGURE 3. The proposed CURNet architecture.

When SGD is applied as the learning algorithm, the instanta-
neous loss function becomes

J1
(
Ŷm(t),Ym(t)

)
= ||Ŷm(t)− Ym(t)||F , (15)

where || · ||F denotes the Frobenius norm of a matrix.

B. A CLASSIFICATION MODEL WITH TEMPORAL
CONVOLUTIONS
As shown on the right-hand side of Fig. 3, a subsequently
concatenated temporal classifier is proposed for fault classi-
fication. The L channels take different column components
with consecutive time delays from the previous output as
input, in order to facilitate learning the temporal correlations
from the preliminary prediction results. The input to the first
convolution layer is reshaped into Ŷ Tm ∈ RN×L and the input
to the lth channel becomes ŷTm(l), l = 1, · · · ,L. As an addi-
tional step, we introduce the idea of using a channel decay
factor which, inversely puts less weights on the predictions
farther to the current time step. Denoting the predicting factor
as p ∈ (0, 1), the actual input to the lth channel ŷinm(l) with
channel decay effect is written as

ŷinm(l) = pl−1ŷTm(l), l = 1, · · · ,L. (16)

We remark that p is often chosen to be close to 1 to prevent
information losses. The channel decay modeled based on a
predicting factor as in (16) aims to mitigate the weights of the
prediction uncertainties that gradually accumulate over time.
The further the prediction step is, the less weight and more
channel decay are imposed to the corresponding channel.

Assume the filter for the lth channel is dl ∈ RFw×1

(l = 1, · · · ,L), where Fw is the length of the filters and
the stride is chosen as 1, a padding of Fw−1

2 on both sides
of ŷTm(l) is applied for all channels to ensure the output of
the convolution remains in the same length as the input ŷTm(l).
Then the convolution output for the lth channel of the first
layer is given as

dl[n]ŷinm(l)[n]=
N−1∑
i=0

dl[i]ŷinm(l)[n− i], l=1, · · · ,L, (17)

which is followed by an activation function, for instance,
the ReLu function ReLu(y) = max(0, y) and upsampling.
Further, another temporal convolution block is implemented
for each channel, after which a fully connected layer is
utilized to learn the long range dependencies of multiple
time steps. Finally, in order to address such a multi-class
classification problem, a softmax function is implemented
as the last layer of the model before the output layer to
normalize the generated probability scores from the previous
to the range of 0 to 1 for each assigned individual class. The
class type with the highest probability presenting the highest
likelihood will be categorized and predicted as the model
output: at any given time step, if the model finds no fault, then
the no-fault class will present the highest probability score
close to 1 with the others close to 0; if the model detects a
potential system fault, then a specific fault class will output
a higher probability close to 1 with the no-fault class close
to 0. The real-time online temporal classification is based on
the preliminary prediction Ŷm(t) from phase one. Provided
the fact that faults can happen in any process unit at different
placement locations, a (N +1)-class classification problem is
considered. This allows to perform root cause identification
which also relates to the exact location where the fault is most
likely going to take place. Let us denote the system output
ground truth as youtm ∈ R1×N with element values belong to
the Boolean set {1, 0}, the goal is to minimize the categorical
cross-entropy loss function defined as

J2 = −

N+1∑
n=1

youtm [n] · log
(
softmax(cn)

)
, (18)

where youtm [n] represents the nth element of youtm , cn is the
probability score of class n, softmax(cn) = ecn∑N+1

i=1 eci
is the

softmax function.
The dataset will be split to 60%, 15% and 25% for training,

validation and testing, respectively. Considering the end-to-
end training difficulties of a heterogeneous deep network like
CURNet, it is more feasible to split training into two separate
phases. In the first phase, the recursive deep architecture is

10872 VOLUME 10, 2022



H. Ruan et al.: Deep Learning-Based Fault Prediction in Wireless Sensor Network Embedded CPS for Industrial Processes

trained for multi-step autoregression. That is, we will train
60%of the inputXm and output Ym pairs for the first phase and
validate the network using the rest 15% of the total training
data. Once training is completed, the other 25% data will be
used for testing. In the second phase, we will directly use
the actual output of phase one (i.e., Ŷm) as input, and with
the corresponding output vector as youtm , where the training,
validation and test ratios remain the same. For the sake of
simplicity, the train, val and test subscripts are omitted as
they are standard machine learning procedures.

C. RECURSIVE GRADIENT DESCENT
In this subsection, a novel gradient descent based learning
algorithm is developed for the proposed CURNet architec-
ture, namely, the recursive gradient descent (RGD) algorithm,
which updates the weights for both inner recursions and
outer iterations, is highly effective at reducing cumulative
prediction uncertainties for the proposed architecture and
converging faster comparing to its counterpart SGD. In the
following, we will derive the RGD algorithm as the learning
algorithm for phase one of the CURNet. First of all, wemodel
the loss function for the recursive architecture based on the
sum of weighted least squares functions associated with the
previously introduced predicting factor p, which is defined as

J RGD
1 (t, r) =

r∑
l=1

pl−1||ê(t + l)||22, (19)

where r = 1, · · · ,L, r ≤ L, || · || denotes the norm operator
and

J RGD
1 (t, r + 1) = J RGD

1 (t, r)+ pr ||ê(t + r + 1)||22. (20)

ê(t + l) = ŷm(t + l)− ym(t + l − 1),

l = 1, · · · , r, (21)

is the prediction uncertainties at time step t and lth internal
recursion. By submitting (14) in (21), we have

ê(t + l) = ŷm(t + l)− xm(t + l), l = 1, · · · , r . (22)

For simplicity, let us denote an LSTM unit function as

ξ (t) = ŷm(t + 1) = ξ
(
Xm(t + 1), ŷm(t),W ∗(t),U∗(t)

)
,

(23)

where ∗ ∈ {i, o, f , c}. From Fig. 3, an LSTMunit in any of the
hidden layers of the recursive deep LSTM takes outputs from
all units from the previous layer and the output of itself as
inputs. If the inter-layer connections are unweighted, it yields

xm(t) =
1
a

a∑
j=1

ŷjm(t − 1), (24)

where a is the number of LSTM units in the previous layer
and ŷjm(t−1) is the output of the jth unit from that layer. xm(t)
and Xm(t) are bounded by equation (1). To this point, we take

the partial derivatives of J RGD
1 (t, r) in (19) with respect to

the LSTM weight parameters W ∗(t) and U∗(t):

∂J RGD
1 (t, r)

∂W ∗(t)

=
∂
∑r

l=1 p
l−1
||ê(t + l)||22

∂W ∗(t)

=

∑r
l=1 p

l−1∂||ê(t + l)||22
∂W ∗(t)

=

∑r
l=1 p

l−1∂||ŷm(t + l)− xm(t + l)||22
∂W ∗(t)

= 2
r∑
l=1

pl−1||ŷm(t + l)− xm(t + l)||2
∂ ŷm(t + l)
∂W ∗(t)

= 2
r∑
l=1

pl−1||ŷm(t + l)− xm(t + l)||2
∂ξ (t + l − 1)
∂W ∗(t)

.

(25)

Similarly for U∗(t), we obtain

∂J RGD
1 (t, r)

∂U∗(t)
= 2

r∑
l=1

pl−1||ŷm(t + l)− xm(t + l)||2

×
∂ξ (t + l − 1)
∂U∗(t)

. (26)

Since both the terms ∂ξ (t+l−1)
∂W ∗(t) and ∂ξ (t+l−1)

∂U∗(t) can be com-
puted by expanding the equations (2) to (6) depending on
the structure of the LSTM unit and are independent from the
RGD learning algorithm itself, the related equation break-
downs are omitted for simplicity. As the next step, we aim
to introduce recursive weight updates within each time step
based on the loss function as defined in (19), so that the
weight gradients are also internally updated in order to
achieve more accurate estimations along with the multi-step
predictions. Therefore, at a given time step t , we define

W ∗(t, r) = W ∗(t, r − 1)− µW ∗
∂J RGD

1 (t, r)

∂W ∗(t, r − 1)
, (27)

U∗(t, r) = U∗(t, r − 1)− µU∗
∂J RGD

1 (t, r)

∂U∗(t, r − 1)
, (28)

where W ∗(t, r − 1) and U∗(t, r − 1) represent the LSTM
unit weights in the tth time step and r th prediction step, µW ∗
and µU∗ are the learning rates (step sizes) for W ∗(t, r − 1)

and U∗(t, r − 1), respectively.
∂J RGD

1 (t,r)
∂W ∗(t,r) and

∂J RGD
1 (t,r)
∂U∗(t,r) are

computed from (25) and (26) directly after replacing W ∗(t)
and U∗(t) with W ∗(t, r − 1) and U∗(t, r − 1), respectively.
As soon as a total of L internal recursions are finished, the
weights for the next time step are simply updated by the last
recursion in the current time step:

W ∗(t + 1, r = 0) = W ∗(t, r = L), (29)

U∗(t + 1, r = 0) = U∗(t, r = L). (30)

The RGD algorithm is summarized in Table 1.
One of the main differences of the RGD algorithm com-

pared to conventional SGD algorithm is the loss function
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TABLE 1. The RGD learning algorithm.

as defined in (19). The loss function takes a recursive form
from the error term ê and sums over a total of L sub-time
steps at time step t before moving to step t + 1. This loss
function mimics the accumulated errors piled up through the
feedback and loop counter (as shown in Fig. 3). Then during
training, the system weights are adjusted by minimizing this
loss function at every r-step (0 ≤ r ≤ L) for every t-step.
In another word, RGD allows the system weights updated
fromminimizing the accumulated error at smaller r-step than
t-step, as presented in (27) and (28), which demonstrates the
strength of RGD at learning accumulated prediction errors.

To study the convergence of RGD, the following assump-
tions are required as ∀ t ≥ 0, t → ∞, (a): the loss
function J RGD

1 (t, r) has a lower bound (i.e., J RGD
1,min); (b):

let the loss function gradient be ||∇J RGD
1

(t, r)||, then the

gradient variance is constrained, i.e., E[||∇J RGD
1

(t, r)||2] ≤

σ 2
∇
. Note that, similarly for the conventional gradient descent

algorithm, norm constraint requirements are often necessary
to guarantee convergence (e.g., [45] utilizes gradient descent
to build a new online learning policy for real-time output
feedback dynamic controls for fuzzy systems, which models
a multitude of norm control effect and further promotes the
sufficiency of its cost function convergence; [46] also studies
the conventional SGD convergence in the multivariate case
by assuming the L-Lipschitz continuity). Let µW ∗ and µU∗
equal the same fixed step size µ∗, for any recursion, we have

J RGD
1 (t, r)

≤ J RGD
1 (t, r − 1)

−µ∗||∇J RGD
1

(t, r − 1)|| + µ∗||∇J RGD
1

(t, r − 1)||2, (31)

whose both sides can be summed up over both r and t and
yields the following after rearranging

t−1∑
k=0

L∑
r=1

J RGD
1 (k, r)−

t−1∑
k=0

L∑
r=1

J RGD
1 (k, r − 1)

≤ µ∗
t−1∑
k=0

L∑
r=1

(
||∇J RGD

1
(t, r − 1)||2 − ||∇J RGD

1
(k, r − 1)||

)
.

(32)

Taking expectations on both sides and cancelling out terms
on the left using J RGD

1 (t + 1, r = 0) = J RGD
1 (t, r = L),

we obtain

µ∗LtE[||∇J RGD
1

(t, r − 1)||]

≤ J RGD
1 (t = 0, r = 0)− E[J RGD

1 (t, r = 0)]

+µ∗LtE[||∇J RGD
1

(t, r − 1)||2]. (33)

Noting that E[J RGD
1 (t, r = 0)] ≥ J RGD

1,min and
E[||∇J RGD

1
(t, r − 1)||2] based on assumption (a) and (b)

respectively, we obtain

E[||∇J RGD
1

(t, r − 1)||]

≤
J RGD
1 (t = 0, r = 0)− J RGD

1,min

µ∗Lt
+ σ 2
∇
. (34)

This means the RGD algorithm is guaranteed to converge
when t →∞. In addition, the L in-recursion updates along r
greatly reduces the iterations required for t to converge. As a
result, the RGD algorithm requires less epochs for training
and converges faster than the conventional SGD algorithm for
the proposed model, which is also illustrated in the Simula-
tion section.

V. PERFORMANCE EVALUATIONS
In this section, the proposed CURNet architecture along with
the RGD algorithm is evaluated using a large volume of
real-time sensory data collected from the chemical plant,
which is equipped with the necessary hardware and software
components illustrated in the CPS in Fig. 1, and integrated
with essential functions to perform data measurements and
storage. The data were collected by site operators between
years 2017 and 2018, and has over 135k (i.e., M > 135k)
samples where each sample is featured by variable measure-
ments of 40 internally deployed fixed sensors, i.e., N = 40 in
this case. The measurement types include temperature, flow
rate, pressure and level whereas the data types include both
floating point and Boolean values, with the presence of a
small number of nulls. The data samples were collected at
a frequency of Fs = 0.2 Hz (i.e., one sample every Ts =
5 seconds). The raw data are preprocessed to exhibit its
best coherency before being transferred to time-series format.
In order to take a data-driven approach without relying on
any cloud server, a local computer equipped with an Intel i7-
8700 CPU (6-Core/12-Thread, 12MB Cache, up to 4.6GHz
with Intel TurboBoost Technology) and dual NVidiaGeForce
GTX 1080Ti GPUs are used. The simulations are carried out
in Python 3.6 with Keras and Tensorflow frameworks.

We choose the re-sampling frequency as twice as the origi-
nal measurement frequency which gives 0.1Hz for generating
the input sequence X , where δt = 2 is the data sample
gap between two consecutive inputs. Note that if a lower
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FIGURE 4. Re-sampling process to generate input data sequence.

re-sampling frequency is used, the total number of new data
samples will be further reduced. Fig. 4 demonstrates the
re-sampling technique, in which the re-sampling frequency
δt = 2 and number of lookbacks K = 6. Additionally,
the fault data are controlled at 1% of all data samples. Four
different fault injections (two temperature sensors at different
locations as well as one level sensor and one flow sensor)
following the Poisson distribution with λ = 1 to indicate one
fault per single time step. The scaling effect is applied on false
data by α ∈ (0, 2).
The compared techniques include the state-of-the-art time-

series/sequence based fault prediction deep networks as well
as the conventional deep LSTM network, in terms of fault
prediction performance in our very application. Specifically,
we compare DeepAnT [36], FuseAD [37], TwitterAD [38],
ConvLSTM in [39] and TCN [47] with the proposed CUR-
Net. The architectures of DeepAnT, FuseAD, TwitterAD,
ConvLSTM and TCN are the same as that proposed in their
original studies, with a reasonable number of trials in hyper-
parameter tuning. Note that, there are a very limited number
of existing multivariate multi-step fault prediction models
in the literature and most of them suffer from cumulative
uncertainties. However, the proposed CURNet works well
because the RGD algorithm learns to improve the preliminary
prediction result from within the recursions, whereas the
temporal classifier also learns long-range time dependencies
in the temporal patterns on top of the preliminarily accurate
prediction results.

Firstly, we evaluate the autoregression performance of the
compared techniques. We use 75% of the total samples as
training (including validation) data while leaving the remain-
ing 25% for testing in the online autoregression. The number
of lookbacks and prediction steps are set at K = 8 and L = 6
(which will give L · δt · Ts = 6 × 2 × 5 = 60 seconds
for the system to take emergent actions to prevent any fault),
respectively. For the proposed recursive deep LSTMnetwork,
we assign p = 0.95, µW ∗ = µU∗ = 0.01 and a total
number of three hidden layers, where the number of LSTM
units in each layer is set to 50, 100 and 50. All the benchmark
models are compiled with the SGD learning algorithm whilst
the CURNet benefits from the RGD learning algorithm.
A mini-batch size of 1000 samples is used to accelerate the

FIGURE 5. Autoregression MSE loss comparison of different models with
K = 8 and L = 6.

FIGURE 6. Autoregression MSE loss comparison of different models with
K = 16 and L = 12.

training process for all models. Fig. 5 illustrates the mean
squared error (MSE) performance with respect to the number
of epochs on the testing data. The proposed recursive deep
LSTM architecture is able to outperform the compared state-
of-the-art fault prediction techniques.

Secondly, we investigate these techniques in a more
challenging scenario by setting the number of lookbacks
K = 16 and L = 12, which will give 2 minutes for
advanced fault prevention. For all the compared networks,
the number of units and network hyperparameters remain the
same as in the previous setting. The simulation results are
as illustrated in Fig. 6. With a larger number of lookbacks,
the proposed CURNet is still able to outperform the other
compared networks significantly, albeit all techniques have
some performance losses comparing to the previous case.
While the other techniques still appear to suffer from perfor-
mance degradation as the L increases, the proposed CURNet
is able to maintain better robustness against the uncertainty
accumulations over extended time steps.

Thirdly, the proposed RGD learning algorithm is evaluated
comparing with the conventional SGD applied for the CUR-
Net and the result is as shown in Fig. 7. The value of input data
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FIGURE 7. Autoregression MSE loss comparison of RGD and SGD learning
algorithms with different L values.

lookbacks is fixed at K = 8 while we examine the learning
performance in terms of different L values. Additionally,
we include single time step prediction (i.e., L = 1) as a
special case. The rest network hyperparameters are kept the
same as in the previous simulations. In Fig. 7, the solid and
dashed lines are for the SGD and RGD algorithms, respec-
tively. As can be seen, the proposed RGD algorithm helps to
achieve lower MSE than the SGD in general, and the MSE
differences between the cases with different choices of L val-
ues are unnoticeable. As aforementioned, the RGD learning
algorithm learns to reduce the cumulative uncertainties over
multiple recursive predictions.

Moreover, the effect of using channel decay is evaluated
in Fig. 8, in which the solid lines represent the case where
channel decays are not considered whereas the dashed lines
represent the case where channel decays are implemented.
In the latter case, we keep the channel predicting parameter
p = 0.95 (p is reasonable to be set closer to 1 when L is large
enough, so that predicting factor for the Lth step pL−1 is not
too small to be ignored). For the network hyperparameters,
we use 10 filters with a kernel size of 5 for the first 1D
convolution layer, followed by a batch normalization and a
ReLu activation function, after which an upsampling layer
with sampling rate of 0.5 is applied. Subsequently, another
set of temporal convolution layer with batch normalization,
Relu and upsampling of the same values is added. Further,
the output of the previous layers is flattened before being
fed in two fully-connected dense layers of 30 and 4 neu-
rons, respectively. Finally, a softmax activation function is
implemented before the output layer to compute the cate-
gorical cross-entropy loss function. The 4 neurons in the
output layer indicate the 4 sensors which are previously
injected with faults, in convenience to identify different fault
types and locations. It can be observed that the categorical
cross-entropy loss increases as the number of prediction step
L increases. However, the network is able to achieve a lower
loss when the channel decay effect is also implemented.

Finally, the precision-recall area under the curve (PRAUC)
of the compared models are illustrated in Fig. 9 In order

FIGURE 8. Fault classification categorical cross-entropy loss comparison
of CURNet with/without channel decay effect using different L values.

FIGURE 9. PR AUC comparison of different models with K = 8 and L = 6.

to facilitate this comparison, we consider the CURNet as a
binary classifier by disregarding the classes of faults it classi-
fies. As long as a fault is predicted correctly, it is categorized
as true positive. We keep K = 8, L = 6 and p = 0.95 while
leaving the other hyperparameters for the selected models
remain the same as in the previous cases. From Fig. 9, it is
obvious the CURNet outperforms the other techniques in
classifying faults from imbalanced data. This is because that
the superiority of CURNet pertaining to fault classification is
contributed by not only the accurate autoregression of phase
one, but also the implementation of channel decay effect
defined by the predicting factor for the convolutional process
to assign more weights on the more immediate prediction
steps and less weights on the further steps, which is an
effective way to model the confidence level at different time
steps. This equips CURNet with great capability in predicting
and spotting out rare faults with high precision in a fault-
sensitivity manner.

The hyperparameters of CURNet are elaborated in Table 2,
which summarizes all the simulation cases used to produce
results illustrated in Fig. 5-9 in this section. We would like to
remark that the LSTM units combination listed (i.e., 50 −
100 − 50) is the optimal choice for producing the most
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TABLE 2. CURNet hyperparameters.

TABLE 3. Complexity comparison.

consistent and satisfactory results whilst not overburdening
the computational complexity, compared to other tested com-
binations (i.e., 30− 60− 30 and 60− 120− 60). In addition,
the complexity of all the compared algorithms is shown in
Table 3. Deep learning network complexity is often reflected
by both the training time and the real-time responses to make
a prediction. In order to ensure fairness, the batch size for
training is fixed at 1000 samples per batch for all models.
The average epochs required for training to converge also
varies depending on the selected model, which is presented
in Table 3. Both training time and response time for making a
prediction are used to reflect the actual run-time (i.e., real-
time) complexity for all compared models. It is clear that
CURNet is relatively efficient at training comparing to the
other models. It also provides a very short response time /
latency (i.e., 0.2734 seconds) to making an online prediction
for the machine learning module of the CPS to minimize the
overall processing delays.

VI. CONCLUSION
In order to deal with challenging fault prediction problems
in WSN embedded industrial CPS, we have developed a
novel and effective end-to-end deep learning network named
CURNet with its own novel learning algorithm named RGD.
The proposed CURNet has shown superior performance as
comparedwith the state-of-the-art time-series fault prediction
models in terms of both fault prediction recall and fault type
classification accuracy.

For future work, first of all, the novel RGD learning
algorithm can be tested for other recursive deep networks
with online prediction capacities for similar industrial process
applications, since it has only been verified to be working
sufficiently well for the proposed CURNet in this work.
Secondly, it is also important to test the CURNet on an even

larger dataset to verify its statistical robustness for big data
IIoT environments and how its complexity scales up with data
size. A larger dataset usually contains more heterogeneous
types of faults and some faults may appear more often than
others, which brings further challenges to classification tasks.
Thirdly, it would be interesting to find out if CURNet works
on a balanced fault-ratio dataset. Although this is not the
case for industrial processes, it is worthwhile to compare to
existing models in terms of general time-series prediction
performance with different error metrics. Lastly, since the
complexity of CURNet increases with the dimension of input
features, it may be helpful to develop an efficient feature
encoding method to reduce the feature dimensions of the
chemical industrial process without affecting the variable
dependencies.
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