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ABSTRACT Behavioural symptoms of dementia present a significant risk within Long Term Care (LTC)
homes, which face difficulties supporting residents and monitoring their safety with limited staffing
resources. Many LTC facilities have installed video surveillance systems in common areas that can help
staff to observe residents; however, typically these video streams are not monitored. In this paper, we present
the development of a computer vision algorithm to use these video streams to detect episodes of clinically
important agitation in people with dementia. Given that episodes of agitation are rare in comparison to normal
behaviours, we formulated this as an anomaly detection problem. This involves using the video camera to
monitor the scene rather than tracking individuals. We developed a customized spatio-temporal convolution
autoencoder that is trained on the normal behaviours and then identified agitation during testing as anomalous
behaviour. We present a proof-of-concept using video data collected from a specialized dementia unit and
annotated for agitation events. We trained the unsupervised neural network on approximately 24 hours of
normal activities and tested on 11 hours of videos containing both normal activities and agitation events, and
obtained an area under the curve of the receiver operating characteristic curve of 0.754. This research paves
the way for leveraging existing surveillance infrastructure in LTC and other mental health settings to detect
agitation or aggression, with the potential for improved health and safety.

INDEX TERMS Dementia, agitation, camera, long term care, autoencoder, deep learning, computer vision.

I. INTRODUCTION
Dementia is a disorder of progressive impairments of cog-
nitive functions such as memory, language, and executive
functioning, and can impact on insight, impulse control and
judgement [1]. These cognitive changes contribute to changes
in behaviour, which include behaviours that place the people
with dementia (PwD) or those around them at risk, such
as agitation [2]–[4]. In the later stages of the disease, PwD
require supervision and support in their activities of daily
living. Many PwD who need supervision and support live in
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long-term care (LTC) homes. In Canada, around one- third
of PwD under 80 years live in a LTC home, this number
increases to 42% for those who are above 80 years [5]. LTC
home environments often suffer from a lack of staffing and
financial resources that impacts on the quality of care of
residents [6].

One application of technology in supporting the care of
people with dementia is the use of sensors to detect episodes
of clinically important behavioural symptoms [7], [8]. In our
previous work, we have explored the use of wearable sensors
to detect episodes of clinically important agitation [9], [10].
However, we discovered that it was difficult to use wearables
in this population. One quarter of participants in this study
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dissented to the use of the wearable and had to be withdrawn
from the study. The wearable devices also need to be removed
and re-applied to the participants on a daily basis to facilitate
bathing, battery charging and data transfer [10], [11]. Thus,
there are clear advantages to non- invasive sensors, such
as video cameras, to be used for this purpose. Many LTC
facilities have installed video surveillance to facilitate the
digital monitoring of public spaces [12]. Video surveillance
is zero-effort for staff and residents, and are designed to
monitor the environment rather than the individual. However,
most of the time, these video feeds are not monitored. Video
data contains vital spatio-temporal information, which in
conjunction with computer vision and artificial intelligence
provides an opportunity to detect events or behaviours
of risk from these video streams to support the care
of PwD.

The other important challenge in developing algorithms
for detecting agitation is the rarity of agitation episodes. The
behavioural symptoms exhibited by PwD are episodic and
they occur infrequently in comparison to normal activities [9].
A plausible approach to deal with this situation is anomaly
detection [13] or one-class classification [14]. To detect
anomalies, machine learning or deep learning models can
be trained using only the data from normal observations
(that are generally abundantly available) and these algorithms
can then flag any significant deviations as anomalous
behaviour [14]. Computer vision techniques have been
successfully used in identifying anomalous behaviours in
homes [15], crowded scenes [16] and public areas [17]. There
has also been a lot of work in the general field of video based
anomaly detection using deep learning methods [18], [19].
Nogas et al. [20] formulated the fall detection problem as
an anomaly detection problem and used convolutional Long
Short-Term Memory (LSTM) autoencoders to identify falls
using videos collected from thermal cameras. It was observed
that the convolutional LSTM autoencoders performed better
than convolutional and deep autoencoders in detecting unseen
falls. Further, the DeepFall framework [21] was proposed
that used deep spatio-temporal convolutional autoencoders
to learn spatial and temporal features from normal activities
using video data collected by thermal and depth cameras.
However, both the previous approaches were tested in semi-
naturalistic conditions.

More naturalistic applications include the following recent
works; CNNs and LSTM approach for classifying abnormal
breathing events with 3D cameras [22], CNN and its
variants and LSTM for fetal anomaly detection in ultra-
sound video scans [23], [24], CNN and LSTM method
for aberrant epileptic seizures from videos [25], ResNet-
based contrastive representation for abnormal otoscopy video
sequences [26].

Two previous studies have used simulated data from videos
to demonstrate possible approaches detecting behavioural
symptoms in dementia. Fook et al [27] extracted hierarchical
feature representation from the temporal segmentation maps
of tracked patients using videos. They used probabilistic

(Hidden Markov Model) and discriminative classifiers (Sup-
port Vector Machine) at different levels of hierarchies. How-
ever, the videos used in this analysis were simulated videos
of a single person lying on a bed. The second study [28]
used a dataset using Kinect camera from 10 participants
who simulated various activities (hitting, pushing, throwing,
tearing, kicking and wandering). Several joint-based features
were extracted from this data, which were then combined
using an ensemble learning method based on rotation forests.

In this paper, we make use of research video recordings
from a Specialized Dementia Unit, using one camera view
with approximately 35 hours of video data annotated with
the behaviours of one research participant. We present
this work as a proof-of-concept of an unsupervised deep
learning approach, in which we train a spatio-temporal
convolutional autoencoder only on the video recordings of
normal behaviour of PwD and identify agitation during
testing as anomalous behaviour.

II. METHODS
A. DESCRIPTION OF DATASET
Videos used in this study come from the Detecting Agitation
study with 20 research participants on the Specialized
Dementia Unit at TRI, located in Toronto, Canada and were
collected between 2017−2019 [29]. Fifteen cameras were in-
stalled in public spaces (e.g., hallways, dining and recreation
hall) of the unit. The Lorex model MCB7183 CCD bullet
camera was used, having 700 TVL resolution with 960H
optimized image sensor. Due to privacy concerns, the cam-
eras were not installed in the bedrooms and washrooms of
participating residents, and cameras only recorded between
the hours of 0700 and 2300. The final dataset included
annotated data for 17 participants (three participants were
excluded due to lack of agitation events) with a mean age of
80.5±9.1 years and 60%women. In total, 600 days’ worth of
video datawere collectedwith 411 annotated agitation events.
Thus, on an average, less than one agitation event per day
was recorded. The duration of these agitation events varied
significantly from 1 to 187 minutes. More than 230 hours of
video data were manually reviewed to fine tune the agitation
labels.

This study received research ethics approval (UHN REB
#14-8483). Substitute decision makers provided written
consent on behalf of the PwD for video recording. Written
consent was also provided by the staff for video recording
in the unit. Further written consent has been provided for
publication of their images in video stills by all the staff and
PwD appearing in the images shown in the paper. Any non-
consenting individuals have been blackened out to hide their
identities. For privacy and ethical reasons, the data is not
publicly available.

B. DATA SELECTION AND ANNOTATION
For this proof-of-concept study, one participant was selected
for analysis, based on the total number of hours of video

10350 VOLUME 10, 2022



S. S. Khan et al.: Unsupervised Deep Learning to Detect Agitation From Videos in People With Dementia

FIGURE 1. Normal events occurring in the dementia unit.

available (35 hours) and the number of agitation episodes
captured within an area of the unit covered by a single
camera. Using the clinical and research documentation for
the days in question, a clinical research assistant reviewed the
video 15 minutes before and after the time of documented
episodes of agitation and annotated on a 30 seconds basis
as to the presence or absence of agitation. The remainder
of the video was considered to represent normal behaviour.
For the purposes of this study, agitation was defined using
the International Psychogeriatric Association definition [30],
including excessive motor activity, verbal and physical
aggression. In total, for this participant, 80 minutes out of
the 35 hours were annotated as being part of an episode of
agitation.

Figure 1 and 2 provide some example video frames
depicting the normal and agitation events occurring in one
of the hallway in the unit. It can be observed that for normal
events, most of the time either the hallway is empty, or one
more people walking around in the unit. However, in the case
of anomalous (agitation) events, we can observe a patient
kicking and pushing other patients and banging the door. The
video data from this hallway is used to develop predictive
models to detect agitation in one person with dementia.

C. DATA PREPROCESSING
A total of 35 hours of video data for the participant of interest
was included and divided into training and test sets. The
training set comprised of approximately 24 hours of video
data, containing only normal events. The test set comprised
of 11 hours of video data, which consisted of agitation events
videos and 15 minutes of video data before and after them.
The test set was divided into 30 second segments which were
labelled as normal (0) or agitation (1) for the purpose of
evaluating performance of the developed models.

FIGURE 2. Agitation events annotated in the video data. The research
participant is observed to (a) kick a co-patient. (b) bang on the nursing
station door. (c) hit co-patient with walker. (d) push co-patient in the
doorway. The bounding boxes are manually drawn to emphasize different
agitation behaviours.

The videos were sampled at 15 frames per second and the
resultant frames were converted into grayscale, normalized
and resized to 64×64 resolution. The frameswere normalized
by dividing the pixel values by 255 to keep them in the
range [0, 1]. The gray scale conversion and resizing was
done to reduce the computational cost in terms of trainable
parameters. Finally, the frames were stacked to form non-
overlapping 5 second windows, each window comprising
of 75 frames. Therefore, each window has a dimension of
75 × 64 × 64, where 75 denotes the temporal depth, and
64 × 64 denotes the spatial resolution of the frames. In the
test video, if agitation behaviour was observed in a 30 second
interval, then all the six 5-second windows were labeled as 1.
The training videos were pre-processed to obtain a training
set of 17355 normal activity windows, and was used to train
the model. The test videos were pre-processed to obtain a
test set of 7734 windows (6774 normal and 960 anomalous
windows), and was used to test the model. Figure 3 presents
the pipeline of this work.

III. SPATIO-TEMPORAL AUTOENCODER
To detect agitation as an anomaly, we use autoencoders
to learn the underlying representation of normal activities
from the video data of PwD and reconstruct the input video
with minimum reconstruction error. After the training is
accomplished, the autoencoder should be able to reconstruct
an unseen normal video with low reconstruction error.
However, in the case of an unseen anomalous event, a high
reconstruction error is expected. Therefore, reconstruction
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FIGURE 3. Pipeline for detecting agitation from videos.

FIGURE 4. 3DCAE architecture to detect agitation in PwD as anomaly from the videos.

error can be used as a score to determine whether a test
video sample is normal or anomalous (agitation in our case).
Conventional autoencoders consisting of fully connected
layers are not suitable for image/video data because of their
inability to capture local spatial and temporal relationship
in data [31]. 2D convolutional autoencoders can capture
localized spatial features in images; however, they are unable
to learn temporal features [32]. In this paper, we have used
3D convolutional autoencoder (3DCAE) [21] to learn spatio-
temporal features from video data as an aide to learn normal
scene and then use reconstruction error as a score to detect
agitation as an anomaly.

The 3DCAE is composed of an encoder-decoder archi-
tecture (see Figure 4), which is adapted from the work of
Nogas et al. [21] and customized for the problem of agitation
detection. The input to the encoder consists of continuous
frames stacked together forming a 3D window of dimension
75 × 64 × 64 × 1, where 75 denotes the temporal depth,
64 × 64 denotes the spatial resolution of the frames and
1 denotes the number of input channels, which is equivalent
to gray scale image frames. The encoder further contains
several convolution layers. The decoder operates in the
reverse manner and reconstructs the input. The difference
between the input and output frames is treated as a loss
function / reconstruction error. The 3DCAE model learns
the underlying representation of the data by minimizing the
reconstruction error during training. At the test time, the
model computes the reconstruction error for an unseen data,
using the loss function and leverages the deviation in the error
to identify instances of agitation as anomaly.

A. LOSS FUNCTION
We use mean squared error and gradient loss to calculate the
reconstruction error and train the 3DCAE model. The mean
squared error loss is used to minimize the difference in pixels
between the input window frames I and the reconstructed
window frames O as follows,

Lmse(I ,O) =
1
Ne

W∑
l=1

‖Il − Ol‖2 (1)

where, W represents the number of frames and is termed
as the window size and Ne is the total number of pixels
in a window. In the 3DCAE model, W = 75 and
Ne = 75× 64× 64 = 307200.
The gradient loss [33] is used to sharpen the reconstructed

images, and is defined as,

Lgd (I ,O)

=

W∑
l=1

S∑
i=1

S∑
j=1

|||Ol,i,j − Ol,i−1,j| − |Il,i,j − Il,i−1,j|||1

+
∥∥|Ol,i,j − Ol,i,j−1| − |Il,i,j − Il,i,j−1|∥∥1 (2)

where, S is the spatial size. In the 3DCAE model, S = 64.
Further, we combine both the losses to investigate their

cumulative effect in training the 3DCAE model, and arrive
at the following multi-objective combined loss,

Lmsegd (I ,O) = Lmse + λLgd (3)

where λ is a hyperparameter that has to be set empirically.
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FIGURE 5. 3DCAE architecture with attention.

B. ATTENTION
In addition, we examined the efficacy of a Convolutional
Block Attention Module (CBAM) [34] during the encoding
phase to help the model learn better representation of
video data. Originally CBAM was implemented on 2D
convolutions for channel attention and spatial attention.
Che and Peng [35], extended it to 3D convolutions for
human action recognition tasks. 3D CBAM consists of two
different modules – spatiotemporal and channel. The former
focuses on spatial and temporal relation between features,
whereas, the latter assigns weights to channels of a feature
map based on their importance in reconstructing the input.
In this paper, we explore the performance of 3D CBAM
in unsupervised 3DCAE. These CBAM blocks are placed
in between convolutional layers of the encoder as seen in
Figure 5.

Given an input I ∈ RW×H×Wd×C , whereW is the window
size, H is the height, Wd is the width and C is the channel
size, the attention process in the CBAM module can be
summarized as,

I ′ = MC (I )⊗ I

I ′′ = MSt (I ′)⊗ I ′ (4)

where, MC ∈ R1×1×1×C is the channel attention map and
MSt ∈ RW×H×Wd×1 is the spatiotemporal attention map. The
channel attention map and spatiotemporal attention map are
calculated as,

MC (I ) = σ (Conv3D(AvgPool(I ))

+Conv3D(MaxPool(I )))

MSt (I ′) = σ (Conv3D(AvgPool(I ′);MaxPool(I ′))) (5)

IV. EXPERIMENTS AND RESULTS
The video data from one camera view was used, which
included the participant of interest as well as many other
patients, staff and visitors who also appear in the scene.
We trained the 3DCAE model for 50 epochs. Adam opti-
mizer was used with a learning rate of 0.001. The training
batch size was fixed to 5, that is, each batch was made up
of 5 windows. The reconstruction error was computed per
window and used as an anomaly score. We use Area Under
Curve (AUC) of Receiver Operating Characteristic (ROC)
and Precision-Recall (PR) curve as the evaluation metrics.
The ROC curve helps to understand how well a classifier
can generalize over different thresholds, while the PR curve
highlights how relevant is a positive result from the classifier
given the baseline probabilities of a problem. The anomaly
score calculated on the test set was used to determine AUC,
with agitation as the class of interest. The 3DCAEmodel was
implemented in pytorch lightning [36].

A. DIFFERENT LOSS FUNCTIONS
To understand the effect of various loss functions on
detecting agitation, we performed experiments on three
different variants of 3DCAE model, namely, 3DCAE_mse,
3DCAE_gd, and 3DCAE_msegd. The text after the under-
score represents that the 3DCAE model used the mean
squared error loss (mse), gradient loss (gd) or their combined
loss (msegd). To obtain the best value of hyperparameter
λ in the combined mean squared and gradient loss, it is
varied in the range [0.01, 0.1, 1, 10, 100]. Table 1 shows
that λ = 0.01 gave the highest value of AUC of ROC
and PR. Therefore, the value of λ for 3DCAE_msegd is
kept as 0.01. We understand that reporting hyperparameters
on testing set is not optimal; however, in the absence of a
validation set it was considered plausible. The results of the
experiments on all three variants is presented in Table 2.
We observe that all the three models performed equivalently
with 3DCAE_mse performing marginally better in terms of
both AUC(ROC) and AUC(PR). With the addition of the
attention model (CBAM) to the autoencoder, we did not
observe any improvement to the baseline 3DCAE_msemodel
(Table 3, third row).

The baseline value for the PR curve is expressed as the
ratio of the number of positive samples to the total number
of samples. This value represents the behaviour of a random
classifier. In the case of perfectly balanced classes, this value
will be 0.5, whereas in the case of imbalanced classes, this
values will be between 0 and 0.5. Therefore, the baseline
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TABLE 1. Comparison of AUC scores for ROC and PR curves for different
values of λ for 3DCAE_msegd.

TABLE 2. Comparison of AUC scores for ROC and PR curves for different
variations of 3DCAE.

AUC value for our agitation dataset is 960/(6774 + 960) =
0.124, assuming the events of agitation as the positive case.
The low value of baseline is a result of the skewed data
balance in case of agitation problem, as the episodes of agi-
tation occur infrequently in comparison to normal activities.
Among all the variants of 3DCAE, the minimum AUC(PR)
score obtained is 0.254. Hence, all the 3DCAE models
perform at least twice better than any random classifier in
terms of AUC(PR) score for our agitation dataset

B. IQR ANALYSIS
The training video data is assumed to consist of normal
events only. However, this data may as well contain few
unreported agitation events or other behaviours of risks that
could have been missed during the annotation process. These
unreported events of risk may influence learning the ‘normal’
concept through 3DCAE. Therefore, some of the outliers in
the normal events may be removed from the training data
to facilitate learning of normal concept. Khan et al [37]
proposed to remove such outliers in the training data using
the inter-quartile range approach. Their general idea is to
train a givenmodel on the training data, perform inter-quartile
analysis on the score obtained by running the trained model
on the training samples and remove the samples with the
highest/lowest scores. In our case, the model is 3DCAE_mse
and the reconstruction error is used as the score.

Assuming, Q1 as the lower quartile, Q3 as the upper
quartile, the inter-quartile range is IQR = Q3−Q1. A sample
P is considered as an outlier if,

P > (Q3 + k × IQR) ‖ P < (Q1 − k × IQR) (6)

where ‖ denotes the logical OR operation and k is the
rejection rate that represents the percentage of data points
that are within the non-extreme limits. The extreme values
of reconstruction error that represents the outliers in the
training data can be removed and the model be trained on the
remaining training samples.

In our experiments, we used k = 1.5 that accepts 99.3%
of training data and remove the remaining samples from it.
Figure 6 presents a box plot that shows the outliers based on

FIGURE 6. Box plot showing the outliers based on the reconstruction
errors of the training samples of 3DCAE_mse.

FIGURE 7. Some of the outliers found in training data as part of IQR
analysis.

the reconstruction errors of the training samples. A total of
940 samples were identified as outliers and removed from the
training data.

After the IQR analysis, the training set was reduced to
16415 windows. A few of the outlier frames are shown in
Figure 7. Most of the outlier frames showed presence of
large objects, such as trolleys or ladders and/or crowding of
people in the scene. From a clinical perspective, these outliers
in the training data can be useful information to identify
potential triggers for agitation behaviours and preventing the
occurrence of risky events happening in the unit.

Table 3, second and fourth row provides the AUC scores
and Figure 8 presents the ROC and PR plots for 3DCAE_mse
before and after IQR analysis. In the figure, the values in
parentheses in the labels refer to the AUC scores. As can be
observed, there is no improvement in AUC scores after IQR
analysis (Table 3), and the ROC and PR plots for the original
training data and data obtained after IQR analysis are quite
similar (Figure 8). This demonstrates that the 3DCAE model
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TABLE 3. Comparison of AUC scores for different versions of 3DCAE_mse.

FIGURE 8. Comparison of AUC scores after IQR analysis for
3DCAE_mse.

was robust to the presence of outliers in the training data and
was able to learn normal behaviours occurring in the unit.

C. CHOICE OF TEMPORAL DEPTH
In the experiments shown in Section IV-A, the size of
temporal window was chosen as 5 seconds. To investigate
the effect of different sizes of windows on the performance
of the 3DCAE for detecting agitation, we choose window
sizes of 3 and 10 seconds. As discussed earlier, the test
videos were labelled in intervals of 30 seconds. In order to

FIGURE 9. Comparison of 3DCAE_mse model trained on varying input
temporal depth.

obtain labels for 3 second windows, all the 3 second windows
that fell under the same 30 seconds interval, were given
the same label. Similar strategy was followed to label the
10 seconds windows. Table 3, fifth and sixth row, provides
the AUC scores and Figure 9 presents the ROC and PR plots
for 3DCAE_mse model for 3 and 10 seconds window sizes.
In the figure, the values in parentheses in the labels refer
to the AUC scores obtained for the corresponding window
size. It can be observed that 5 and 10 seconds window size
marginally performs better than the 3 second window size in
terms of AUC(ROC) and AUC(PR) (Table 3 and Figure 9).
However, larger window sizes require more computational
resources.

V. DISCUSSION
In this paper, we demonstrate as a proof-of-concept that it
is possible to detect agitation as a behavioural symptom of
dementia in videos when formulated as an anomaly detection
problem. We report the results from one camera view for one
person with approximately 35 hours of annotated video data.
We trained a spatio-temporal autoencoder on approximately
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24 hours of normal video data and tested on 11 hours of data
containing normal and agitation behaviours. Our approach
resulted in an AUC for ROC of 0.754. To the best of our
knowledge, this is one of the first research studies to present
evidence on the use of video cameras in LTC for detecting
agitation in real-life videos in a residential setting with
PwD.

The IQR analysis demonstrated the large range of normal
activities captured in the video in this setting, including
some very busy and crowded scenes. Removing these scenes,
however, did not improve upon the model performance,
suggesting that the model is able to distinguish these scenes
from anomalous events. The results suggested that the
3DCAE model with 5 second window size and mean squared
error loss performed better than other parameter choices.
The 3DCAE model is able to identify agitation with a
64 64 resolution, which may be unintelligible for naked
human eyes. Therefore, this may provide a privacy protecting
approach by partially/fully obfuscates the identity of the
people in the scene. We also found lower values of AUC of
PR curve indicating an increased amount of false positive rate
during the testing. One reason could be the presence of other
‘‘anomalous events’’ in the testing test (besides agitation
events) that are not labelled as agitation. We also observe
that there are many empty frames in the training set, where
there are no people in the scene. Training the autoencoder on a
large number of such frames could also lead to increased false
alarm rate during testing. Future analyses can address this by
under-sampling frames showing an empty hallway to avoid
biasing the training of the autoencoder. Another approach
could be, during training the autoencoder, adaptively re-
labelling outliers from the IQR analysis as normal activities
in order to avoid classifying them as anomalous events. This
proof-of-concept analysis focuses on training the models
using a single camera view. Future studies will explore
training the models from multiple views; however, this may
be computationally intensive. One way to address this may be
to train the model on one camera view (e.g., hallway) and test
on other camera view (e.g., dining hall), to make the overall
anomaly detection task simpler and faster. From a mod-
elling perspective, other advanced video anomaly detection
algorithms [18] can also be evaluated, including long short-
term memory and temporal convolutional networks to better
capture the temporal information in the windows. Barriers to
be addressed for future analyses include the size of the dataset
(several terabytes of video) and the computational demands
of the analysis. Graphics Processing Unit (GPU) clusters are
needed for processing the surveillance videos, and running
the computationally intensive 3DCAE model. In our case,
Tesla P100 PCIe 12GB GPU clusters were used. The amount
of time required to run the 3DCAEmodel was approximately
24 hours.

From a clinical perspective, this study is a first step towards
the development of video-based clinical agitation detection
systems with applications in clinical settings including long-
term care, mental health inpatient and residential care.

Agitation and aggression are clinically significant behaviours
of risk in these environments, with a large impact in terms
of workplace safety and adverse event prevention. The use
of an anomaly detection framework is valuable in that it
accommodates a range of different types of risky behaviour
that might be observed in these environments, such as
climbing on, moving or throwing furniture and banging
on doors, in addition to physically aggressive behaviours
directed towards others [38], [39]. It also does not require
the identification of the individuals within the video stream.
The downsides are that any novel or unusual visual stimuli
will be triggered as events of interest, such as large pieces
of equipment moving in the scene. Any clinical system
based on this technology would need to have a way to
handle anomalous ‘‘alerts’’ to minimize disruption from false
positives.

The strength of this study is that it uses a well-annotated
unique data set and a novel methodological approach.
A limitation is that only a single camera view and participant
were included. Another limitation is that the use of videos
presents concerns around privacy and surveillance. Despite
the widespread use of video surveillance in healthcare
settings, this issue is far from settled [40], [41]. One possible
approach to address this issue is to use privacy protecting
vision modalities in future studies, such as depth, thermal,
or infrared cameras. However, there are now examples of
commercially available systems using videos to detect falls
in use with demonstrated acceptability in residential care
settings [42]. Further studies addressing approaches to the
ethical design of video-based intelligent systems for dementia
care are needed.

VI. CONCLUSION
Agitation as a behavioural symptom of dementia can be
detected in video using anomaly detection in this proof-
of-concept study. Future work will involve comparing with
other competitive models and expand this analysis to a
larger dataset with multiple camera views and participants
to build more robust and generalizable anomalous behaviour
detection system.
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