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ABSTRACT UML templates are possibly the most neglected and misused piece of knowledge in UML
modelling. This subject has been disregarded in the research and practice literature and even by modelling
tools providers. This paper suggests that such oblivion results from a general misunderstanding that UML
templates are just graphical representations of genericity like it is found in programming languages, and
from the insufficient support from the modelling tools, with a consequence of poor usage of UML templates
in practice. Indeed, the capabilities and potential of UML templates are far-reaching. Increasing awareness
around them could bring significant benefits for UML users, namely, higher-level abstraction and reuse.
Therefore, this paper provides a distilling tutorial on UML templates to highlight their flexibility and
advantages. That presentation follows a tutorial style and is supported by several illustrative examples,
varying from simpler to more complex ones. This tutorial reviews the Template construct’s core concepts and
terminology, presents constraining classifiers and shows how to define properties and operations as template
parameters. Then, it presents and discusses advanced aspects such as operation templates, parameter defaults,
the relationship between binding and generalization, and the specific semantics of package templates.
Furthermore, the paper discusses the related work and uncovers some of the UML templates’ limitations

and opportunities for improvement.

INDEX TERMS Object-oriented modelling, genericity, UML, templates, UML templates.

I. INTRODUCTION

UML templates have been cast to oblivion ever since they
were introduced in the preliminary versions of the language
specification [1]. Indeed, UML templates have been poorly
described and used in practice. Despite there are plenty of
academic and technical books on UML (e.g., [2]-[5]), those
have only addressed templates in a brief and shallow way, as if
to provide just a general hint of some already known subject.
Quite differently, OMG’s standard UML documentation [1]
provides detailed information on templates, but it is far from
a clear and cohesive source. It lacks good usage-oriented
examples, scatters the information on templates along with
multiple chapters (reflecting the various kinds of templates in
UML), and is almost silent about crucial aspects that deserve
far more elaboration and emphasis. Consequently, there is a
real need for a better bibliography since, between too shallow
and too formal sources, nothing can be found that provides a
clear, comprehensive, and well-focused explanation of UML
templates.
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Similarly, modelling tools hardly support UML templates.
Notably, most of the current UML editors do not consider
the full spectrum of UML template features, like all possible
kinds of templates and their parameters. Also, to our best
knowledge, none of the existing tools supports the expansion
semantics defined by the language [1].

Some reasons help to explain this situation. One of
them is that UML templates are mainly used as just
representations for generics in object-oriented programming
languages (OOPLs). This implies that their processing in
UML is unnecessary and that it suffices to have them
translated to the target language syntax. Indeed, UML tools
only support templates in what they have in common
with OOPLs’ generics and, thus, no processing is offered
by such tools for the sake of the semantics defined in
UML for templates. Nothing specific to UML templates
is supported, and both the templates’ definitions and their
instances are simply translated onto the syntax of target
OOPLs.

However, this is arguably a general misinterpretation:
UML templates are more than representations for OOPLs’
generics. Firstlyy, UML templates are more abstract and
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expressive than most mainstream OOPLs’ generics. This
derives as much from UML’s higher level of abstraction and
wide-ranging set of constructs as from the language’s bold
approach to genericity. Regarding this latter aspect, UML
provides more kinds of template and template parameters
than OOPLs use to support. For instance, while in most
OOPLs only types and methods can be templatized, in UML
packages can also be templates.

Furthermore, since in UML the concept of Type unfolds
to many constructs (such as Class, Association, Use Case,
and State Machine), there is a large spectrum of development
artefacts that can be templatized. Regarding template param-
eters, in OOPLs only types and values are allowed. In UML,
properties, operations, and packages are also accepted as
template parameters. UML also provides two semantics
for integrating template instances with the model elements
that embody them: (1) semantics based on inheritance for
classifier templates, and (2) semantics based on package
merge for package templates, while OOPLs only provide the
former. Thus, UML templates are more than representations
of programming languages’ generics. Unfortunately, current
literature has failed at stressing this out.

Secondly, UML template instances cannot be black
boxes that are merely transformed and translated to target
languages’ generics. If templates are to be used in modelling,
then the contents of every template instance must be visible
and usable by other parts of the model. For example, if a class
SixPack is defined as Set<Beer, 6> in amodel, then SixPack’s
features — such as add (Beer) and get () : Beer — have to be
generated and made available for use in the context of that
model. This is inconsistent with the claim that Set<Beer, 6>
must be transposed to the target programming language and
only processed at that level. Hence, although UML templates
can be transcribed onto OOPLs’ generics (to take advantage
of genericity at the target language level, too), they must be
also semantically processed in the context of UML. Once
again, UML templates hardly can be taken as mere shortcuts
to OOPLs’ generics.

This paper intends to contribute to a better understanding
and use of UML templates. This contribution is pertinent
because the potential of UML templates has mainly been
underrated. The paper provides a distilling presentation of
the capabilities of templates, mostly to stress out that the
features of UML templates are not found in the common
OOPLs. Specifically, the focus is on the merge semantics
of package templates, the broad spectrum of template and
template parameter kinds, and the possibility of building
model element names from template arguments.

The paper has five sections. Section 2 briefly introduces the
background of generics and templates as defined originally in
popular OOPLs and UML. Section 3 provides an extensive
tutorial on UML templates based on several illustrative
examples and discusses their main aspects. Section 4 dis-
cusses the related work. Finally, Section 5 concludes with a
summary of the main contributions and the discussion of open
issues.
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Il. BACKGROUND

Generic programming (GP) is frequently described infor-
mally as a programming paradigm by which code is written
in terms of types ‘““to be specified later”’. Concrete pieces of
code are obtained instantiating generic code when needed
for specific types by providing these as parameters. GP is
supposed to scale development since the effort of defining a
generic piece of code and instantiating it multiply is less than
the required to program multiple, similar pieces of code in a
repeatable way.

GP was pioneered by the ML language in 1973 [1], but it
only got widespread visibility with Musser and Stepanov’s
contributions that motivated the design of the C4+’s
Standard Template Library [2]. According to Musser and
Stepanov, GP “‘centers around the idea of abstracting from
concrete, efficient algorithms to obtain generic algorithms
that can be combined with different data representations
to produce a wide variety of useful software” [2]. That
means that programming languages shall allow the writ-
ing of algorithms independently of the concrete types
they will operate. Consequently, those algorithms are pro-
grammed only once and instantiated multiple times whenever
required.

GP has been implemented by most programming lan-
guages, however with nuances: GP means different things
for different languages, depending on what is considered
an “algorithm™ and a “type” for each language. L.e., the
level of genericity in a language depends on what kind of
elements in source code can be defined as a template and
what can be considered a template parameter. According to
Dos Santos and Jarvi [1], there are two main approaches:
one follows the idea of gradual lifting of concrete algorithms,
as prescribed by Musser and Stepanov; the second has its
roots in an algebraic view of datatypes [2] and a calculational
approach to program construction [3], it is also known
as datatype-generic programming [4], and is commonly
found in functional languages like Haskell, Standard ML, or
Clojure.

In object-oriented languages, genericity mechanisms are
commonly associated with the Class construct. As such,
merging generic code instances with other code generally
relies on the subclassing mechanism. For example, if class
Team is defined as a set of Person objects, then Team can
be defined as a subclass of Set <Person>. If teams have
a name, a budget, and a manager, such properties are then
defined on the class Team. Also, if adding a person to a
team is to be conditioned to specific criteria, then the method
Set<Person>.add (Person) must be redefined in Team to
check the necessary criteria before forwarding the call to Set
<Person> (Team’s superclass).

The principle seems reasonable, but it works well only
if the generic piece of code does not span more than a
single class. It has been shown that subclassing is not
an effective merging technique when dealing with family
polymorphism [5], i.e., in case the generic piece of code
encodes a complex concept that encompasses multiple
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interrelated classes. The typical example is that of a generic
Graph <N, E>, which can be instantiated as Road Map
<City, Road>, Social Network <Person, Friendship>, etc.
But also, most of the GoF design patterns [6] are notable
cases of family polymorphism [7], [8]. And even when a
concept or design pattern is represented with nested classes,
subclassing reveals limitations [9]. To cope with this problem,
the concept of package template was proposed with semantics
that does not rely on subtyping [10]. The newness of package
templates adds compositional semantics to package import.
On package template instantiation, generic code is composed
with the target package’s code, element by element and,
recursively, with elements paired according to their name’s
equality. Adding to this, that element renaming is allowed
on instantiation, package templates bring flexibility and
control over the merging of generic code instances with other
code, removing the limitations of subtyping-based genericity.
Therefore, package templates widened the possibilities of
genericity. Although they have not been fully implemented in
any programming language, their emulations on top of Java
and Groovy have already been approached in [11] and [12],
respectively.

Generic programming exists in many flavours. Hence,
because UML aims at being a lingua franca among pro-
gramming languages, it should cover most of those flavours.
This must be why it encompasses a broad set of genericity
capabilities. In the beginning (at least as of version 1.3,
the oldest that can be backtracked today), the approach to
genericity was bold, meaning that, although the emphasis was
on class templates, all kinds of a model element could be
declared as a template [13] (p. 2-66): “‘a template represents
the parameterization of a model element, such as a class
or an operation, although conceptually any model element
may be used (but not all may be useful)”’. The downside
was that template parameters were not model elements in
their full right [13] (p. 2-40): “Each parameter is a dummy
ModelElement designated as a placeholder (. . .) the template
parameter element lacks structure. For example, a parameter
that is a Class lacks Features; they are found in the actual
argument”. The direct consequence of this was that, since
any template will reference its parameters and these are
not fully specified elements, the well-formedness of the
template itself could not be validated. Only its instances
could. Therefore, UML 1.3 templates were like expansion
macros in programming languages.

As of UML 2.0, templates became more pragmatic as
well as conservative. For the sake of pragmatism, not all
element kinds could be defined as a template or as a
template parameter, only those classified as “templateable”
and ‘“‘parameterable” could, respectively. Even so, UML
templates are still far-ranging in terms of genericity. Packages
are among the templateable elements, with the merge-
based semantics aforementioned. Regarding conservatism,
template parameters are no longer dummy elements, but
fully operational ones, enabling well-formedness checking
for every component.
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From UML 2.0 to the current version of the language,
version 2.5.1, templates have matured along with the same
approach, and it can be said that their recent formalization
is up to their potential. Despite that evolution at the UML
specification level, current modelling tools and bibliography
have not kept the same pace. They have contributed to
the poor adoption of UML templates in the modelling
practice. For example, tools like Enterprise Architect [14],
MagicDraw [15], PowerDesigner [16], StartUML [17], and
Visual Paradigm [18] fall short at supporting the current
capabilities of UML templates. Regarding bibliography, the
current UML specification [19] does not provide a pedagogic
explanation on how to use them in practice; neither books nor
scientific papers exist that offer an enlightening description of
the matter. (A general analysis of the related work is further
presented in Section 4.)

However, we believe that increasing awareness around
UML templates can significantly benefit UML users. So, this
paper provides a distilling tutorial on UML templates that
highlights their flexibility and advantages. That presentation
follows a tutorial style and is supported by several illustrative
examples, as follows in the next section.

Ill. TUTORIAL ON UML TEMPLATES

This section presents the main aspects and details of UML
templates as aligned with the current version of the UML
(i.e., version 2.5.1) [19]. The presentation follows a tutorial
style and discusses several illustrative examples. Most of
these examples are connected to the goal of sorting objects,
varying from simpler (in Section 3.1) to more complex (in
the remaining subsections), to show how new requirements
pose new challenges and how UML templates respond to
these. This section presents the following: the core and
basic concepts of templates, how to constrain classifiers,
how to expose operations as template parameters, how
to expose properties as template parameters, how to use
operation templates, how to use parameter defaults, discuss
the relationship between binding and generalization, and
finally how to use package templates.

A. CORE CONCEPTS
The concept of template in UML allows creating generic
model elements intended to be reproduced multiple times
wherever the problem they address happens. A UML
template is a reproducible model element written in terms
of other elements (types, properties, operations, etc.) that are
meant to be abstract. These elements are said exposed as
parameters of the template and are meant to be replaced by
concrete elements wherever the template is instantiated. The
substitution by elements of the target model contextualizes
the template to that model. For instance, in Fig. 1, Array is a
class template defined in terms of T and k, which are exposed
as parameters.

A template is recognized graphically by a dashed rectangle
on its top-right corner, as shown in Fig. 1. The dashed
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add (T)
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remove (T}
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Array <String, 10>

Rectangle

area: float

move(float, float)

FIGURE 1. Example of a simple class template.

rectangle represents the template’s signature, which lists the
template’s parameters.

A reproduction of a template in a target model is called
an instance of the template. The construct in UML for
the instantiation of templates is the binding relationship,
a directed relationship from the instance to the template.
It allows to get an element entirely defined as an instance
of a template (e.g., Array <String, 10> is an instance of
the Array <T, k> template) as well as have an element
with specifications of its own having those merged with an
instance of a template (such as Rectangle in Fig. 1, which
hosts an instance of the Array<T, k> template). In either
case, the element hosting the template instance is said to be
bound to the template. Also, in the context of that binding,
it is referred to as the bound element.

1) TEMPLATE ELEMENTS
The UML model elements that can be defined as templates
(these said templateable elements) are all those subsumed by
the metaclasses Classifier, Package, Operation, and String
Expression. Classifier templates encompass all elements that
may have instances, including classes, interfaces, associ-
ations, use cases, activities, and state machines. Package
templates can be defined to pack recurring model fragments
that surpass the context of a single classifier. Operation
templates are intended to abstract the commonalities among
similar operations concerning their signatures and bodies.
Finally, String Expression templates define textual patterns
that may be used to generate strings in a disciplined way.
These generated names can then be used as literals, comments
text, or to name model elements. The complete taxonomy of
templateable elements in UML [19] is shown in Fig. 2.

A template may not be used as a common, non-template
element. For instance, a class template is not allowed to
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[ Classifier [ Package ] [Dperation String
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Association] Class Hlnterface Collaboration [ Signal | |Information
Item

Artifact

Association
Class

Primitive Type

Activity

Interaction

State Machine

Opaque Behavior

Component

s

Stereotype

FIGURE 2. Taxonomy of templateable elements (adapted from [19]).

classify objects, except in the body of the template itself or
of a related template. That means that statements like “‘new
MyClassTemplate” or “myAttribute: MyClass Template™
are not allowed in common model elements, only inside
templates and under certain conditions (not relevant at this
point).

2) TEMPLATE PARAMETERS AND ARGUMENTS

Template parameters declare what elements, amongst those
participating in the definition of the template, represent
general or non-concrete concepts, those that must be replaced
by concrete elements for complete instantiation of the
template. Such elements are said exposed as parameters or
parametered elements of the template under consideration.
If any parametered elements are not replaced, then the
template instance is still a template, not a plain model
element.

Strictly, UML differentiates a parameter from the element
it exposes. The parameter is a declaration superimposed to the
parametered element, making it replaceable when bounding
to the template. Additionally, the parameter construct allows
for the specification of a default substituting element, which
will be applied if the parameter is not explicitly substituted in
a binding.
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Event
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Information Flow

Generalization Set

T

FIGURE 3. Taxonomy of parameterable elements (adapted from [19]).

For brevity reasons, a parametered element is sometimes
referred to simply as a parameter in this text. Fig. 3 shows the
complete taxonomy of parameterable elements.

The UML construct for assigning an actual argument to a
formal template parameter is called Substitution. It is said that
the argument substitutes the parameter, meaning that inside
the template instance every reference to the parametered
element will be substituted by a reference to the actual
argument. In this text, for brevity, an actual argument is
referred to as the substitute. For instance, in Fig. 1, class
Array is a template with two parameters: T and k. T’s type
is Class, meaning that it must be substituted by a class. k’s
type is Integer Expression and therefore must be substituted
by expressions that evaluate to Integer values, including
those expressions merely composed of a single literal
constant.

The name and type of a template parameter are determined
by the element it exposes. The name is directly adopted by
the parameter, meaning that in Fig. 1, the first parameter
is named “T” because it exposes a class named ““T”
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| Item : Class |-

P N
L (I
————m—— \ exposes
Alphabetic List i
\\\
add (Item) .
remove (Item) items\’ Item
print ()
* * | Name

FIGURE 4. Definition of a class template with a class parameter.

(not shown in the figure), and parameter k exposes an
expression named “k” (also not shown). Consequently, the
usual naming conventions in UML apply, including the
syntax associated with namespaces. Namely, if a template
exposes a feature of an external class, the parameter’s name
is qualified (e.g., T::name). Also, a parameter exposing
an operation is named upon the full signature of the
operation: its name and its ordered list of parameter types,
the latter including the operation’s return type. E.g., a tem-
plate parameter exposing the operation getField (fieldName:
String): String will be named “‘getField (String): String”.
In this text, template parameters’ names will be sometimes
abbreviated for the sake of clarity when ambiguity does not
occur.

Any model element accessible from a template may be
exposed as a parameter of that template. In Fig. 4, Alphabetic
List is a class template with one parameter: Item. (The dashed
line labelled “exposes’ is merely illustrative because UML
has no graphical notation that links a parameter to the element
it exposes.)

3) BINDING RELATIONSHIP

A binding to the above template is shown in Fig. 5. The
semantics of the binding relationship makes everything
specified for a template valid for the bound element as if the
whole contents of the template were copied into the bound
element. In the general case, such a copy must be adapted
to the context of the bound element. This is done using
substitutions that are specified in the context of the binding.

In this example, the bound class is Alphabetic List

<Person>, which is said anonymous. This means that if
a name is not given to a bound element, it will be named
after the template and the actual arguments specified for the
binding under consideration. The name will be formed using
the following string pattern: “TemplateName <argumentl,
argument2, ...>". In the example, the single template
parameter (Item) is substituted by class Person, a fact that
is textually notated in the form ‘parameter — > substitute’
next to the graphical representation of the binding. The
semantics of the binding relationship is illustrated with
this example on the right: Alphabetic List<Person> is a
reproduction of Alphabetic List where all references to Item
are replaced by references to Person. In the template, one of
the references to Item is done through a property item, which
is also an association-end connecting to class Item. Therefore,
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. items
Alphabetic List Item

add (Item)
remaove (Item)
print {)

Name

A

1

whind»
| <ltem ->Person>
|

‘ Alphabetic List <Person=

FIGURE 5. Binding example, featuring an anonymous class.

‘ Alphabetic List <Person> ftems Person
* *

add (Person) Name

delete (Person) Address

print ) Age

"

FIGURE 6. Binding to a class template, semantics expanded view.

_____ al
: Item : Clas§|
Alphabetic List Erpanded view:
*
&
add (Item) items Alphabetic List
remaove (ltem) <Concept>
print () Item
add (Concept)
remove (Concept) *
l| = print {) ®
Cbinds . items

Concept

< [tem->Concept »
.'
Name Name
Glossary Definition Glossary Definition

FIGURE 7. Binding to a class template featuring a named class.

Alphabetic List<Person> gets a property that references
Person. The diagram of Fig. 6 is called the expanded view
of the binding.

Fig. 7 shows another binding to the same template, from
the class Glossary. The semantics of the Binding relationship
is defined as shown by the expanded view on the right of
that figure. Fig. 8 shows a bound class with specifications
of its own. In such cases, the binding merges the instance of
the template with the contents of the bound class. For class
templates, such merging is done through inheritance.

The purpose of the Alphabetic List is to maintain a list
of items sorted alphabetically. To perform the ordering,
Alphabetic List’s methods assume an attribute called Name
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| Item : Class :
[ -
Alphabetic List Alphabetic List
<Document> .
add (Item) " —
remove (Item) a chclumen\J X
print () re.mol.reu,Dccumen.]
print()
I\
]
«bind» = items
< Item->Document > *
1
s
| Bibliography ‘ Document Bibliography ‘ Dotument}
RefStyle Name RefStyle Name
Title = "Bibliography” Year Title = "Bibliography"” Year

FIGURE 8. A bound class with contents of its own.

in Item and use it as the ordering criteria (behaviour not
shown in the figure). Since the methods of Alphabetic List
are copied, undergo substitutions, and are then inherited by
the bound classes, these will also use a Name attribute.
Therefore, the Itemn must be substituted by a class with a
Name attribute. If it doesn’t, the methods of the bound class
will not compile. The situation is exemplified in Fig. 9:
Document has a Title attribute, instead of Name; therefore,
every expression in the template referring to Item’s Name,
once transposed into class Bibliography, will refer to a non-
existing Document’s Name and raise compilation errors. For
instance, expressions ‘it.name’ and ‘itername’ will not be
compilable in Bibliography.

Cases like the example in Fig. 9 require flexibility regard-
ing the attribute corresponding to Name in the substituting
class. That is why UML allows properties (attributes) to be
exposed as template parameters. In the example, exposing
Name as a template parameter allows it to be substituted by
the appropriate attribute in every binding under consideration.
The definition of the template becomes as in Fig. 10.

For typed elements, which is the case of properties, UML
establishes that the type of a substitute must conform to the
type of the parametered element it substitutes. Therefore, the
Name must be substituted by an attribute whose type is String
or a subtype of it, as in the example in Fig. 10.

B. CONSTRAINING CLASSIFIERS
A more general template for keeping ordered lists would
allow ordering criteria based on more than one attribute or
a calculated expression. That could be implemented if the
template considers a comparator method, say compareTo
(T) defined in T, which encodes the ordering criteria
internally, as shown in Fig. 11.

This template is only instantiable if the class substituting
T responds to compareTo (...). A binding functionally
equivalent to the one previously shown in Figure 6 would be
one as in Fig. 15. It may be noted that class Person does define
compareTo (Person).
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1

Alphabetic List . items

*
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remove (Item)

print () Item

P Name
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'
«bind»
< Item-*Document >
I

Bibliography

RefStyle
Title = "Bibliography”

Document

Expanded view:
Alphabetic List
<Documents add (incoming: Document){ ...
iter = self.items.iterator()

add(Document) do

remove(Document) current = iter.next()

print() while (incoming. Name < curent.Name)

o}

items
-
Bibliography Document
Refstyle Title 1!
Title = "Bibliography” Year

FIGURE 9. A bind that produces non-compilable code.

1
; Item : Class - ... EXpose

Alphabetic List

add (T) - ‘\‘ Item
remove (T) {mdered}\‘*» > Name: String

print ()

FIGURE 10. Definition of a template with a class parameter and a
property parameter.

The way to ensure safe substitutions in scenarios like
this one — i.e., to ensure that every substituting classifier
provides the features that the template assumed (in this case,
compareTo (T)) — is by declaring a constraining classifier
for the template parameter. A constraining classifier is
specified by appending ‘> ConstraingClassifierName” to
the parameter’s declaration.

In the example, it would be T : Class > Comparable<T>,
where Comparable<T> is a classifier that publicly provides
a compareTo (T) operation, or, more generally, compareTo
(Comparable<T>), as in the Java platform. Template
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Ordered List T

l_ _ g ‘

add(incoming: T)
remove(outgoing: T)
atlidx: int): T

sizef): int

compareTofother: T): int ‘

compareTo (other: T) :int

{ retum this < other:-1
this ==other: 0
this > other: +1}

AN
add (incoming: T) {
k:int=1;
while ( k<=tsize())
if { t[k] .compareTo (incoming) <0 )
k++;
else
hreak;
t.addAt |k, incoming );
1
/* t is the name of the property resulting
from the association-end connecting to 7.
InUML, anonymous properties get the
name of its type, by default. */

FIGURE 11. Class template Ordered List.

Template level

T

-t ‘

compareTo(other: T): int ‘

|
wbind»

nstance level
:< T-»Person =
Ordered List Person
<Person>
Name: String
Address: String
Age: int

Birthday: Date

compareTo(other: Person): int
{retum this.name .compareTo (other.name) }

FIGURE 12. Class Ordered List <Person>.

parameters with a constraining classifier are must be
substituted only by subtypes of that classifier. In the example,
T may only be substituted by interfaces that specialize
Comparable<T> or by classes that implement it. To have
a full guarantee that the provided constraining classifier
declaration corresponds to checking all the assumptions made
by the template about parameter 7', UML enforces that T shall
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Template level

winterfacen
Comparable <T=

compareTo(other: T): int

an

N iy
I T> Comparable<Ty

| '——
Ordered List

/\

nstance

whind»
< T-=Person =
|

Ordered List Person
<Person>
Name: String
Address: String
Age:int
Birthday: Date

compareTo(other: Person): int
{ return this.name .comparaTo (other.name) }

FIGURE 13. Constraining classifier.

be a direct subtype of the constraining classifier and that it
provides no additional features. That ensures every feature of
T used by the template exists in the constraining classifier
and, by definition, in every subtype of it. The new definition
of the example template and a binding to it are shown in
Fig. 13. There can be more than one constraining classifier
for a template parameter when needed.

C. EXPOSING OPERATIONS AS TEMPLATE PARAMETERS
Because the ordering is controlled uniquely by com-
parelo(... ), the template in Fig. 13 cannot provide multiple
ordering criteria for the same class of objects. In the
example above, Ordered List <Person> can only order
Person objects by name. Having also a list ordered by age
is not viable using that template. Prospective solutions can
be equated, such as adding a parameter to compareTo (. ..)
to specify the ordering criteria, but none of these are likely
elegant. Alternatively, the ability to expose operations as
template parameters in UML allows for a simple solution:
if compareTo (...) is exposed as a template parameter, it is
possible to substitute that operation with one that implements
the desired ordering criteria. Fig. 14 shows the new parameter
and two bindings that substitute it. The actual name of the
new template parameter in the example is T::compareTo
(Comparable<T>): int. In the figure, this name is sometimes
shown stripped of the namespace, parameter, and return type,
for the sake of legibility.
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" < T-»Employee,
| compareTo (T)->compareBySalary (Employee) =

Ordered List Employee
<Employee,
compareBySalary> Name: 5tring
Salary: Float
Birthday: Date
/hge: Integer

/Nextanniversary: Date

compareTo(other: Employee): int
{ return this.Name .compareTo (other.Name) }

compareByAge(other: Employee):

{ return this.Age .compareTo (other.Age) }
compareBySalary(other: Employee): int
{ return this.Salary .compareTo (other.Salary) |

compareByNextAnniversary(other: Employee): int

{return

FIGURE 14. Operation template parameters.

D. EXPOSING PROPERTIES AS TEMPLATE PARAMETERS
All the compareBy...(...) operations have a similar defi-
nition. That suggests such definition could be abstracted
out into a template. These operations differ only in the
Employee’s property being compared (e.g., name, age,
salary). Since UML allows properties to be exposed as
template parameters, abstracting these operations into a
template is straightforward, as shown in Fig. 15.

Each binding generates an operation compareBy
<property> (...)in Employee.

UML 2.5.1 enforces that a property is only substituted
by a property of the same type or of a subtype ([19, Sec.
7.8.18.5 and 9.9.17.7]). In this case, since the parametered
property’s type is Comparable<Object>, the question that
may arise is whether String, Float, Date, and Integer
are subtypes of Comparable<Object>. Indeed, they do.
That’s because the Comparable<T> template is covariant
relatively to its parameter 7, which means that if S is a
subtype of Object, then Comparable<S> is a subtype of
Comparable <Object>.
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Comparable by

prop: Comparable<Object>

ScompareBy<prop=5(other: Comparable by): int

f { return self.prop .compareTo (other.prop) }
mployee
il NN A\ A
Name: 5tring <tbi;1d>1 | | |
Salary: Float < prop-=Name > I : :
Birthday: Date | ahind» | |
JAge: Integer : < prop-:I-SaIary:- ! :
/NextaAnniversary: Date |— - — — 2 | ahind» |

|

|

| < prop-=Age >
|

| |
b e e whind»
<prop->NextAnnivergary=

FIGURE 15. Generalizing an operation through a class template.

E. BUILDING ELEMENT NAMES WITH PARAMETERS

Fig. 15 shows one additional capability of UML templates:
the possibility of using parameters to construct element
names. In the example, the name of the generated operation
is built concatenating ‘“‘compareBy” with the name of the
property that happens to substitute prop. In a definition of a
template, a pair of “$” characters indicates that the enclosed
string includes parameter names embraced by ‘<’ and ‘>’.
In every bound element, such parameter names are automati-
cally replaced by the names of the corresponding substitutes.
In the example, the following operations will be created in
Employee: compareByName (...), compareBySalary (...),
compareByAge (... ), and compareByNextAnniversary (... ).

F. OPERATION TEMPLATES

Operations may also be defined as templates in UML. As an
example, the previously shown compareBy<prop>(...) can
be made generic as a template by itself, instead of defined
inside a class template, as above. The notation for operation
templates is only textual: the name of the operation template
is suffixed with the signature of the template embraced by
‘<’ and ‘>’. Hence, compareBy<prop>(...) defined as an
operation template is shown in Fig. 16 (the template signature
is simplified, for clarity).

Fig. 16 shows class Employee in two ways: its regular
specification on top and its expanded view at the bottom.
The expanded view shows the full, flattened definition of the
operations. These get the same signature and body of the
operation template plus superimposed substitutions. These
are those specified for each binding plus the tacit substitution
of the owner of the operation template (class Comparable By)
by the owner of each bound operation (class Employee) —note
that the type of the other parameter is Comparable By in the
template and Employee in the bound operations. There is no
reference to this tacit substitution in the UML 2.5 standard
document, but it is assumed in this paper.

Hence, there are two alternatives for making compareBy
<Property> (...) generic: a class template member and an
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Comparable By
Prop: T

compareBy <Prop, T= (other: Comparable by): int j‘é ---------- 1
{ retum self.Prop .compareTo (other. Prop) } I
]
I
]
]
]
]
]
]
]
]
]
]
Employee 1
]
Name: String :
Salary: Float 1
Birthday: Date ]
JAge: Integer :
I
]

/NextAnniversary: Date

compareBy <Name, String=() | chinds,.cPop.>Name, f.>Stng >
compareBy <Salary, Float=()
compareBy <Age, Integer=()
compareBy <NextAnniversary, Date>()_

.t

expanded

< Prop -> NextAnniversary, T-> Date =

Employee

Name: 5tring

Salary: Float

Birthday: Date

/age: Integer
J/MextAnniversary: Date

compareBy <Name, String=(other: Employee): int

{ return this.Name .compareTo (other.Name) }
compareBy <Age, Integer=(other: Employee): int
{ return this.Age .compareTo (other.Age) |
compareBy <Salary, Float={other: Employee): int
{ return this.Salary .compareTo (other.Salary) }
compareBy <NextAnniversary, Date=(other: Employee): int
{ return this.NextAnniversary .compareTo (other.NextAnniversary) }

FIGURE 16. Generalizing an operation through an operation template.

operation template. These seem roughly equivalent. However,
the operation template alternative has a slight advantage:
it is simpler to specify a non-default name for the bound
operation. As shown in the example in Fig. 17 and Fig. 18,
where the bound operation is meant to be called northOf(. . .)
and to return the difference of the y component between two
coordinates, the bindings with either alternative are: (1) With
a class template, an extra parameter is needed to supply the
name for the operation, as in Fig. 17; or (2) With an operation
template the name of the bound operation may be set directly,
as shown in Fig. 18.

Therefore, since an extra parameter is avoided, both the
template definition and the binding are simpler in the latter
case.
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| Prop : Property
I'T» Comparable<T>

|
|
| operationName : String Exp ressiqln

Comparable By

Prop: T

S<operationName=5(other: ComparableBy): int
{ retum self.Prop .compareTo (other.Prop) ]

/\

i
whind»
| < prop -= Y,

| T->Float,

| operationName -="NorthOf" =

FIGURE 17. Supplying a name for an operation in a bound class.

Comparable By

Prop: T

- =>McompareBy <Prop, T> (other: Comparable by): int
I

<tbilnd>1 <Prop-»y,
: T->Float =
I
I
: Coordinate Coordinate
I
I x: Float x: Float
: y: Float y: Float
| z: Float z: Float
|
+ — —fnorthof() northOf(other: Coordinate): int
—_— [ return self.y .compareTo (other.y)

FIGURE 18. Supplying a name for an operation bound to an operation
template.

G. PARAMETER DEFAULTS

Fig. 17 also illustrates the possibility of declaring default
substitutes for template parameters. Those are specified in
UML after a “="" appended to the name and type of the
parameter. The default is used in every binding that does
not explicitly substitute for the parameter. In the example,
the default substitute for the parameter operationName is the
“$compareBy <prop>$’ string expression. Hence, if a direct
substitute were not supplied in the binding in Figure 17, the
operation’s name would be “compareByY”’.

H. BINDING AND GENERALIZATION

This section shows how the Binding and Generalization
relationships relate to each other. The following aspects are
highlighted: (1) The effect of a generalization among class
templates; and (2) generalization and binding as two different
constructs for reuse and refinement.

8718

uinterface»

I
: Comparable<T>
| T> Comparable<T>=.,.

Ordered List

compareTofother: T): int

A

E i

add(e: E)
remove(e: E) *
wgetn S<E=s5(): E [*] {ordered}

Prop: T T

FIGURE 19. A template for ordering by a property.

As amotivating example, one more variant of the templates
presented so far is shown in Fig. 19, and its evolution is
subsequently undertaken. This new version of the Ordered
List template does the ordering of E objects based on a
property Prop of those. To ensure that the values of Prop are
orderable, its type T implements interface Comparable<T>.
The same is guaranteed for every substitute of 7', since
Comparable<T> is also a constraining classifier for 7'.

It must be noted that prop, by being declared public,
represents a property in the C# sense: it models a pair of
operations — getProp () and setProp (value) — that mediate
the access to a private implementation of the property;
these operations are transparently called whenever prop is
read or written, respectively, from outside the class. In this
paper, these ger and set operations are declared as <ger>>
prop () and Kset>> prop (value) for legibility reasons, as the
correspondence between these operations and the related
property gets easier to spot.

The ordering of the elements is introduced by operation
add (E), which is the only way to add elements to the list
(note that Ordered List::e is private). Hence, the accuracy
of the ordering of objects already added to the list is only
guaranteed while their prop’s values do not change. If prop
is mutable, an update to prop may require the object in
question to undergo a repositioning. Therefore, to preserve
the ordering, the list must be notified of every update to its
elements’ ordering attribute and react accordingly. This is a
clear instance of the Observer pattern [6]. Ordered List is
an observer of E::prop and the reaction to updates on this
property may be provided by a new operation reorder (E).

Applying the general principle of modularity, the above
Ordered List may be kept as an adequate solution for
immutable objects, while the features to deal with mutability
are introduced in a specialization of it — Ordered List of
Mutable — as shown in Fig. 20.

The Generalization construct encompasses the semantics
of inheritance, with applicability to every non-private model
element defined for the superclass. This is valid also for
template parameters. This means that every specialization of a
template is also a template, and its signature encompasses the
signature of its parent. Therefore, although the class Ordered
List of Mutable in Fig. 20 does not show a dashed rectangle
on its top-right corner, it is a template.

To clarify that objects added to Ordered List must be
immutable, prop is defined in E as read-only. In the
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add(E)
remove|(E)
ugetn 5<E=55(): E [¥]

Prop: T
{ordered}

Ordered List
of Mutable

reorder(E)
FIGURE 20. Subclassing a template, inheritance of template parameters.

I E |
: Ez:Prop I
1 T= Comparable<T+

OL | Ordered List

e

add(E) * | prop: T {readOnly}

remove(E) {ordered}
ugetyn S<E=5(): E [¥]
. m
OLM | Ordered List of M | Mutable ‘
Mutable - N
prop: T {redefines prop} ‘
‘ reorder(M) {ordered,
redefines e}

FIGURE 21. Ordered List of mutable, 2nd step towards definition.

specialization of E, called Mutable, prop is redefined as read-
write. The Java equivalent of E and Mutable are shown in
Fig. 21: E only includes a constructor accepting a value for
prop and a getter of this property, while a setter is only
defined in the Mutable subclass. It should then be stressed
that Ordered List of Mutable is tailored to maintain a list of
mutable objects; therefore it connects specifically to Mutable
objects, not to E objects. This is the type of situation that the
redefinition concept in UML is made for. Thus, the modelling
solution is as in Fig. 21. The equivalent of E and Mutable in
a Java setting is as in Fig. 22.

To keep the diagrams more compact and legible, hereafter
classes are shown both with names and abbreviated aliases,
in the format “alias | name”’, and aliases will be used in most
textual specifications.

The notification behavior may be obtained by binding
Mutable to a template encoding the role of Subject in the
Observer design pattern, as shown in Fig. 23.
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‘ + prop: T {readOnly} prop: T

+ acreaten E(T)
+ ugets Prop(): T

o

‘ M | Mutable ‘

‘ M | Mutable ‘

‘ + prop: T {redefines prop} ‘ | + aset» Prop(T}): void |

FIGURE 22. Semantics of a read-write property redefining a read-only
one.

There are two problems with the modelling of the new
template. Specifically in the generalization connecting OLM
to OL. The first is a subclassification problem: An Ordered
List of Mutable (OLM) object may not be an Ordered List
(OL) object. If it were, it would be possible to collect
E objects into OLM objects — notice that although it is
not possible to execute myOLM.add (myE), it is possible
to assign myOLM to myOL and then execute myOL.add
(myE)). Since E objects are not furnished with the required
notifying behaviour, that would break the semantics of OLM.
Specifically, the problem is that OLM inherits add (E),
while it shouldn’t. The second problem has to do with the
definition of OLM as a template. Being a subclass of OL,
OLM inherits parameter E, while the class that should be
exposed as a parameter of this template is Mutable (M)
instead.

Therefore, the generalization between OLM and OL
does not apply. Nevertheless, OL’s features and semantics
unequivocally apply to OLM if class E is replaced by M.
This suggests that the relation between OLM and OL should
be a binding, not a generalization. The binding shown in
Fig. 24 makes it possible to derive the desired features from
Ordered List’s into OLM and, at the same time, solve the
problems above. An OLM object is no longer an OL object,
and OLM ’s parameters are M and prop. It should be noted
that parameter E will not be part of OLM’s signature because
it was substituted by the binding to OL. On the contrary,
t-parameter E::prop was not substituted; therefore, OLM
inherited it.

Therefore, this example shows that the Binding relation-
ship is a construct for reuse and extensibility, similarly to the
Generalization. But one should be used when the semantics
of inheritance and inclusion are not desirable.

Although closer to a final solution, the new template
is not modelled correctly. The problem that persists might
be evident in Fig. 25, where the expanded view of the
two bindings (to Ordered List, in Fig. 23, and to Subject,
in Fig. 24) are shown jointly.

The problem is that there is no guarantee that properties
OLM::m and M::observers are always consistent with
each other, as they should be. Since those properties are
independent of each other (in Fig. 25), elements may be added
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FIGURE 23. Binding to Subject of the Observer pattern.

to OLM::m without having these elements’ M::observers
property updated with a new observer and vice versa.
In UML, the construct to impose consistency between
properties is the Association. Defining two properties as ends
of the same association makes them inverse of each other.
Therefore, consistency between OLM::m and M::observers
can be achieved by introducing an association between OLM
and M and declaring this association’s ends as redefinitions
of OL::e and S::observers, as in Fig. 26.

As it might be clear by now, class templates are not
always glued as easily as expected. Consequently, class
templates are generally advisable if the solution being
modeled adequately fits within the boundaries of a single
class. A package template is usually better suited if it spans
more than one. Since a package is a container for several
classes, when a package template is instantiated, several
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FIGURE 24. Binding instead of generalization.

classes are reproduced and their interrelationships preserved,
exempting the modeler from the burden of glueing the parts
together. The following section illustrates how a package
template is preferable to its emulation with a set of class
templates.

I. PACKAGE TEMPLATES
If two or more interrelated classifiers model a solution
intended to be generic, then it is better defined as a package
template.

There are two important aspects to highlight concern-
ing package templates: (1) the benefits of package tem-
plates compared to agglomerates of class templates; and
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FIGURE 25. Join view of the expansions of the bindings to OL and Subject.
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FIGURE 26. Complete modelling of an ordered list of mutable objects.

reorder(M) fredefines

observers}

{ordered,
redefines e}

(2) two different strategies for parameterizing a package
template, corresponding to two different results when
instantiating it.
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FIGURE 27. Expanded view of the package Ordered List of Mutable (first
attempt).

1) PACKAGE TEMPLATES VS. CLASSIFIER TEMPLATES

A question that may be put when considering package
templates is whether these are useful or if the job could
be done simply by resorting to classifier templates. After
all, if most common programming languages do not provide
package templates, why does UML provide them? The
answer is that UML provides modelling constructs with more
semantics than those commonly offered by programming
languages, and those constructs do not scale well with
genericity if only classifier templates are available. For
instance, one such construct is the Association, intended to
give consistency between two or more opposite properties.
It also elevates the concept of object connectivity to a
first-class construct, by allowing it to be instantiated and
specialized. By contrast, rich semantics must be assembled
from smaller, less abstract constructs with the common
programming languages. These, although less expressive,
scale well with genericity merely supported by classifier
templates. In this section, the Association will exemplify that
the same does not happen in UML.

When binding to a package template, the contents of
that package are cohesively reproduced inside the bound
package. This reproduction as a whole brings two benefits:
(a) increased expressivity because several elements are repro-
duced at once (with a single binding); and (b) consistency
assurance between the template’s internal structure and the
bound package’s.

The previous section shows that combining two unrelated
class templates into a body with integrated semantics is
not straightforward. In the current section, the challenge is
taken one step forward to show that even if the classifier
templates are already interconnected, the transposition of
that connection onto the bound classifiers still requires some
modelling effort and redundancy.

The package Ordered List of Mutable shown previously in
Fig. 26 attempted to emulate a package template with a set of
classifier templates. To make it clear, the expanded, flattened
view of that package is shown in Fig. 27.

However, this emulation is not complete because one more
classifier in the Ordered List of Mutable package needs to
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FIGURE 28. Package fully emulated by classifier templates (second
attempt).

be declared as a template: the association connecting OLM
to M. If not, the bindings to OLM and M will not generate
an association between the corresponding bound classes. The
problem shown in Fig. 25 (independent properties) occurs
again. To compensate for that, the complete emulation must
be as in Fig. 28.

The two template parameters of the association — olm
and m — are meant to be substituted by the properties
generated in the classes binding to M and OLM, respectively,
to have the bound classes and association properly integrated.
Otherwise, the association template will introduce two more
properties between the bound classes and those already
existing. Instantiating the classifier templates above would be
as shown in Fig. 29, where the ranking of players in games
is modeled (points are plausibly a mutable property while a
game is going on). The expanded view of the bound classifiers
is also shown in that figure.

The redundancy of specifications is obvious. To tie things
together, most of the related elements are pretty much related
twice: Player binds to M and Player also substitutes M (in
the binding on the left); the same between Game and OLM;
and points substitutes Prop in two bindings.

Additionally, such redundancy allows for inconsistencies.
For instance, the bindings in Fig. 30 are accepted by UML
but do not reproduce on Game and Player; the cohesion
exists among the class templates, because Prop is not
being substituted by the same property on both bindings,
as it should. These are problems that do not occur when
using package templates. Modelling the above solution as a
package template and binding to it is as shown in Fig. 31.
It can be noticed in the expanded view that the cohesion
between the classes is intrinsically reproduced in the bound
template. It is also noticeable that it is achieved through
a more concise and clear specification. Package templates
are more expressive, safe, and clear than combinations of
classifier templates when the modelling solution spans more
than one classifier.

2) PARAMETERED ELEMENTS VS. PARAMETERED NAMES
Regarding the second aspect to be highlighted about package
templates, it should be noted that the first two template
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FIGURE 29. Binding to classifier templates to emulate a package
template.

parameters in Fig. 31 are string expressions, being referenced
through “$<...>$", which are used to name the classes
inside the package. In other words, the names of the OLM and
M classes are being exposed as parameters, not the classes
themselves. This is necessary to have the contents of those
classes transposed into the instances of the package template
[19, Sec. 7.4.5.1 and 12.2.3.2], as will be explained next.

While defining the signature of a package template, each
classifier inside the package may be considered with three
possibilities: expose it as a parameter; expose its name
as a parameter; and expose neither of them. The choice
among these possibilities determines how the classifier will
be reproduced inside the template instance.

In the first case, when binding to the template, substituting
the parameter causes the classifier to replace its substitute.
Thus, the classifier will not be transposed into the bound
package. Considering the example above, if classes OLM and
M were exposed as parameters, only the association would be
transposed into the bound package (see Fig. 32). This type of
parameterization should be used only if the purpose is merely
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M I e=ea-
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remove(M) :EEE_-:-' ppmpii- T
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;|;
A .
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: Prop -= Points = Prop-> Name > :
Game Player
Name: 5tring Name: String
Paints: int

FIGURE 30. A viable set of bindings that do not preserve the joint
semantics of the class templates.

to introduce new classifiers in the bound package and leave
the existing ones unchanged.

If the contents of a classifier are intended to be transposed,
then that classifier’s name should be exposed as a parameter.
As mentioned previously, the semantics of the Binding
relationship states that the instantiation of a template is a two-
step process: expansion and merging [19, Sec. 7.3.3.3]. The
first step, expansion, produces an anonymous template copy
with every parametered element replaced by its substitute. For
the examples above, expansion produces the class Ordered
List <Person> and the package Ordered List of Mutable
<”Game”, “Player”, Player::points>.

The second step, merging, consists of combining the
anonymous element’s body with the bound element’s body
to get this one’s actual specification.

The merging is specific to the kind of template. For
classifier templates, merging is achieved through inheritance,
as seen in Fig. 7 and Fig. 8. For package templates, the
merging is performed using the UML’s Package Merge
construct, which is illustrated in Fig. 33. This construct’s
semantics makes the contents of the Merged Package to be
copied into the Receiving Package and combined (merged)
with this one’s, based on the equality of the elements’ names
and signatures. In other words, every element is combined
with its homonymous or simply copied if no homonymous
exists. That’s to say that the contents of a class named C in
the merged package (its features, inner classifiers, etc.) are
copied into a class also named C in the receiving package,
and, recursively, every nested element is merged as well. The
rules regarding homonyms and how duplicates are resolved
are presented in [19, Sec. 12.2.3.2].

The operationalization of a package binding using a
template merging explains why OLM and M are typed as
String Expression. If these parameters are substituted by
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FIGURE 31. Binding to a package template.

names of classes already existing in the bound package,
these classes are merged with the classes in the template.
As seen in Fig. 31, the contents of OLM and M are effectively
reproduced inside Game and Player.

IV. RELATED WORK

This section lays out the state-of-the-art that motivated
this paper and presents the current situation of the UML
templates adoption based on the following references:
standard documentation, popular books, research papers,
and modelling tools. It also discusses related concepts and
techniques, such as UML profiles and patterns.

A. UML SPECIFICATION

The formal writing style of the UML 2.5.1 specification [19]
is tough to read when it comes to the text of templates. This
is due to two reasons: first, the need to be technically correct

8723



IEEE Access

J. Farinha, A. R. da Silva: UML Templates Distilled

: F————— - -
Ordered List of Mutable‘ | OLM : Class |
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remove(M) sset=prop>3(T)
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FIGURE 32. The effect of substituting classifiers in a binding to a package
template.

Merged package |

N

“mergen
)
|

Receiving package ‘

FIGURE 33. The Package Merge construct, graphical notation.

leads to a very verbose discourse, overloaded with long
terms, such as “classifier template parameter”; second, the
information on templates is scattered over several sections,
as many as the number of element types (class, property,
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package, etc.) that can be templated plus one section
dedicated to what is common to all types of templates. This
makes it hard to get the whole picture regarding templates.
For instance, the merge semantics for package binding is only
perceived if the reader is doing a thorough reading and notices
that in the example provided, it is the name of classes exposed
as parameters, not the classes themselves.

B. POPULAR TECHNICAL BOOKS

Even though it is a seminal book on UML, The UML User
Guide [21] only dedicates a 1-page to briefly introduce tem-
plates: using a single example of a class template that shows
the graphical notation for the signature, binding relationship,
and actual arguments. The UML Reference Manual [22] is
the book with the lengthiest sections on templates. Even so,
it only introduces class and interface templates. Larman’s
Applying UML and Patterns (3" ed.) [23] dedicates less than
a l-page to templates.

Other popular UML books — such as UML Distilled
(3" ed.) [24], The Object Primer (3" ed.) [25], UML in
Practice [26], UML 2, and the Unified Process (2rld ed.) [27]
— do not mention templates at all.

C. RESEARCH PAPERS

Research aiming at strengthening or clarifying UML tem-
plates has been scarce. Also, the pieces of work that can be
found do not form a cohesive body; most of them address
a specific and distinct issue, but not the whole picture as we
propose in this paper. To our knowledge, the publications that
have addressed this topic are the following:

Caron and Carré [28] aim at strengthening the verification
rules for template instantiation, meaning that it provides an
inceptive step towards a type system for UML templates.

Cuccuru et al. [29] put forth semantics for a substitutable
classifier, a feature of template parameters that happens
to be presented in a scattered way by the UML standard
documentation, leading to the perception that it lacks a
definition. Although the solution provided unquestionably
embodies an interpretation of a substitutable classifier, the
concept (once deciphered) has a broader meaning.

Vanwormhoudt et al. [30] propose that a template signature
could be a model, not a listing of parameters. The idea is
that such a model should be mimicked by the template’s
arguments on instantiation. This is another initial approach
towards a type system for UML templates. In another
paper [43], the idea is brought into an MDE (model-driven
engineering) context, where a set of operators are elicited and
considered pertinent to manipulating templates.

Abbas et al. [31] propose a bridge from UML class
templates annotated with OCL constraints to a formal
language to grant proper support to a part of the UML
language.

Farinha and Ramos [32], [33] propose another approach
towards a type system, however considering a simplified
scope for UML: that the language is being used just to model
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the constructs of the common OOPLs, leaving out high-level
constructs and UML-specific features such as multiplicities.

Farinha [34] proposes an extension to support cross-
metaclass substitutions, i.e., that in a parameter substitution
the substituted and the substituting elements could have
different but convertible kinds. For instance, that behaviour
could substitute an operation.

Most of these papers focus exclusively on class templates,
and the majority only present simple examples. Furthermore,
none of these papers provides a broader overview of UML
templates as discussed in this paper.

D. MODELLING TOOLS

To assess the support of UML templates by modelling
tools some of the most popular ones were analyzed,
namely: Eclipse Papyrus [35], Enterprise Architect [14],
MagicDraw [15], PowerDesigner [16], StarUML [17], and
Visual Paradigm [18].

This analysis verifies that most of these tools only support
the basic UML template’s features, namely those in popular
OOPLs. This means that current modelling tools do not
offer a significant share of the spectrum of templateable and
parameterable element kinds. And those that support UML-
specific genericity (notably, Eclipse Papyrus) do not provide
a semantic-oriented editing style for it, for example: if a
template parameter is declared with the Package type, the tool
does not check whether there is a package with the supplied
name in the model, nor it does present the user with a list
of packages to choose from when the parameter is to be
substituted.

Especially notable is the generalized absence of the
possibility to expand template instances. This means that
none of the referred tools allows users to get a beer from a
SixPack object if SixPack is defined as Set <Beer, 6>.

E. RELATED CONCEPTS
Other concepts can be related to UML templates that deserve
to be mentioned: UML profiles and patterns.

UML profiles provide a lightweight extension mechanism
for creating or customizing UML-based languages for
multiple domains (e.g., business process modelling, service-
oriented architecture, interactive applications) or specific
platforms (e.g., Java Platform,.NET Framework) [19]. Pro-
files are defined with custom stereotypes, tagged values,
and constraints that are applied to specific model elements,
like Class, Attribute, Operation, and Use Case. However,
the profile mechanism is not a first-class extension mech-
anism because it does not allow modification of existing
metamodels or to create a new metamodel (as, for example,
MOF language does). Profile only allows adaptation or
customization of an existing metamodel with constructs
specific to that domain or platform. For instance, it is
impossible to eliminate constraints that apply to a metamodel;
it is only possible to add new constraints to a profile.
UML profile is an extension mechanism at the metamodel
level, while UML templates provide extension and flexibility
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mechanisms at the model level. Consequently, because the
UML template is a UML first-class construct, it shall be
possible to create profiles with template stereotypes.

Patterns are a systematic way to capture the experience
of experts about good or best practices and document these
pieces of wisdom in an accessible way for reuse. Patterns
are appreciated by academics and practitioners alike because
they describe and reason about good designs in a way that
makes it possible for others to understand and reuse them.
Patterns are also rules that express a relation between a
specific environment (context), a problem (conflict of forces),
and a solution (resolution of the conflict) [36].

Many design and architectural patterns have been
proposed for recurrent software and system engineering
problems [6], [37]. Their solutions are usually represented
with UML class, object, and interaction diagrams, sometimes
exemplified by concrete arrangements of objects. Some
researchers have discussed techniques to represent these
patterns directly using UML or using UML extensions for
patterns (like UML profiles) [38], [39], and few directly with
UML templates [40], [41]. For instance, Sunyé discussed
the representation of patterns with a former version of
UML in which templates were named ‘‘parameterized
collaborations” [40] and Vanwormhoudt et al. with the
current version of UML [30], [42]. Vanwormhoudt et al.
show how to use UML templates to represent pattern- and
aspect-oriented modelling focused on aspectual templates.
This concept requires template parameters to form a model of
systems into which new functionalities are to be injected [30].

V. CONCLUSION

The complete understanding of UML templates has been
neglected and poorly applied or supported by modelling
practitioners, academics, and even by tool developers. This
paper indicates that this situation results from the fact UML
templates are very flexible but also hard to learn and to use
in practice; from the general misunderstanding that UML
templates are just graphical representations of genericity
like it is found in programming languages, and from the
insufficient support of modelling tools.

Indeed, the capabilities and potential of UML templates
are far-reaching. As such, increasing awareness around them
could bring considerable benefits for UML users, namely in
what concerns model reuse, to increase the productivity of
system design and improve model quality via early checking,
by the reuse of proved models [42]. Despite these benefits,
we are aware that the use of UML templates introduces a
higher level of abstraction and complexity and, therefore,
challenges related to learnability and understandability,
which may inhibit or prevent beginner modelers from using
them in practice, without proper training.

This paper provides a comprehensive overview of UML
templates following a pedagogic style and is supported by
several illustrative examples. It introduces the core and basic
concepts of templates, but many other relevant aspects that
are not commonly discussed in the literature, such as: how
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to constrain classifiers, how to expose operations as template
parameters, how to expose properties as template parameters,
how to use operation templates, how to use parameter
defaults, the relationship between binding and generalization
and, finally, how to use package templates.

With this contribution, we hope to motivate tool builders
towards providing better and practical support to UML
templates, researchers to enhance and evaluate their usage,
and practitioners to produce and use them in real scenarios.

Tool builders could put their efforts into providing full
support to the semantics of the UML templates, something
that is essential to their practical use. Without that, a template
instance does not embody the corresponding template
definition. Therefore, it is a black box that only becomes
fully defined at the target language level. None of the existing
UML modelling tools provides a complete implementation of
template semantics.

Researchers have several issues and enhancements to
improve this current situation. The main shortcoming of
UML templates is the thin verification mechanism that the
language establishes for template instantiation. Regarding
this, UML is at the same stage as C++ was before
the introduction of Concepts [43]. Although with UML’s
verification rules an incorrect instantiation will not make
it, the diagnosis of the problem will not be adequate, as it
requires that the template user know its internals. This was
the same problem as C++-. UML lacks a concept system, but,
unfortunately, it cannot be promptly borrowed from C++ or
other languages because UML has constructs that do not exist
in those languages and require specific verification rules.
In addition to providing improved error reporting, a concept
system may also be leveraged to automate or semi-automate
the elicitation of substitutes for template parameters. That
would make the instantiation of templates a quick, smooth,
and easy experience.

Additionally, a sound concept system would increase the
capabilities of UML templates. For instance, the current
version of UML (2.5.1) imposes an excessively stringent
restriction to have the constraining classifier mechanism
guarantee semantic correctness for template instances: a class
being exposed as a parameter must be an empty class [19,
Sec. 9.9.5.6, constraint parametered_element_no_features).
With this restriction, the class Irem used in Figs. 4 to
10 could not have the ‘Name’ attribute, i.e., ‘Name’
would have to be defined in a superclass of Item, which
would unnecessarily increase the complexity of the tem-
plate. As it shall be shown in a forthcoming paper, it is
possible to design a concept system that considers the
notion of structural subtyping, which would dispose of
the constraining classifier mechanism. With the restriction
mentioned above removed, templates would become more
straightforward.

Furthermore, researchers can also conduct experiments
and empirical studies to understand and evaluate the key
benefits and challenges of the UML templates adoption,
namely concerning its usability and reusability.
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Modelling practitioners could benefit from a more substan-
tial adoption of UML templates based on a solid template
construct backed up by proper tools. By using templates,
practitioners can move to a higher level of abstraction and
model reuse. These pieces of models can become more
generic and understandable, a factor known to ease and
accelerate model-based engineering.
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