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ABSTRACT De novo genome assemblers assume the reference genome is unavailable, incomplete, highly
fragmented, or significantly altered as in cancer tissues. Algorithms for de novo assembly have been
developed to deal with and assemble a large number of short sequence reads from genome sequencing.
In this review paper, we have provided an overview of the graph-theoretical side of de novo genome assembly
algorithms.We have investigated the construction of fourteen graph data structures related to OLC-based and
DBG-based algorithms in order to compare and discuss their application in different assemblers. In addition,
the most significant and recent genome de novo assemblers are classified according to the extensive variety
of original, generalized, and specialized versions of graph data structures.

INDEX TERMS Combinatorial data structures, de-Bruijn graph, de novo assembly algorithms, high
throughput sequencing, overlap graph.

I. INTRODUCTION
Since the completion of the human genome project at the turn
of the century, there has been an unprecedented expansion
of genomic sequence data. The de novo genome assembly
is one of the big data challenges in bioinformatics to recon-
struct a genome from a collection of short sequencing reads
without the aid of a reference genome. To date, there are
three generations of genome sequencing technologies. The
first technology, so-called Sanger sequencing, was developed
in 1977 [1], [2]. Although this technology is a very expensive
cost and low throughput technique but it was used to obtain
the first human genome sequence.

Second-generation sequencing, so-called next-generation
sequencing (NGS), is the start of high throughput sequenc-
ing (HTS) and genome sequencing is being revolutionized
by the development and commercialization of HTS. Second-
generation sequencing developed a few decades after the
Sanger sequencing method as a deep, high-throughput, and
reduced-cost sequencing technology. The NGS technology
can generate millions of short reads in parallel with a low cost
of sequencing and speeding up the process compared with the
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Sanger method, also the output is detected directly without
the need for electrophoresis.

The third-generation sequencing (TGS) started in the
2010s to produce reads longer than NGS without ampli-
fication. Mathematically, de novo genome assembly is an
NP-hard problem which does not admit an efficient compu-
tational solution. Compared with the comparative assembly,
the de novo assembly is more demanding and in practice can
be a daunting task, especially when there are many reads to
assemble, which is generally the case. A fundamental tool
used for de novo assembly is a graph representation of the
relationships between the reads sharing common prefixes and
suffixes. Graph data structures are important and efficient
frameworks for algorithms of computational biology which
are used for sequence alignment, genome assembly, and anal-
ysis of genome rearrangements [3]–[6].

Twomain computational approaches for representing over-
laps between reads in de novo genome assembly on HTS data
are Overlap-Layout-Consensus (OLC) algorithm and the de-
Bruijn graph (DBG) algorithm. The OLC algorithm is based
on constructing an overlap graph by overlapping similar
sequences. This approach initially introduced in 1980 [7] and
afterward extended and developed by many scientists. The
first OLC assembler was introduced in 2000 [8] for Sanger
data and later was updated for NGS data too. The DBG
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algorithm is based on k-mers approach, which splits the
short reads into smaller k-mers and then builds a de-Bruijn
graph. Most state-of-the-art de novo assemblers have used
the de-Bruijn graph as a data structure of their assembly algo-
rithms. The de-Bruijn graph was first brought to bioinformat-
ics in 1989 as a method for sequencing by hybridization [9].
The de-Bruijn graph algorithm for de novo assembly was
originally proposed in 1995 [10] and the first DBG assembler
was proposed in 2001 [11]. This work will investigate all spe-
cialized versions of the basic graph frameworks used for de
novo assembly of HTS data and classify important assemblers
in both OLC and DBG approaches based on their graph data
structures.

II. DATA STRUCTURES OF OLC-BASED ASSEMBLERS
The OLC approach is composed of three steps, first comput-
ing the overlaps between the reads, then laying out the overlap
information on a graph data structure, and finally inferring
the consensus sequence. The main graph data structure of
assemblers based on the OLCmethod is called overlap graph,
also there is a simplified version of overlap graph called string
graph which is obtained after removing all redundant edges.
In this section, we study the construction of these two graphs
and their application in important assemblers on HTS data.
Fig. 1 shows a brief overview of the graph data structures in
the OLC method.

A. OVERLAP GRAPH
The overlap graph proposed by Kececioglu and Myers [12]
is a bi-directed graph whose vertices are the input reads and
each edge e = (u, v) represents a connection between two
reads u and v if a suffix of u matches a prefix of v. Each
edge in the overlap graph has two arrowheads at its endpoints
and the orientations of the arrowheads are used to denote the
different ways in which the two reads at the ends of an edge
can overlap [13].

1) OVERLAP GRAPH-BASED ASSEMBLERS
Assembler Celera [8] is the first overlap graph-based assem-
bler which was developed at the time of Sanger sequenc-
ing and then modified to support NGS data. Assembler
CABOG [14] is the revised pipeline of Celera which con-
structs an overlap graph from the reads and reports the best
overlaps which are used to build initial un-gapped multiple
sequence alignments and then assemble contigs. Assembler
Newbler [15] is another assembler was designed for NGS data
which adapted the overlap graph. Assembler Miniasm [16]
builds an overlap graph by mapping all pairs of reads with
Minimap aligner [16] and uses the MinHash sketch [17] to
compare two sets of k-mers. Assembler Canu [18] is derived
from the Celera which is specialized in the assembly of TGS
long reads. Assembler HINGE [19] builds an overlap graph
to obtain pairwise alignments between all reads by using
DALIGNER [20]. Assembler Marvel [21] creates the best
overlap graph and obtains contig paths for long-read data.
Assembler Peregrine [22] scans all the reads to construct a

hash map to record the read locations and uses sparse hier-
archical minimizers to index reads. Assembler Raven [23] is
the upgrade version of Ra [24] which builds an overlap graph
using pairwise overlaps generated byMinimap2 [25]. Assem-
bler HiCanu [26] is a modification of the Canu designed for
PacBio highly accurate long reads. Assembler SMARTden-
ovo [27] is a single-molecule sequencing assembler which
applies the best overlap graph to generate the layout of the
reads and the PBDAG-Con algorithm [28] to generate a
consensus.

B. STRING GRAPH
The string graph proposed by Myers et al. [29] is built
by constructing a graph of the pairwise overlaps between
sequence reads and transforming it into a string graph by
removing transitive edges [30]. A String graph can be derived
from the overlap graph by removing duplicate reads and
contained reads and then removing transitive edges from the
graph. Each edge in a string graph is bidirectional to model
the double-stranded nature of DNA and labeled with the
unmatched substrings of the sequence reads [31].

1) STRING GRAPH-BASED ASSEMBLERS
Assembler Edena [13] is the first string graph-based assem-
bler designed for early short-read sequencing data. This
assembler computes overlaps between reads using suffix
array and performs transitive edge removal then indexes all
sequence reads in a prefix tree. Assembler SGA [32] is based
on the directed string graph where uses the Burrows-Wheeler
Transform [33] and FM-index [30] to find overlaps between
reads. Assembler Fermi [34] is inspired by SGA and uses
FMD-index [33] to represent both DNA strands inside a
unique structure. Assembler RJ [33] or Read Joiner is based
on efficient computation of a subset of exact suffix-prefix
matches and by subsequent rounds of suffix sorting, scanning,
and filtering obtain the non-redundant edges of the graph.
Assembler FALCON [35] is a haplotype-aware assembler for
large genome assembly which builds a string graph by using
DALIGNER [20]. Assembler FALCON-Unzip [35] takes the
contigs from FALCON and phases the reads based on het-
erozygous single nucleotide polymorphisms identified in the
initial assembly. AssemblerHifiasm [36] builds a string graph
where a vertex is an oriented read and an edge is a consistent
overlap. After transitive reduction, a pair of heterozygous
alleles will be represented by a bubble in the string graph.
Assembler NECAT [37] follows an approach similar to Canu,
it constructs a directed string graph and removes transitive
edges using Myer’s algorithm [29].

III. DATA STRUCTURES OF DBG-BASED ASSEMBLERS
The de-Bruijn graph was developed to represent strings from
a finite alphabet motivated by the superstring problem [38].
The vertices of DBG represent all possible k-length strings,
so-called k-mers, where k is an arbitrarily fixed integer and
the edges represent suffix to prefix perfect overlaps. TheDBG
approach for genome assembly is performed in two steps, first
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FIGURE 1. Diagram of graph data structures in OLC method. Overview of how to construct an overlap graph in OLC-based algorithm of de novo
genome assemblers and how to obtain a string graph from overlap graph.

constructing the de-Bruijn graph from the set of all k-mers
and then finding the shortest superstring that contains all
possible k-mers. Fig. 2 shows a brief description of all graph
data structures in the DBG method.

A. DE-BRUIJN GRAPH
The de-Bruijn graph is a common data structure used for de
novo genome assembly which stores all k-mers contained in a
given set of sequences as vertices and edges. For a set of reads,
there are two types ofDBGdata structures: HamiltonianDBG
and Eulerian DBG. In the Hamiltonian approach [10] vertices
are all the distinct k-mers and the pair (u, v) of k-mers is an
arc if the length (k−1) suffix of u is equal to the length (k−1)
prefix of v. In this approach, the sub-sequences are assembled
by finding Hamiltonian paths that traverse all nodes, each
of which is visited only once. This approach is known as
the NP-complete problem when the number of nodes is not
trivial [9]. In the Eulerian approach [11] the vertices are
the set of all (k − 1)-mers in the reads and there is an arc
from u to v if and only if there is a k-mer in the reads with
prefix u and suffix v. In this approach, the sub-sequences are
assembled by finding Eulerian paths that traverse all edges,
each of which is visited only once. The most commonly used
approach to construct a de-Bruijn graph for genome assembly
is the Eulerian DBG which has polynomial time complexity.

1) DE-BRUIJN GRAPH-BASED ASSEMBLERS
Assembler EULER [11] divides the reads into k-mers and
represents each read as a walk on a de-Bruijn graph, then
searches for a super-walk that contains all the reads. Assem-
bler Velvet [39] is an assembler for short-read data which
k-mers are first hashed and then velvet finds exact local
alignments and builds a de-Bruijn graph from them. Assem-
bler ABySS [40] implements a distributed representation of
a de-Bruijn graph to parallel computation. In ABySS, the
value associated to all indexed k-mers is just eight bits cod-
ing the presence or absence of its eight possible neighbors.
Assembler SOAPdenovo [41] uses de-Bruijn graph data struc-
ture and simplifies the graph by merging unambiguously
connected vertices into one. Assembler Gossamer [42] is
based on the succinct representation of de-Bruijn graphs as
a bitmap or set of integers [43] and provides multiple oper-
ations for removing spurious edges from the graph. Assem-
bler Platanus [44] using multiple k-mer sizes, constructs the

de-Bruijn graphs from reads, then modifies the graphs and
displays the output sequences of contigs. In EPGA [45] if
the occurrence of one k-mer is over one, the k-mer will be
considered in constructing the de-Bruijn graph otherwise, the
k-mer will be thought of including erroneous bases and will
be removed. Assembler EPGA2 [46] resolves the memory
efficiency problem in EPGA and updates some modules in
EPGA. It employs DSK [47] to count k-mers and (k+1)-mers
which only requires a fixed user-defined amount of memory.
Assembler ScalaDBG [48] is a scalable genome assembler
through parallel de-Bruijn graph construction for multiple
k-mers. This assembler first performs graph construction in
parallel for each k-value, then for each pair of graphs, the
higher k-valued graph is patched using the lower k-valued
graph to generate a single graph.

B. A-BRUIJN GRAPH
An important generalized version of the de-Bruijn graph for
genome assembly is the A-Bruijn graph [49] which gets its
name from being a combination of a de-Bruijn graph and an
adjacency matrix or A-matrix. Vertices of the graph represent
consecutive columns in multiple sequence alignments and all
vertices that are similar to one another are collapsed into
one vertex. Let S be a genomic sequence of length n and
similarity matrix A = aij be a binary n × n representing
the set 0 of all significant local pairwise alignments between
regions from S. The matrix A is defined as aij = 1 if and
only if the positions i and j are aligned in at least one of
the pairwise alignments and aij = 0 otherwise. Note that
gaps are not considered in A. The A-Bruijn graph G(V ,E)
is defined as the multigraph on the vertex set V with (k − 1)
directed edges (vi, vi+1) for 1 ≤ i ≤ n [49]. For an arbitrary
collection of alignments 0, the A-Bruijn graph is defined to
work with imperfect repeats and is equivalent to the de-Bruijn
graph in the special case that 0 is the collection of all perfect
similarities of k-mers. Also as shown in [50], constructing
this A-Bruijn graph is equivalent to constructing the break-
point graph from multiple genomes to be used for genome
rearrangement.

1) A-BRUIJN GRAPH-BASED ASSEMBLERS
Assembler EULER+ [49] is the first assembler based on
the notion of A-Bruijn graphs. It deals with errors in
reads by inducing vertices with un-gapped alignments that
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FIGURE 2. Diagram of graph data structures in DBG method. Overview of how to construct a de-Bruijn graph in
DBG-based algorithm of de novo genome assemblers and how to obtain each of eleven generalized versions of
de-Bruijn graph.

allow mismatches, rather than the exact k-mers in de-Bruijn
assembly. Assembler EULER-SR [51] is a modified version
of EULER+ assembler which presents a memory-efficient
DBG-based approach. Assembler ABruijn [52] is a DBG-
based de novo assembler for long and noisy reads which
uses an A-Bruijn graph to find the overlaps between reads
and does not require them to be error-corrected. Assembler
Dnaasm [53] is another A-Bruijn graph based assembler
which utilizes the frequency of reads to reconstruct tandem
repetitive sequences. This assembler makes A-Bruijn graph,

then approximates the number of occurrences of a given DNA
fragment, restores the tandem repeats by the correction of the
edge weights, and finally generates a DNA sequence from the
A-Bruijn graph.

C. UniPath GRAPH
A maximal unbranched sequence of edges is called a uni-
path [54] and each given k-mer lies in exactly one uni-path.
UniPath graph is a simplified representation of DBG whose
edges are the uni-paths.
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1) UNIPATH GRAPH-BASED ASSEMBLERS
Assembler ALLPATHS [55] uses the UniPath graph as a rep-
resentation of an assembly consisting of edges representing
contiguous and unambiguous sequences of bases and ver-
tices representing junction points between edges. Assembler
ALLPATHS2 [56] is a modified version of ALLPATHSwhere
generates assemblies with long, accurate contigs and scaf-
folds. Assembler ALLPATH-LG [57] is an improvement ver-
sion of ALLPATHS and ALLPATHS2 which is more resilient
to repeats and in the UniPath graph, collapses repeats of
length more than K , where K is chosen to be short enough
that overlaps of length between reads are abundant.

D. SPARSE DE-BRUIJN GRAPH
The Sparse de-Bruijn graph is a model of DBG which skips
some k-mers and uses only a subset of them to reduce time
and memory use [56]. In the standard DBG structure, every
k-mer in the graph has only one neighboring nucleotide base
on each side for the linear part and each k-mer is considered in
DBG. But in the Sparse de-Bruijn graph, only one out of every
g (g ≤ k) k-mers is stored attempting to subsample as evenly
across the original graph as possible. In the sparse de-Bruijn
graph, the nodes in the graph represent a 1/g subsample
of the k-mer variety in the entire genome and skip some
other k-mers to save more neighboring bases. An example
of Sparse DBG is shown in Fig. 3.

1) SPARSE DE-BRUIJN GRAPH-BASED ASSEMBLERS
Assembler SparseAssembler [58] is based on the construc-
tion of the sparse DBG where the graph stores only a
small fraction of the observed k-mers as vertices and the
edges between these vertices allow the de novo assembly
of even moderately-sized genomes on a typical laptop com-
puter. Assembler SOAPdenovo2 [59] is an improvement of
SOAPdenovo. It implements sparse DBG approach where
reads are cut into k-mers and a large number of the linear
unique k-mers are combined as a group instead of being
stored independently.

E. ITERATIVE DE-BRUIJN GRAPH
The Iterative de-Bruijn graph [60] is built from multi k
values. This approach iterates the construction and analysis
of the de-Bruijn graph on a range of k values from k1 =
kmin < k2 < . . . < kmax = kn. Let DBG(R, k) be the
de-Bruijn graph of k-mer size form a set of reads R and con-
sider G(R, k1) = DBG(R, k1) and C(ki) is the set of contigs
fromG(R, ki), define G(R, ki+1)=DBG(R∪C(ki), ki+1) and
finally G(R, kn) is an Iterative DBG. A schematic process of
this graph is shown in Fig. 4.

1) ITERATIVE DE-BRUIJN GRAPH-BASED ASSEMBLERS
Assembler IDBA [60] maintains an accumulated de-Bruijn
graph at each iteration to carry useful information forward as
it moves on to higher k-values. Assembler IDBA-UD [61] is
an extension of IDBA which is designed to utilize paired-end

FIGURE 3. Construction of the Sparse de-Bruijn graph. (a) A de-Bruijn
graph with branches of each vertex. (b) The Sparse de-Bruijn graph after
skipping green vertices.

reads to assemble low-depth regions. Assembler SKESA [62]
is a de-novo assembler based on an Iterative de-Bruijn graph
for microbial genomes using Illumina sequencing data.

F. PAIRED DE-BRUIJN GRAPH
Paired de-Bruijn graph (PDBG) is a generalization of DBG
that incorporates mate pair information into the graph struc-
ture itself instead of analyzingmate-pairs at a post-processing
step [63]. A mate pair is a pair of reads with a distance of d
between their start positions and a k-bimer (a|b) is a pair of
k-mers, a and b where prefix (a|b) = (Prefix (a)|Prefix (b))
and suffix (a|b)= (suffix (a)|suffix (b)). Also a (k, d)-bimer,
is a pair of k-mers with a distance of d between their start
positions. To construct a PDBG, for each k-bimer (a|b),
consider two new vertices u = prefix (a|b), v = suffix (a|b)
and label the edge by (a|b), then glue vertices of this graph
together when they have the same label, the obtained graph
is PDBG. Fig. 5 shows the construction of this graph for a
mate pair.

1) PAIRED DE-BRUIJN GRAPH-BASED ASSEMBLER
Assembler SPAdes [64] implements iterativeDBG and PDBG
in the same framework. At first, it constructs an assembly
graph using the iterative DBG and derives accurate distance
estimates between k-mers in the genome using joint analysis
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FIGURE 4. The workflow of construction the Iterative de-Bruijn graph
from a set of reads.

of distance histograms and paths in the graph, then constructs
the paired assembly graph inspired by the PDBG approach.

G. COLORED DE-BRUIJN GRAPH
Iqbal et al. [65] presented the colored de-Bruijn graph
(CDBG) where the vertices and edges structure of CDBG
is the same as the classic structure of DBG, but to each
vertex ((k − 1)-mer) and edge (k-mer) is associated a list of
colors corresponding to the samples in which the vertex or
edge label exists [66]. Colored de-Bruijn graph generalizes
the original formulation to multiple samples embedded in a
union graph, where the identity of each sample is retained
by coloring those nodes present in a sample. The samples
may reflect HTS data from multiple samples, experiments,
reference sequences, known variant sequences, or any com-
bination of these [65]. Fig. 6 illustrates an example of CDBG
with three colors.

1) COLORED DE-BRUIJN GRAPH-BASED ASSEMBLER
Assembler Cortex [65] is the first de novo assembly-based
algorithm for direct variant calling from short reads. It builds
CDBG and performs variant calling and genotyping from
HTS data.

H. PROBABILISTIC DE-BRUIJN GRAPH
Pell et al. [67] introduced the probabilistic de-Bruijn graph
which is a memory-efficient representation of DBG based
on Bloom filters [68]. A Bloom filter is a probabilistic data
structure used to test set membership and tells if an element
may be in a set, or definitely is not. The probabilistic DBG is
obtained by inserting all k-mers of a DBG in a Bloom filter.

FIGURE 5. Construction of a paired de-Bruijn of a mate pair ATCGACGTC
with d = 3. (a) Constructing de-Bruijn graph for a mate pair with k = 2.
Black and red numbers belong to each sequence of mate pair. There are
two repeated vertices in this de-Bruijn graph shown in yellow.
(b) Constructing the paired de-Bruijn graph. There is only one repeated
vertex in the PDBG.

FIGURE 6. Construction of Colored de-Bruijn graph of three sequences;
TTCGA, CGATTCGAC and CGACGA with pink, blue and green colors for
k-mers respectively.

The Bloom filter data structure consists of a bit vector and
one or more hash functions, where the hash functions map
each k-mer to a corresponding set of positions within the bit
vector [69]. Fig. 7 shows an example of Probabilistic DBG.

1) PROBABILISTIC DE-BRUIJN GRAPH-BASED ASSEMBLERS
Assembler Minia [70] is a short-read assembler based on
probabilistic DBG which is implicitly encoded as a Bloom
filter. Assembler ABySS2 [69] is an improvement of ABySS
where follows the approach of Minia to encode the DBG to a
probabilistic DBG.

I. REPEAT GRAPH
Repeat graph [49] is a simplified version of the A-Bruijn
graph where similar k-mers are collapsed into a single vertex
and this vertex labeled by the consensus sequence of all
collapsed k-mers. Two positions in the genome are defined
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FIGURE 7. An example of storing the k-mers of a read into a Bloom filter
by computing the hash values of each k-mer and setting the
corresponding bit in the Bloom filter.

as equivalent if they are aligned against each other in one of
these alignments. The repeat graph compactly represents all
repeats in a genome and reveals their mosaic structure.

1) REPEAT GRAPH-BASED ASSEMBLERS
Assembler Flye [71] is a de novo assembler for single
molecule sequencing reads which constructs the repeat graph
of long reads with the goal to approximate the DBG in the
case of a large k . Flye assembler utilizes the constructed
repeat graph for the resolution of unbridged repeats which
are not bridged by any reads. Assembler MosaicFlye [72] is
an algorithm for resolving complex unbridged repeats where
uses variations between various copies of a mosaic repeat for
resolving these copies and thus untangling the repeat graph of
reads constructed by Flye assembler. Also, MetaFlye [73] is
a special mode of Flye assembler for metagenome assembly
andCentroFlye [74] is an assembler for centromere assembly
using long error-prone reads.

J. MARKER GRAPH
A recently published assembly tool [75] uses Run-Length-
Encoding (RLE) [25] as a representation of sequences. The
RLE is a data compression method for text which contains a
large repetition of the same character. In this form, identical
consecutive bases are collapsed, and the base and repeat count
are stored. For instance, the sequence GATTTACCA would
be represented as (GATACA, 113121). In this representation
each k-mer is called a marker and a marker graph is similar to
DBG, where a k-mer is a marker and an edge is built between
two markers if a read contains this succession of markers.

1) MARKER GRAPH-BASED ASSEMBLER
Assembler Shasta [75] uses a compact representation of the
marker graph where an edge is built between two markers if a
read contains this succession of markers and that is weighted
by the number of reads that contains this succession.

K. FUZZY BRUIJN GRAPH
A new data structure for sequence assembly which is related
to sparse DBG and A-Bruijn graphs is the Fuzzy Bruijn graph
(FBG) [76]. The FBG extends basic ideas behind the DBG to
work with long noisy reads. In FBG, each base is considered

FIGURE 8. Construction of Fuzzy Bruijn graph. Consider pairwise
alignment of two binning sequences and construct the Fuzzy Bruijn
graph. Bins with same colors denote shared k-mers of two reads.

as a 256 bp bin and a vertex is a k-bin which is a sequence
of k consecutive bins, different k-bins may be represented
by a single vertex if they are aligned together in a sequence
alignment routine. An edge between two vertices in FBG
indicates their adjacency on a read. Fig. 8 shows a schematic
example of FBG construction from two sequences.

1) FUZZY BRUIJN GRAPH-BASED ASSEMBLER
Assembler Wtdbg2 [76] reads all input sequences into
memory and encodes each base with 2 bits and builds
a hash table for the k-mers occurring at least twice and
at most thousand times. It takes each bin as a base pair
and applies Smith–Waterman dynamic programming [77]
between binned sequences, penalizing gaps and mismatching
bins that do not share k-mers.

L. MINIMIZER-SPACE DE-BRUIJN GRAPH
Minimizer-space de-Bruijn graph (mdBG) [78] is a novel
data structure which instead of building an assembly over
sequence bases, performs assembly over short sequences of
bases called minimizers and later converts it back to bases
assemblies. For an integer k > 2 and an integer l > 1,
a mdBG of order k is a de-Bruijn graph of order k over the
6l alphabet. The nodes are k-min-mers (an ordered list of k
minimizers), and edges correspond of identical suffix-prefix
overlaps of length (k − 1) between k-min-mers.

1) MINIMIZER-SPACE DE-BRUIJN GRAPH-BASED
ASSEMBLER
Assembler Rust-mdbg [78] is a modular assembler which
uses mdBG structure for assembling long and accurate reads.
It runs in minimizer-space where the reads, assembly graph,
and the final assembly are all represented as ordered lists of
minimizers instead of strings of bases.

IV. HYBRID ASSEMBLY
De novo assemblers are classified into short-read, long-read,
and hybrid assemblers. Short-read assemblers are considered
for the second-generation sequencing data with lengths rang-
ing less than 200-400 bp. For the third-generation sequencing
data where the size of reads is more than 400 bp, long-read
assemblers are used. And hybrid assemblers are applied when
a combination of the short and long reads is considered.
Combine the concept of DBG and OLC method to make an
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TABLE 1. Short-read de novo assemblers.

efficient algorithm for hybrid reads and in general, there are
four hybrid assembly strategies [79]:

1) Long reads could be mapped directly onto the DBG,
which is built from the short reads. Then, dedicated
algorithms allow us to resolve some ambiguity in
the DBG to improve the consistency of the resulting
sequences.

2) Long reads could be de novo assembled with dedicated
assemblers and the created contigs are improved by
mapping short reads and correcting assembly errors.

3) Short reads could be used to correct long reads and
then long and corrected reads could be assembled with
assemblers for third-generation sequencing data.

4) Short reads could be de novo assembled using assem-
blers dedicated to second-generation sequencing data
and then long reads link the resulting contigs.

2) HYBRID ASSEMBLERS
AssemblerMeraculous [80] is a hybrid assembler which fol-
lows the first hybrid assembly strategy. Meraculous first con-
structs and traverses a simplified de-Bruijn graph to assemble
unique regions of the genome into uncontested ‘‘UU’’ con-
tigs. In the next step, the contigs are aligned to paired-end read
data, and gaps are filled using localized assemblies of rele-
vant reads. Super-Read Celera Assembler (MaSuRCA) [81]
is a hybrid assembler based on the second hybrid assem-
bly strategy. The assembler uses a modified version of the
CABOG assembler that turns large numbers of reads into
much smaller numbers of longer super-reads. Super-reads can

be easily computed using a de-Bruijn graph. Once the super-
reads are created, they, along with the mate pairs that connect
them, collectively replace the de-Bruijn graph. Incorporating
pair-mate information is performed using the OLC assem-
bly. Assembler DBG2OLC [82] is a hybrid assembler which
follows the third hybrid assembly strategy. The algorithm
starts with linear unambiguous regions of a de-Bruijn graph
and ends up with linear unambiguous regions in an overlap
graph. Assembler HASLR [83] is also a hybrid assembler
which uses the third hybrid assembly strategy. The input is
a set of long-reads and a set of short-reads from the same
sample, together with an estimation of the genome size.
It builds short-read contigs using Minia assembler [70], then
it uses long-reads to put contigs in the order of their expected
appearance in the genome. Assembler HybridSPAdes [84] is
a hybrid assembler which uses the fourth hybrid assembly
strategy. The tool first constructs the assembly graph from
short reads using SPAdes assembler [64], then maps long
reads to the assembly graph and generates read-paths, then
closes gaps in the assembly graph using the consensus of long
reads that span the gaps. Another hybrid assembler following
the fourth hybrid assembly strategy is WENGAN [85]. This
assembler integrates short reads in the early phases of the
assembly process. Assembler WENGAN starts by building
short-read contigs using a de-Bruijn graph assembler. Then,
the pair-end reads are pseudo-aligned back to detect and
error-correct chimeric contigs as well as to classify them as
repeats or unique sequences. AssemblerUnicycler [86] is also
a hybrid assembler which uses the fourth hybrid assembly
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TABLE 2. Long-read de novo assemblers.

strategy. This tool builds an initial assembly graph from short
reads using the de novo assembler SPAdes [64] and then
simplifies the graph using information from short and long
reads. Unicycler uses a semi-global aligner to align long reads
to the assembly graph.

V. DISCUSSION
Tables 1 and 2 describe the most commonly used and recent
de novo genome assemblers on second-and third-generation
sequencing data and classify them based on algorithm types
and graph data structures. Approximately 74% of the short-
read and 40% of long-read de novo assemblers are based on
the DBG approach, also 60% of long-read and 26% of short-
read de novo assemblers are based on the OLC approach.
Generally, it can be estimated that 43% of de novo assem-
blers on HTS are based on the OLC approach and 57% are
based on the DBG approach. As will be discussed in this
section, these approaches have different advantages and dis-
advantages. In general, OLC-based assemblers are the most
popular for long-read data. Overlap graph and string graph
data structures lead to finding a Hamiltonian path which is
known as anNP-complete problem, but they aremore suitable
than the de-Bruijn graphs for long sequences and single-
molecule sequencing reads of high error rate. Vertices in an
overlap graph are the input reads and an edge between two
vertices is assigned when they overlap larger than a cutoff
length. Also, a string graph is the simplified version of an
overlap graph after removing duplicates and contains reads
and also removing transitive edges. The string graph formu-
lation is similar to the concept of the de-Bruijn graph with the
advantage of not requiring the reads to be split into k-mers
and also a string graph always maintains read coherence.
The OLC approaches have major disadvantage of requir-
ing alignments between every possible combination of reads
which are extremely time-consuming for large sequencing
datasets. The DBG-based data structures lead to resolving

the Eulerian path problem to derive contig sequences and it
is easier to find an Eulerian path for short-reads data than a
Hamiltonian path. Another key advantage of de-Bruijn graphs
is their ability to exploit the redundancy of high coverage
HTS data. Most of the short-read assemblers are based on
the standard representation of DBG, UniPath graph, Iterative
graph, or Sparse DBG. Also, DBG-based assemblers for long
reads are mainly based on construction A-Bruijn graph or its
simplified version repeat graph. Marker graph, Fuzzy-Bruijn
graph, and Minimizer space de-Bruijn graph are other graphs
based on DBG-method used for long-read assembly. These
graphs use some models to compress k-mers without losing
data which can be efficient for long reads.

VI. CONCLUSION
The overlap-layout-consensus and the de-Bruijn graph algo-
rithms are the main computational strategies for the de novo
genome assembly problem. Overlap graph and de-Bruijn
graph are two basic graph frameworks of genome assembly
algorithms and there are some generalized and specialized
versions of these graphs which can make assembly more
efficient and easier. The purpose of this review is to provide an
overview of the combinatorial side of de novo genome assem-
bly algorithms on high-throughput sequencing data. This
review described the construction and application of over-
lap graph and string graph, also investigated the de-Bruijn
graph construction and all specialized representation of that.
In addition, the important and recent genome de novo assem-
blers are classified according to the extensive variety of
original, generalized, and specialized versions of graph data
structures which were reviewed in detail.
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