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ABSTRACT One of the critical tasks required for fully autonomous functionality is the ability to achieve an
accurate navigation solution; that is, to determine the platform position, velocity, and orientation. Various
sensors, depending on the vehicle environment (air, sea, or land), are employed to achieve this goal. In parallel
to the development of novel navigation and sensor fusion algorithms, machine-learning based algorithms
are penetrating into the navigation and sensor fusion fields. An excellent example for this trend is pedestrian
dead reckoning, used for indoor navigation, where both classical and machine learning approaches are used
to improve the navigation accuracy. To facilitate machine learning algorithms’ derivation and validation for
autonomous platforms, a huge quantity of recorded sensor data is needed. Unfortunately, in many situations,
such datasets are not easy to collect or are not publicly available. To advance the development of accurate
autonomous navigation, this paper presents the autonomous platforms inertial dataset. It contains inertial
sensor raw data and corresponding ground truth trajectories. The dataset was collected using a variety of
platforms including a quadrotor, two autonomous underwater vehicles, a land vehicle, a remote controlled
electric car, and a boat. A total of 805.5 minutes of recordings were made using different types of inertial
sensors, global navigation satellite system receivers, and Doppler velocity logs. After describing the sensors
that were employed for the recordings, a detailed description of the conducted experiments is provided. The
autonomous platform inertial dataset is available at: https://github.com/ansfl/Navigation-Data-Project/.

INDEX TERMS Navigation, inertial sensors, drones, autonomous underwater vehicles, land vehicles,
machine learning, deep learning.

I. INTRODUCTION
A fully autonomous platform requires the ability to achieve
accurate navigation; that is, to determine position, veloc-
ity and orientation. To that end, depending on the vehicle
operating environment (air, sea, or land), various sensors
are employed to achieve this goal. Most unmanned aerial
vehicles (UAV), also known as drones, apply fusion between
an inertial navigation system (INS) and other external sensors
such as global navigation satellite systems (GNSS) [1], [3]
or vision [4], [5]. Similarly, GNSS/INS fusion is also used
in unmanned ground vehicles (UGV) as shown in [9], [10].
Autonomous underwater vehicles (AUV) mostly employ an
INS and aDoppler velocity log (DVL) [6], [7]. In autonomous
surface vehicles (ASV), localization is performed using
extended Kalman filter (EKF) based simultaneous localiza-
tion and mapping (SLAM) by fusing inertial sensors with
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acoustic information without prior information of source
locations, as shown in [8], [11].

In parallel to the development of novel navigation and
sensor fusion algorithms, machine-learning (ML) based algo-
rithms are penetrating into the navigation and sensor fusion
fields. An excellent example of this trend is pedestrian
dead reckoning (PDR), used in indoor navigation, where
both classical and machine learning approaches are used to
improve the pedestrian accuracy. Reference [12] employed
machine learning classification algorithms to recognize a
smartphone’s position (talking, texting, swing, or pocket),
thereby enabling the choice of a proper gain value to improve
PDR positioning accuracy. Reference [19] segmented iner-
tial data into independent windows and formulated an opti-
mization problem. Deep recurrent neural networks, IONET,
achieved highly accurate trajectories, outperforming state-of-
the-art classical PDR techniques on a wide range of tests
and attachments. References [20] and [21] applied deep
learning (DL) and data driven techniques to improve pedes-
trian inertial navigation. Deep learning approaches were also
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applied to estimate user step lengths instead of using tradi-
tional PDR approaches as in [13], [14], [23]. Reference [15]
compared the Weinberg gain estimation (WG) approach with
deep learning approaches. Another example is described
by [16], who applied a deep-learning pedestrian dead reck-
oning framework for smartphone location recognition clas-
sification followed by a change of heading and distance
regression network.

Research of ML and DL algorithms, as by [17], requires
a huge dataset. In particular, to facilitate the derivation and
validation of a machine learning algorithm for autonomous
platforms, a huge quantity of real recorded data is needed.
To cope with this increasing demand alongside the advances
in pure inertial navigation, several datasets, including pedes-
trian odometry datasets, were recorded and made publicly
available.

The datasets were recorded using various platforms and
recording devices. For example, a set of inertial sensors that
weremounted on different body parts recorded different types
of activities, provided in [18]. They provide ground truth
pose, user activity, and device mode. The RIDI dataset [21]
recorded inertial sensor measurements from a mobile device
along with 3D motion trajectories. The recordings were of
people walking and standingwhile holding themobile device,
while the mobile device was in their pockets. The ADVIO
dataset by [22] consists of a full rig of devices recording
both raw inertial data and images, and generated positions by
running several SLAM implementations. The RONIN dataset
by [20] contains 42.7 hours of inertial sensor recordings
and ground truth recorded by 100 human subjects. For the
recording, a 3D tracking phone was harnessed to the body so
the subjects could handle their phones freely and naturally.
A recent dataset, OxIOD, created by [23], presented 42km of
high precision accuracy human motion captured along with
inertial recordings from several mobile phones.

The KITTI dataset [24] pioneered the field of autonomous
driving for land vehicles and made a strong impact. The data
was collected on a vehicle with video cameras, a 3D laser
scanner with a Global Positioning System (GPS) and an INS.
Later, the RobotCar dataset from [25] was published with
1000km of GPS and INS recordings of an autonomous elec-
tric vehicle in Oxford. ApolloScape by [27] is a much larger
and richer dataset that features a sensor fusion scheme inte-
grating camera videos with consumer-grade motion sensors
(GPS/IMU). Recently, an autonomous navigation dataset,
A2D2 dataset from [29], provided IMU and GPS recordings
from a land vehicle.

One of the latest inertial odometry benchmark datasets
is the IO-VNBD dataset from [30], generated to create a
common publicly available baseline for vehicle positioning.
The dataset was recorded on a research vehicle equipped
with inertial sensors, a GPS, wheel odometry, and also a
smartphone with its sensors. The NCLT dataset from [26]
consists of 147km repeating Segway trajectories recorded
at the University of Michigan. The sensors in the dataset
are GPS, IMU, and laser scans. The Euroc MAV dataset

by [28] provided inertial and ground truth trajectories and
orientations, recorded using an aerial vehicle. For marine
applications, [31] provided visual data from a stereo camera,
IMU recordings, and range data acquired by a mechanical
scanning sonar sensor, recording underwater.

Table 1 summarizes these datasets, giving the recording
sensors, vehicle types, and duration for each dataset.

To advance the development of accurate autonomous nav-
igation, this paper shares the results of collecting and analyz-
ing the raw data and corresponding ground truth trajectories
from the inertial sensors. Our goal is to provide an inertial
dataset for different types of autonomous platforms that were
recorded using the same measurement equipment (when pos-
sible). To that end, the dataset was collected using a variety of
platforms including a quadrotor, two autonomous underwater
vehicles, a land vehicle, a remote controlled electric car,
and a boat. This paper provides two different AUV datasets
to facilitate underwater based navigation research. In addi-
tion, a unique stationary dataset is also provided, consisting
of two different IMUs. This dataset can be used to derive
machine learning approaches for stationary coarse alignment,
as in [32], and other applications.

The recordings were made using different types of inertial
sensors, a global navigation satellite system, and a Doppler
velocity log (DVL) including a Teledyne navigation DVL and
Teledyne Piston DVL, Inertial LabMRU, Vectornav VN-100,
analog devices IMU, a Pixhawk Cube flight controller, and
three types of smartphones. The autonomous platform inertial
dataset is available at: https://github.com/ansfl/Navigation-
Data-Project/.

In comparison with other published datasets (Table 1), the
contributions of our dataset are:

1) A special mechanical setup, allowing aligning a smart-
phone and our MRU device, was constructed for
the purpose of data collection. In that manner, the
MRU provides the ground truth (GT) trajectory and
its IMU readings, while the smartphone provides its
low-performance IMU measurements. Thus, two dif-
ferent IMU grades are available in the dataset. This
setup was used in the stationary, land vehicle, and boat
recordings.

2) Two different AUVs datasets including GT trajecto-
ries and IMU measurements in various dynamics and
trajectories.

3) Quadrotor dataset including GT trajectories and two
IMU readings. This dataset also includes unique peri-
odic motion trajectories.

The rest of the paper is organized as follows: Section II
describes the sensors that were employed for the recordings,
Section III provides a detailed description of the experiments,
and Section IV gives the conclusions.

II. MEASUREMENT EQUIPMENT
Different types of inertial sensors, GNSS receivers, and
two DVLs were used to collect the data. A Pixhawk Cube
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TABLE 1. Summary of previous collected datasets.

flight controller was used for the quadrotor platform record-
ings. An MRU recording setup was used for the static
recordings, marine vessel motion recordings, and car record-
ings. Two types of DVLs were used for two AUVs plat-
form recordings: the Snapir A18D AUV and ALICE AUV.
Several smartphones (with different IMUs) were a part
of the recording equipment for the stationary recordings,
marine vessel motion recordings, and remote control car
recordings.

A. TELEDYNE NAVIGATOR DVL
1) TELEDYNE NAVIGATION DVL
The Snapir AUV (Section III-E) is equipped with a Teledyne
RDI Work Horse navigator DVL [35], as shown in Figure 1.
It operates at frequencies of 300KHz, 600KHz, and up to
1200KHz, which allows bottom tracking at depths of 0.5m
and down to 200m. The DVL is able to measure velocity with

FIGURE 1. Teledyne DVL mounted on the Snapir AUV.

three degrees of freedom. The velocity range is ± 10m/s at a
measurement resolution of 0.001 and accuracy of 0.008m/s.
The sampling rate of the DVL is 1Hz.
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2) TELEDYNE PISTON DVL
The Alice AUV (Section III-F) employs the piston version
of the Teledyne Explorer DVL with a standard acoustic fre-
quency of 614.4KHz. The DVL operates in tracking mode at
a depth of 0.5 to 66m with an accuracy of 0.01m/s and water
profiling at 1.33 to 25m with an accuracy of 2.3 m/s. The
measurement resolution is 0.1 and the sampling rate is 4Hz.

B. INERTIAL NAVIGATION SYSTEM
1) INERTIAL LAB – MRU
The motion reference units (MRU) by Inertial Labs is a
high-performance strapdown motion system [34]. It also has
GNSS RTK receiver, which is used to obtain ground truth in
cm level accuracy. The sampling rate of the MRU is 100Hz,
the accelerometer bias in run stability is 0.005mg and the
gyroscope bias in run stability is 1deg/hr.

2) VECTORNAV - VN-100
The VN-100 is a miniature, high performance IMU and
Attitude Heading Reference System (AHRS). Combining
three-axis accelerometers, gyroscopes and magnetometers,
a barometric pressure sensor, and a 32-bit processor, the
VN-100 provides high-rate, calibrated IMU data and a real-
time 3D attitude solution that is continuous over the complete
360 degrees of motion [36]. The accelerometer bias in run
stability is smaller than 0.04mg and the gyroscope bias in run
stability is 5− 7deg/hr.

FIGURE 2. VN-100 inside the case, the sensor is marked by a red circle.

3) ANALOG DEVICES - 16488A IMU
The Alice AUV employs an ADIS16488A IMU. The IMU
features a triaxial digital gyroscope with a dynamic range of
450◦/s, a triaxial accelerometer with a range of ± 18g, and
a triaxial magnetometer with a range of ± 2.5 gauss. The
sampling rate of the IMU is 123Hz.

4) PIXHAWK CUBE
Pixhawk Cube [33] is a flight controller with a triple
redundant IMU system that is isolated, dampened, and
temperature-controlled, thereby reducing noise to measure-
ments and allowing flights at extreme temperatures. Also,

it is RTK GNSS ready. Hence, it is very efficient when data
collection is required, since each flight provides three IMU
measurements with a sample rate of 1000Hz, and ground truth
can be extracted from the RTK GNSS system. Pixhawk Cube
could be used as the main flight controller of the quadrotor,
but was used herein as a recording device for its IMU record-
ings and its GPS RTK.

C. SMARTPHONES
1) HUAWEI P40 SMARTPHONE
For the recordings in stationary conditions and land vehi-
cle the Huawei P40 smartphone [37] was used. Three-axis
accelerometer and gyro data was collected at a rate of 200Hz.

2) SAMSUNG GALAXY S7 EDGE SMARTPHONE
Samsung Galaxy S7 Edge [38] was employed for the marine
vessel motion recording (Section III-C). The recorded data
consists of the three-axis accelerometer and gyro data at a
rate of 100Hz.

3) SAMSUNG GALAXY S8 EDGE SMARTPHONE
Samsung Galaxy S8 Edge [39] was used for the
remote-control car recordings. The recordings include the
data from the IMU (without the smartphone OS post-
processing) - that is the accelerometers and the gyroscopes,
at a rate of 100Hz.

III. THE AUTONOMOUS PLATFORM INERTIAL DATASET
A. STATIONARY CONDITIONS
Amechanical setup was designed andmanufactured to mount
the MRU device (Section II-B1) together with a Huawei P40
smartphone (see Section II-C1), as shown in Figure 3. The
smartphone stayed aligned with the MRU reference frame
during the recordings. Using this setup, samples with varying
lengths of stationary recordings were taken. Each recording
consists of the MRU IMU data and the corresponding P40
IMU data so that the MRU serves as ground truth data due
to the high accuracy of the sensors. The total duration of the
stationary recordings is 60 minutes Recordings were made in
different attitudes.

FIGURE 3. The MRU + mobile phone recording setup.
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B. LAND VEHICLE
Several land vehicle recordings were conducted using the
MRU and Huawei P40 smartphone with the unique setup
described in Section 3.1. The unit was placed in a modi-
fied Suzuki Jimny (overall length 3645mm, width 1645mm,
height 1725mm, and wheelbase 2250mm) between the front
car seats (X=700mm Y=2000mm Z=1000mm relative to
the left corner of the front bumper), as shown in Figure 4.
The first recording consists of a 25 min stationary recording
(with the engine on) and 35 min of a driving recording from
the Israel Oceanographic and Limnological Research (IOLR)
facility (32◦49’34′′N 34◦57’24′′E, sea level altitude) to Isfiya
on Mount Carmel (32◦43’02′′N 35◦03’54′′E, altitude 472m),
as shown in Figure 5. Several points of interest were doc-
umented during the drive, as shown in Table 2, which
can help to evaluate the performance under common driv-
ing conditions. Another recording was made from Haifa’s
Carmel Center (32◦48’20′′N 34◦59’13′′E) to Kiryat Motzkin
(32◦50’08′′N35◦04’47′′E). It has 45min of stationary record-
ings and 30 min of driving. The drive was not documented,
but unlike the previous drive, a Huawei P40 smartphone track
recording was produced to accompany the MRU recording.
In this manner, two different grades of IMU recordings are
available for analysis including RTK GNSS ground truth.

TABLE 2. Drive points of interest from Israel oceanographic and
limnological research (IOLR) to isfiya.

C. MARINE VESSEL
Another platform that contributed to our dataset is a marine
vessel named ‘‘Shikmona’’, shown in Figure 6. It has an
overall length of 38.9 m and width of 9.2 m. The marine
vessel once belonged to the Israel Navy, and was purchased
by the IOLR in 2015 for marine research purposes. IMU

FIGURE 4. MRU and smartphone location inside the car.

FIGURE 5. Drive recording map - IOLR to Isfiya.

signals using both the MRU (Section II-B1) and the Samsung
Galaxy S7 edge smartphone (Section II-C2) was recorded.
The setup (see Figure 3) was mounted on the marine vessel
(the exact location is 18m from the front and 5 m from the
right, shown in Figure 8 with a yellow dot), so only the
motion of the marine vessel on the water was recorded. Four
recordings of 20 min of straight line motion were conducted
with a 90-degree rotation to the right between each repetition,
thereby creating a square pattern. As in the land vehicle and
stationary conditions, here, also, two different types of IMU
are available for evaluation.

FIGURE 6. The ‘‘Shikmona’’ marine vessel.
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FIGURE 7. The recording setup on the marine vessel.

FIGURE 8. The setup location on the marine vessel.

D. MATRICE 300 QUADROTOR
Field experiments were made with DJI’sMATRICE 300 RTK
quadrotor, shown in Figure 9. A Pixhawk Cube flight con-
troller (see Section II-B4) was attached to the quadrotor
(shown in Figure 10). It has three IMU units that were used
for recording during flight. In some of the recordings the
Pixhawk Cube was attached to the quadrotor’s landing gear

FIGURE 9. DJI MATRICE 300 RTK used in the field experiments.

FIGURE 10. Pixhawk Cube attached parallel to the MATRICE 300 body
frame.

and in the others to its body. The two different locations
were due to research constraints. In the dataset, this location
labelled each file with the location of the Pixhawk Cube.

An RTK GPS receiver was used to obtain the ground
truth of the trajectories. In all the experiments, the quadrotor
was flown manually by an experienced and licensed pilot.
The quadrotor was flown with various dynamics, each for
a specific purpose. To begin with, the quadrotor was flown
in a straight line back and forth. Next, the quadrotor was
flownwith a periodic motion that resembles a sine wave; both
vertically, where the altitude changed relative to the nominal
altitude, and horizontally, where the altitude is fixed and the
sine wave is horizontal. An example of such a trajectory can
be seen in Figure 11. Finally, the quadrotor’s altitude was
fixed and the quadrotor was flown in a figure eight, as shown
in Figure 12. Parts of the quadrotor dataset were used in two
different studies:

1) Based on the periodic motion trajectories included in
the dataset, we proposed a framework for quadrotor

FIGURE 11. Quadrotor vertical periodic motion trajectory during the
experiment, as obtained from the RTK-GPS measurements.
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FIGURE 12. Quadrotor figure-eight trajectory during the experiment as
obtained from the RTK-GPS measurements.

navigation based only on inertial sensors, called
quadrotor dead reckoning (QDR) [2] as an alterna-
tive solution to classical INS. Motivated by the PDR
approach, the motion of a walking user was emulated,
instead of moving in straight lines in situations of
pure inertial navigation. In this manner, similar to step
length estimation in PDR, we estimated the peak-to-
peak change in distance of the quadrotor.

2) The figure-eight trajectory was used to show the bene-
fits of a criterion that acts as a guideline for a reasonable
choice for the step size in Kalman filtering (KF) as
by [43]. In KF, a trade-off exists when selecting the
filter step size. Generally, a smaller step size improves
the estimation accuracy, yet adds the cost of a high
computational load. The proposed criterion mitigates
this trade-off influence on performance.

E. SNAPIR A18D AUV
The Snapir is a modified A18D AUV manufactured by ECA
robotics, shown in Figure 13. It was delivered to the Hatter
Department of Marine Technologies, University of Haifa,
in 2017. The dataset was collected during an expedition in
the Mediterranean sea. A measurement rate of 40Hz is used.
The VN-100 is placed inside a case as shown in Figure 2 to
protect it from water up to 100m. The case is placed inside
the AUV. The marine vessel that deployed the AUV into
the water was the ‘‘Shikumona’’, (shown in Figure 6). The
Teledyne navigation DVL (Section II-A1) is mounted at the
center of the AUV, and the Vectornav IMU (Section II-B2)
is mounted at a distance of 3.55m to the front, 0.025m to
the left, and 0.3m higher relative to the DVL, as presented
in Figure 14. The AUV performed maneuvers with various
dynamics: straight line, spiral with small ovals, and rounded-
edge triangles. These shapeswere created due to the complex-
ity of the experiment that involved a long baseline acoustic
positioning system (LBL) that resulted in a snail shell shape
in most routes, as shown in Figure 15. The challenging snail
shell shape results in the collection of a useful navigation
dataset with many different orientations, headings, velocities,
and depths. The dataset includes typical forward movement,

FIGURE 13. A18D AUV being pulled out of the water.

FIGURE 14. The Vectornav is in the front and the DVL is in the middle.

different altitudes up to 25 m deep, and different velocities
of up to two m/s. Both the DVL and the IMU recordings are
available in the dataset. The DVL sampling rate was 1Hz and
the number of samples collected is 24,085, totalling 401 min-
utes of raw DVL data. The Vectornav VN-100 was placed
at the front of the AUV, operating at 40Hz. The Vectornav

FIGURE 15. Snapir snail shell shape route description.
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dataset includes 1, 480, 000 samples, equalling 616 minutes
of recorded inertial data. The duration of the IMU is bigger
than the DVL as due to operational constraints its recording
began earlier.

This dataset was used in [46] to evaluate a novel approach
for compensating for partial DVL outages by applying
deep-learning methods in situations where only three beams
are received by the DVL. The deep neural network uses past
DVLmeasurements to predict the missing beam and improve
the velocity vector accuracy.

F. ALICE AUV
The Alice is a modified SPARUS II AUV, [44], with hov-
ering capabilities is illustrated in Figure 16. The AUV was
developed by [45] and modified at the Hatter Department
of Marine Technologies, University of Haifa. The vehi-
cle’s operating speed is 0–2 m/s and its maximum oper-
ating depth is 200m. The vehicle’s dimensions are 1.6 m
in length and 230mm in diameter and weight (in air) of
approximately 60 kg. For underwater navigation, the vehi-
cle is equipped with the Teledyne RDI Explorer DVL (see
Section II-A2) employing a piston transducer operating at a
standard acoustic frequency of 614.4KHz, the ADIS 16488A
IMU (Section II-B3), and the Keller PA-9LD pressure sen-
sor. The positions of the navigation sensors are illustrated
in Figure 17. The Alice AUV underwent sea trials off the

FIGURE 16. ALICE AUV during sea experiments in the mediterranean sea.

FIGURE 17. ALICE AUV navigation sensor locations.

TABLE 3. Sea experiment mission plan: vehicle velocities and depths.

FIGURE 18. ALICE path as recorded in the first dataset.

FIGURE 19. The Electric 4WD Climbing Car with the Galaxy S8 setup.

coasts of Sdot Yam and Haifa Bay and two datasets were
obtained. The vehicle motion during the experiments was
measured by the on-board sensors, where the velocities were
measured by DVL at a sampling rate of 4Hz. The depth of
the AUV was measured by a pressure sensor. Both the IMU
and the pressure sensor sampling rates were 123Hz. The first
dataset recorded 1200 s of a way-point navigation mission
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TABLE 4. Summary of collected datasets using six different vehicles and stationary conditions recordings.

along straight transects in various surge speeds, depths, and
headings, as detailed in Table 3. The measured path is illus-
trated in Figure 18. The second data set recorded 3000 s of
a way-point navigation mission along straight transects in a
lawnmower pattern. This mission pattern is mainly employed
for seabed survey missions. The AUV was programmed to
maintain a depth of 10m and a surge speed of 0.5 m/s along
the transects. This dataset was used in [47] to validate an
algorithm enabling the estimation of the velocity vector in
situations of complete DVL outages. Such scenarios may
occur when operating in complex environments. To obtain the
current velocity estimation, past DVLmeasurements are used
in the proposed algorithm. Using this dataset, the benefits of
their proposed approach were demonstrated.

G. REMOTE-CONTROLLED CAR
A remote-controlled car—the Storm Electric 4WD Climbing
car—with Samsung’s Galaxy S8 smartphone (Section II-C3)

mounted on it (shown in Figure 19) was used to create the
dataset. The car dimensions are 385 × 260x205mm, with a
wheelbase of 253mm and a tire diameter of 110mm.

The car was driven in three indoor courses: a straight line
with a length of 6.3 m, a square with side lengths of 2.25 m
each, and a circle with a diameter of 1.98m. The courses were
marked on the lab floor, as shown in Figure 20, and were
followed so that the wheels were on either side of the line. For
each course, 15 recordings were taken. We made a trade-off
between driving fast enough to be able to overcome the noise
of the sensors, and being able to drive on the courses accu-
rately. In the circular and square courses, the end positions
were at the same spot as the start positions with a deviation
of a few centimeters due to the steering difficulties. Each
recording has about three seconds of stationary recording at
the beginning and the end of the trajectory. All the recordings
were taken in an air-conditioned room at a temperature of
25 degrees.

VOLUME 10, 2022 10199



A. Shurin et al.: Autonomous Platforms Inertial Dataset

FIGURE 20. The square and circular courses used for the recordings.

The beginning of themotion is clearly noticeable by a steep
growth in the accelerometer’s x axis. The end of the motion
is also distinguished by a steep increase of the acceleration in
the negative direction due to the sudden stop. The smartphone
was attached to the top of the car with the screen towards
the ceiling using Velcro, such that the x axis is aligned with
the car’s heading angle. It was tilted up to 2 degrees in the
x and y axes when the wheels point forward.

IV. CONCLUSION
In this paper, our goal is to advance the development of
accurate autonomous navigation by publicly sharing inertial
sensor raw data and corresponding ground truth trajecto-
ries, and making it accessible and easy to use. The dataset
was collected using a variety of platforms and measurement
equipment in a variety of environments (air, sea, and land)
while applying different trajectories and different motion
dynamics. We believe that this dataset will be highly useful
for research purposes in the areas of robotics and autonomous
navigation. We plan to keep the dataset constantly updated
by continuously collecting data with the same and additional
platforms for a variety of purposes. A summary of the dataset
is presented in Table 4. The data is available and can be down-
loaded at: https://github.com/ansfl/Navigation-Data-Project/.
In addition, we aim to increase continuously the amount of
data with more planned experiments.

ACKNOWLEDGMENT
The Snapir AUV recording campaign on the Mediterranean
sea was supported by the Charney School ofMarine Sciences,
University of Haifa, Israel.

REFERENCES
[1] P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated

Navigation Systems, 2nd ed. New York, NY, USA: Artech House, 2008.

[2] A. Shurin and I. Klein, ‘‘QDR: A quadrotor dead reckoning framework,’’
IEEE Access, vol. 8, pp. 204433–204440, 2020.

[3] L. Arreola, A. Montes de Oca, A. Flores, J. Sanchez, and G. Flores,
‘‘Improvement in the UAV position estimation with low-cost GPS, INS
and vision-based system: Application to a quadrotor UAV,’’ in Proc. Int.
Conf. Unmanned Aircr. Syst. (ICUAS), Jun. 2018, pp. 1248–1254.

[4] D. Huang, Z. Cai, Y. Wang, and X. He, ‘‘A real-time fast incremental
SLAM method for indoor navigation,’’ in Proc. Chin. Automat. Congr.,
Nov. 2013, pp. 171–176.

[5] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, ‘‘Ultimate
SLAM? Combining events, images, and IMU for robust visual SLAM in
HDR and high-speed scenarios,’’ IEEE Robot. Automat. Lett., vol. 3, no. 2,
pp. 994–1001, Apr. 2018.

[6] L. Stutters, H. Liu, C. Tiltman, and D. J. Brown, ‘‘Navigation technologies
for autonomous underwater vehicles,’’ IEEE Trans. Syst., Man, Cybern., C
(Appl. Rev.), vol. 38, no. 4, pp. 581–589, Jul. 2008.

[7] J. Melo and A. Matos, ‘‘Survey on advances on terrain based navigation
for autonomous underwater vehicles,’’Ocean Eng., vol. 139, pp. 250–264,
Jul. 2017.

[8] J. Choi, J. Park, J. Jung, Y. Lee, and H.-T. Choi, ‘‘Development of an
autonomous surface vehicle and performance evaluation of autonomous
navigation technologies,’’ Int. J. Control, Autom. Syst., vol. 18, no. 3,
pp. 535–545, Mar. 2020.

[9] K. Shen,M.Wang,M. Fu, Y. Yang, and Z. Yin, ‘‘Observability analysis and
adaptive information fusion for integrated navigation of unmanned ground
vehicles,’’ IEEE Trans. Ind. Electron., vol. 67, no. 9, pp. 7659–7668,
Sep. 2020.

[10] K. W. Chiang, G. J. Tsai, H. W. Chang, C. Joly, and N. EI-Sheimy, ‘‘Seam-
less navigation and mapping using an INS/GNSS/grid-based SLAM semi-
tightly coupled integration scheme,’’ Inf. Fusion, vol. 50, pp. 181–196,
Oct. 2019.

[11] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, vol. 35.
Cambridge, MA, USA: MIT Press, 2005, pp. 1299–1300.

[12] I. Klein, Y. Solaz, and G. Ohayon, ‘‘Pedestrian dead reckoning with smart-
phonemode recognition,’’ IEEE Sensors J., vol. 18, no. 18, pp. 7577–7584,
Sep. 2018.

[13] F. Gu, K. Khoshelham, C. Yu, and J. Shang, ‘‘Accurate step length esti-
mation for pedestrian dead reckoning localization using stacked autoen-
coders,’’ IEEE Trans. Instrum. Meas., vol. 68, no. 8, pp. 2705–2713,
Oct. 2018.

[14] Y. Yao, L. Pan, W. Fen, X. Xu, X. Liang, and X. Xu, ‘‘A robust step
detection and stride length estimation for pedestrian dead reckoning using
a smartphone,’’ IEEE Sensors J., vol. 20, no. 17, pp. 9685–9697, Sep. 2020.

[15] I. Klein and O. Asraf, ‘‘StepNet—Deep learning approaches for step length
estimation,’’ IEEE Access, vol. 8, pp. 85706–85713, 2020.

[16] O. Asraf, F. Shama, and I. Klein, ‘‘PDRNet: A deep-learning pedestrian
dead reckoning framework,’’ IEEE Sensors J., early access, Mar. 17, 2021,
doi: 10.1109/JSEN.2021.3066840.

[17] X.-W. Chen and X. Lin ‘‘Big data deep learning: Challenges and perspec-
tives,’’ IEEE Access, vol. 2, pp. 514–525, 2014.

[18] P. Kasebzadeh, G. Hendeby, C. Fritsche, F. Gunnarsson, and F. Gustafsson,
‘‘IMU dataset for motion and device mode classification,’’ in Proc. Int.
Conf. Indoor Positioning Indoor Navigat. (IPIN), Sep. 2017, pp. 1–8.

[19] C. Chen, X. Lu, A. Markham, and N. Trigoni, ‘‘IONet: Learning to cure
the curse of drift in inertial odometry,’’ in Proc. AAAI, 2018, vol. 32, no. 1,
pp. 6468–6476.

[20] H. Yan, S. Herath, and Y. Furukawa, ‘‘RoNIN: Robust neural inertial
navigation in the wild: Benchmark, evaluations, and new methods,’’ 2019,
arXiv:1905.12853.

[21] H. Yan, Q. Shan, and Y. Furukawa, ‘‘RIDI: Robust IMU double integra-
tion,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 621–636.

[22] S. Cortés, A. Solin, E. Rahtu, and J. Kannala, ‘‘ADVIO: An authentic
dataset for visual-inertial odometry,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 419–434.

[23] C. Chen, P. Zhao, C. X. Lu,W.Wang, A.Markham, andN. Trigoni, ‘‘Deep-
learning-based pedestrian inertial navigation: Methods, data set, and on-
device inference,’’ IEEE Internet Things J., vol. 7, no. 5, pp. 4431–4441,
May 2020.

[24] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, ‘‘Vision meets robotics: The
KITTI dataset,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237, 2013.

[25] W.Maddern, G. Pascoe, C. Linegar, and P. Newman, ‘‘1 year, 1000 km: The
Oxford robotcar dataset,’’ IJ Robot. Res., vol. 36, no. 1, pp. 3–15, 2016.

10200 VOLUME 10, 2022

http://dx.doi.org/10.1109/JSEN.2021.3066840


A. Shurin et al.: Autonomous Platforms Inertial Dataset

[26] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, ‘‘University of
Michigan north campus long-term vision and lidar dataset,’’ Int. J. Robot.
Res., vol. 35, no. 9, pp. 1023–1035, Aug. 2016.

[27] X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, ‘‘The
apolloscape open dataset for autonomous driving and its application,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 10, pp. 2702–2719,
Oct. 2020.

[28] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, and
R. Siegwart, ‘‘The EuRoC micro aerial vehicle datasets,’’ Int. J. Robot.
Res., vol. 35, no. 10, pp. 1157–1163, 2016.

[29] J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S. Chung,
and P. Schuberth, ‘‘A2D2: Audi autonomous driving dataset,’’ 2020,
arXiv:2004.06320.

[30] U. Onyekpe, V. Palade, S. Kanarachos, and A. Szkolnik, ‘‘IO-VNBD:
Inertial and odometry benchmark dataset for ground vehicle positioning,’’
Data Brief, vol. 35, Apr. 2021, Art. no. 106885.

[31] S. Rahman, A. Q. Li, and I. Rekleitis, ‘‘Sonar visual inertial SLAM of
underwater structures,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2018, pp. 5190–5196.

[32] I. Zak, R. Katz, and I. Klein, ‘‘MLCA—Amachine learning framework for
INS coarse alignment,’’ Sensors, vol. 20, no. 23, p. 6959, 2020.

[33] Pixhawk Cube. Accessed: Aug. 6, 2021. [Online]. Available:
http://www.proficnc.com/

[34] Inertial Labs. Accessed: Aug. 6, 2021. [Online]. Available:
https://inertiallabs.com/products/motion-reference-units-wave-sensors-
mru-ws/

[35] Teledyne Marine RD Instruments DVL. Accessed: Jul. 1, 2021. [Online].
Available: http://www.teledynemarine.com/dvls

[36] Vectornav. Accessed: Aug. 21, 2021. [Online]. Available:
https://www.vectornav.com/products/detail/vn-100

[37] Huawei P40 Smartphone. Accessed: Aug. 6, 2021. [Online]. Available:
https://consumer.huawei.com/en/phones/p40/

[38] Samsung Galaxy S7 Edge Smartphone. Accessed: Aug. 6, 2021.
[Online]. Available: https://www.samsung.com/ph/smartphones/galaxy-
s/galaxy-s7-edge-blue-32gb-sm-g935fzbuxtc/

[39] Samsung Galaxy S8 Edge Smartphone. Accessed: Aug. 24, 2021. [Online].
Available: https://www.samsung.com/global/galaxy/galaxy-s8/specs/

[40] S. Bouabdallah, C. Bermes, S. Grzonka, C. Gimkiewicz, A. Brenzikofer,
R. Hahn, D. Schafroth, G. Grisetti, W. Burgard, and R. Siegwart, ‘‘Towards
palm-size autonomous helicopters,’’ J. Intell. Robotic Syst., vol. 61, no. 1,
pp. 445–471, 2011.

[41] N. Ahmad, R. A. R. Ghazilla, N. M. Khairi, and V. Kasi, ‘‘Reviews on var-
ious inertial measurement unit (IMU) sensor applications,’’ Int. J. Signal
Process. Syst., vol. 1, no. 2, pp. 256–262, 2013.

[42] S. Mansoor, U. I. Bhatti, A. I. Bhatti, and S. M. D. Ali, ‘‘Improved attitude
determination by compensation of gyroscopic drift by use of accelerome-
ters and magnetometers,’’Measurement, vol. 131, pp. 582–589, Jan. 2019.

[43] B. Or, B.-Z. Bobrovsky, and I. Klein, ‘‘Kalman filtering with adaptive
step size using a covariance-based criterion,’’ IEEE Trans. Instrum. Meas.,
vol. 70, pp. 1–10, 2021.

[44] M. Carreras, J. D. Hernández, E. Vidal, N. Palomeras, D. Ribas, and
P. Ridao, ‘‘Sparus II AUV—A hovering vehicle for seabed inspection,’’
IEEE J. Ocean. Eng., vol. 43, no. 2, pp. 344–355, Apr. 2018.

[45] Iqua Robotics. Accessed: Aug. 29, 2021. [Online]. Available:
https://iquarobotics.com/

[46] M. Yona and I. Klein, ‘‘Compensating for partial Doppler velocity log
outages by using deep- learning approaches,’’ in Proc. IEEE Int. Symp.
Robotic Sensors Environ. (ROSE), Oct. 2021, pp. 1–5.

[47] I. Klein andY. Lipman, ‘‘Continuous INS/DVL fusion in situations of DVL
outages,’’ in Proc. IEEE/OES Auto. Underwater Vehicles Symp. (AUV)(3),
Sep. 2020, pp. 1–6.

ARTUR SHURIN received the B.Sc. degree
in mechanical engineering from the Technion—
Israel Institute of Technology. He is currently pur-
suing theM.Sc. degree with the Autonomous Nav-
igation and Sensor Fusion Laboratory, The Hatter
Department ofMarine Technologies, University of
Haifa. His research interests include navigation,
deep learning, and machine learning.

ALEX SARAEV received the B.Sc. degree in elec-
trical engineering from the Technion—Israel Insti-
tute of Technology. His research interests include
computer vision and deep learning.

MOR YONA received the B.Sc. degree in mechan-
ical engineering from the Ben Gurion University
of the Negev. He is currently pursuing the M.Sc.
degree with the Autonomous Navigation and Sen-
sor Fusion Laboratory, The Hatter Department
of Marine Technologies, University of Haifa. His
research interest includes navigation with deep
learning methods.

YEVGENI GUTNIK received the B.Sc. degree in
aerospace engineering from the Technion—Israel
Institute of Technology, Haifa, Israel, in 2015, and
the M.Sc. degree (cum laude) from The Hatter
Department ofMarine Technologies, University of
Haifa, Israel, where he is currently pursuing the
Ph.D. degree. His interests include dynamic and
control of AUVs, autonomous underwater dock-
ing, sensor fusion, and obstacle avoidance.

SHARON FABER received the B.Sc. degree
in mechanical engineering from the Technion—
Israel Institute of Technology. He is currently pur-
suing the M.Sc. degree with the Subsea Engineer-
ing Laboratory, The Hatter Department of Marine
Technologies, University of Haifa.

AVIAD ETZION received the B.Sc. degree in
electrical engineering from the Technion—Israel
Institute of Technology. He is currently pursuing
the M.Sc. degree with the Autonomous Naviga-
tion and Sensor Fusion Laboratory, The Hatter
Department ofMarine Technologies, University of
Haifa. His research interests include navigation,
deep learning, and sensor fusion.

ITZIK KLEIN (Senior Member, IEEE) received
the B.Sc. and M.Sc. degrees in aerospace engi-
neering and the Ph.D. degree in geo-information
engineering from the Technion—Israel Institute of
Technology, Haifa, Israel, in 2004, 2007, and 2011,
respectively. He is currently an Assistant Profes-
sor, heading the Autonomous Navigation and Sen-
sor Fusion Laboratory, The Hatter Department of
Marine Technologies, University of Haifa, Israel.
His research interests include data driven-based

navigation, novel inertial navigation architectures, autonomous underwater
vehicles, sensor fusion, and estimation theory.

VOLUME 10, 2022 10201


