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ABSTRACT The idea of a neutrosophic hypersoft set (NHSS) was coined by Smarandache in 2018 as a
generalization of the soft set. This structure is a hybrid of a neutrosophic set with a hypersoft set. It can
be a valuable structure for dealing with multi-attributes, multi-objective problems with disjoint attributive
values. Similarity measures (SM) play a vital role in measuring the similarity index that how much the
things are similar. Different types of similarity measures were developed in literature with different fuzzy,
intuitionistic, and neutrosophic theories. It is intended to merge the neutrosophic theory with the hypersoft
set theory and propose different similarity measures with the help of new proposed distances with max-min
operators. Also, we proved different theorems and properties of distance and similarity measures. Then as
solid waste management is a global issue, and there are some SolidWasteManagement Systems (SWMS) for
environment protection, so an example will be given for the site selection for SWMS to check the validity of
proposed techniques. To verify the validity and superiority of the suggested work, it is contrasted to several
existing methodologies, which show that decision-making issues with more bifurcation attributes provide
more accurate and precise outcomes and can only be solved using this technique. In the future, the presented
methodologies could be used in case studies with several qualities that are further bifurcated and multiple
decision-makers. This proposed work can also be extended to many existing hypersoft set hybrids, such as
Fuzzy hypersoft sets (FHSs), Intuitionistic hypersoft sets (IHSs), bipolar hypersoft sets (Bi-HSs), m-polar
HSs, and Pythagorean hypersoft sets (PHSs).

INDEX TERMS Neutrosophic hypersoft sets (NHSS), neutrosophic hypersoft matrices (NHSMs), distance
measures (DM), similarity measures (SM), landfill, incinerator, composting, solid wastemanagement system
(SWMS), air quality index (AQI), multi-attributive decision making (MADM), truthness (t), indeterminacy
(i) and falsity (f).

I. INTRODUCTION
While addressing different real-life problems, we need to
choose the best option from a list of many. MADM is
a decision-making tool that helps us in such processes.

The associate editor coordinating the review of this manuscript and
approving it for publication was Liandong Zhu.

The majority of everyday decisions are fraught with ambi-
guity, and they must be tailored to solve various issues in
the real world. Uncertain data is one of the most challenging
factors in tackling these difficulties. Many mathematical
theories have been developed to overcome these difficul-
ties including Fuzzy Sets (FS) [1], Intuitionistic Fuzzy
Sets (IFSs) [2] Pythagorean Fuzzy Sets (PFSs) [3], and
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Generalized orthopair [4] etc. In these sets uncertainty
depends upon different functions, including membership and
non-membership functions. Then in 1998, Smarandache [5]
proposed neutrosophic set (NS) theory as a generalization of
the theories mentioned above. He considered truthness (t),
indeterminacy (i),and falsity (f) independently. Single val-
ued neutrosophic Set (SVNS) is a robust formal framework
proposed by Wang et al. [6] and applied to solve real-
life problems. Molodsove [7] proposed a Soft set (SS) as
a parametrized family of sets with aggregation operators.
Maji et al. [8], [9] redefined the aggregation operators
of SS, and developed a decision-making algorithm using
choice values of objects. He applied the proposed algorithm
in the house selection problem. Later on, in 2004, Roy
and Maji [10] proposed the theoretic approach of Fuzzy
soft sets (FSSs) and developed an algorithm for real-life
problems.

Many researchers have hybridized the neutrosophic set
theory with the soft set theory and extended it in differ-
ent directions. Wang et al. [6], [11] proposed SVNS and
Interval Valued neutrosophic sets (IVNS). Peng et al. [12]
have coined the term simplified neutrosophic sets (SNSs)
that have been proposed with the primary goal of dealing
with challenges involving a collection of a particular number
of attributes, Maji et al. [13] worked on NSS, Ye [14] pro-
posed TOPSIS technique based on SVN Linguistic numbers,
Tian et al. [15] proposed simplified Linguistic normal-
ized weighted numbers in neutrosophic environment and
applied it in the investment plans in metal companies,
Wang and Li [16] worked on multi-valued neutrosophic soft
sets (MVNS) and Broumi et al. [17] developed rough neu-
trosophic soft sets, Jun et al. [18] proposed neutrosophic
cubic sets. Furthermore, a large number of aggregate oper-
ators have been proposed by various researchers based on
different techniques. The operators that researchers proposed
are Dombi t-norm and t-conorms by Dombi [19], Riaz et
al. [20] proposed cubic m-polar aggregation operators with
Dombi t-norms. Power average, exponential operational law,
prioritized average, by Yager et al. [21], [22]. Riaz and
Hashmi [23] presented m-polar neutrosophic soft mappings
and applied them in multiple personality disorders associ-
ated with mental disorders. Hashmi et al. [24] proposed
m-polar neutrosophic generalized and m-polar generalized
Einstein operators and used them in the diagnostic process of
COVID-19.

Furthermore, a variety of information metrics for the
SVNS model have been presented over the years, includ-
ing similarity measures, distance measures, entropy mea-
sures, inclusion measures, and correlation coefficients and
graphs in the neutrosophic environment. Due to the con-
tributions of Broumi and Smarandache [25], Cui and
Ye [26], Ye [27]–[33], sahin et al. [34], Ye and Zhang [35],
Ye and Fu. [36], Majumdar and Samanta [37], Peng and
Smarandache [38], Mondal and Pramanik [39], Chai et al.
[40], Liu [41], Jafar et al. [42], Garg and Nancy [43],
Akram et al. [44], [45], some of the most important research

publications on similarity and distance measures for SVNSs
have been published. In a row of these contributions,
Yang et al. [46] presented a robust clustering method,
Yang and Lin [47] proposed inclusion and similarity mea-
sures between Type-2 fuzzy sets. Hung and Yang [48]
given similarity measures of Type-2 fuzzy sets. Hussain and
Yang [49] worked on distance measures in Pythagorean fuzzy
sets. Ejegwa et al. worked a lot in uncertain environments.
They proposed different techniques of decision making using
Pythagorean fuzzy sets like correlation coefficients [50],
Some new statistical viewpoints of correlation [51], Dis-
tanceMeasures [52], fuzzy algorithms using correlation mea-
sures [53], and proposed modified Zhang and Xu’s distance
measures [54] in PFS.

The idea of the hypersoft set (HSS) was coined by Smaran-
dache [55] in 2018 as an extension of the soft set. It is
useful for dealing with multi-attributes, multi-objective prob-
lems with disjoint attributive values. This structure has been
extended in different uncertain environments. Jafar et al. [56]
proposed Fuzzy hypersoft sets (FHS) and their aggrega-
tion operators. Saeed et al. [57], [58] proposed complex
multi-fuzzy hypersoft sets to solve MCDM problems using
entropy and similarity measures. They advocated the use of
entropy and similarity of efficient complex fuzzy hypersoft
sets in the assessment of SWMS. Jafar et al. [59] proposed the
matrix theory of IFHSs, proposed the MADM algorithm, and
applied it in staff selection. Complex neutrosophic hypersoft
mappings were also suggested by Saeed et al. [60], [61] and
used to diagnose infectious disorders and diagnose hepatitis.
Saqlain et al. [62]–[65] extended HSSs to NHSSs and pro-
posed the TOPSIS in the NHSS environment by using simi-
larity measures. Considered single and multi-valued NHSSs,
and tangent similarity measures for single-valued neutro-
sophic hypersoft sets (SVNHSS), further bring an extension
of NHSS to m-Polar and Interval-valued m-Polar NHSS.
Application in decision-making in NHSSs theory is given by
Rahman et al. [66].

The similarity between two sets of objects is a crucial way
of measuring how much is similar. SM for extension of FSs
has been applied and proposed in different fields of daily life,
including medical diagnoses, economics, agriculture, multi-
criteria decision making (MCDM), and pattern recognition.
Trigonometric similarities measures can be defined by using
the trigonometric functions including cosine, tangent, and
cotangent applied in various fields of our daily lives. Garg
and Wang [67] proposed an algorithm for multi attributive
problems. Similarity Measure on m-polar Interval-valued
neutrosophic set by Saeed et al. [68]. In strategic decision-
making, cosine similarity measures are given by Wei [69].
Cotangent similarity measures of single value neutrosophic
soft set and its application in fault diagnosis in the steam
turbine are given by Ye et al. [33], Khan et al. [70], and
Ahsan et al. [71] CMFHS mapping and applied in HIV
diagnosis with treatment. Jafar et al. [72] proposed Trigono-
metric Similarity measures and applied them in the renewable
energy source selection.

VOLUME 10, 2022 11221



M. N. Jafar et al.: Distance and SM Using Max-Min Operators of NHSS With Application in Site Selection for SWMS

TABLE 1. Similarity measures of NSs, SVNSs and SNNHSs.

The human population is increasing at an exponential
rate along with drastic effects on the environment, which
has put the earth’s sustainability at stake. One of the most
prominent consequences of the increasing human population
is urbanization. Urbanization has disturbed the equilibrium of
the natural environment. In every urban sector, a huge amount
of solid waste is generated. Proper disposal and management
of this solid waste is a challenging task nowadays. After using
the 3R (Reduce, Reuse, And Recycle) strategy, some waste
still needs to be properly disposed of. There are some man-
agement systems in practice like Incineration, composting,
and landfill. Many factors need to be considered to install any
of those management systems that include environmental,
economic, social, political, and ecological factors. An organic
portion of the solid waste can be used to make good qual-
ity compost for agricultural purposes. Incinerators can be
installed to produce energy. The remaining waste is dumped
into a landfill site. The most challenging task to implement
any of the SWMS mentioned above is site selection. Many
factors need to be considered, including land cost, groundwa-
ter level, social concerns, distance from urban areas, distance
from main roads, the geology of the land, slope of the land,
Air quality index (AQI), etc.

This study has chosen four distinct factors to analyzewhich
type of site will be more suitable for which type of solid waste
management system. These factors include AQI, distance

from the population, economic values, and slope of the land.
Air Quality Index (AQI) is one of the essential environmen-
tal factors; all the three proposed management systems will
affect the AQI of the regions differently, so present AQI of
any region will help in decision making. Experts have given
the criteria that describe which AQI level will best suit the
SWMS. Distance from the populated area is another one of
the most important social concerns. All three SWMS have
their proposed ideal and acceptable distances proposed by
experts that must be followed. The slope of the land is also
one of the most important geographical factors for any of
these three SWMS, The ideal slope of the land is flat land,
but to some extent, less than 20 percent is acceptable.

Economic factors include the cost of the land, building
cost, operating cost, etc. Many researchers used different DM
techniques in environmental issues and gave the solutions
to such problems, like Luo et al. [73] used the best worst
ANP decision-making technique in incineration plant site
selection. Guiqin et al. [74] applied informational technol-
ogy and the Analytical Hierarchy Process (AHP) in landfill
site selection. Ming-Lui et al. [75] used the hybrid modi-
fied multi-attributive decision making (MADM) technique in
composting for sustainable developments. Here in the follow-
ing table, it is intended to show some research article which
we will show the comparison of our proposed study with the
existing similarity measures.
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We employ Distance and similarity metrics to investigate
the best SWMS site selection problem according to geogra-
phy as a mathematical model. Under certain technical attri-
bution variables, the results suggest the optimal geographical
place for installing SWM systems.

The rest of the research is organized as follows. We review
the basic notions of SSs, HSSs, and NHSSs in Section II.
In Section III, we propose six distance measures for NHSSs.
In section IV, we provide operators, theorems, and asser-
tions concerning these distance similarity measurements.
In Section V, given resources were used to determine the
accuracy of the similarity measurements. In this section,
we gave a real-life case study, and finally, the conclusion
portion is in Section VI, and future investigations are also
covered.

II. PRELIMINARIES
This section reviews the definitions of soft sets, hypersoft
sets, and neutrosophic hypersoft sets.
Definition ([07]): the terminology of Soft set was given

by French Philosopher D. Molodstove in 1999. 07 For deal-
ing with vague scenarios and unpredictable decision-making
problems, it is defined as Let M ={N1,N2,N3, . . .Ns} be
a finite set of alternatives, and be a set of attributes. Let
P(M) denote the power set of M and A⊂ . A pair (λ,A) is
called a soft set overM, where the relation λ is given by

λ : A→ P (M) (2.1)

Definition ( [62]): Let P be a set of parameters and
Let = { 1, 2, 3, . . . s} be a finite set. The power set
of is denoted by P( ) . Let v1, v2,v3 . . .vn for n ≥ 1
be n well-defined features, whose corresponding feature val-

ues are the sets 1
,

2
,

3
, . . .

n with l
∩

m
= ∅ for l 6=m,

l,m = 1, 2 . . . n, respectively, and let their relation be
ω =

1
×

2
×

3
× . . .×

n
. Then the pair (℘, W ) is called

an NHSS over , where ℘ : 1
×

2
×

3
× . . .×

n
→ P (Y)

and ℘
(

1
×

2
×

3
× . . .×

t
)
= ℘ (ω), where t ≤ n

= {〈 , t (℘ (ω)) , i (℘ (ω)) , f (℘ (ω)) , ∈ 〉}

where t, i, and f, are the belonging values of truthiness,
indeterminacy and falsity respectively such that t, i, f : Y→
[0, 1] with

0 ≤ t (℘ (ω))+ i (℘ (ω))+ f (℘ (ω)) ≤ 3. (2.2)

Definition.
Let P and Q be the two NHSs then Addition and Multipli-

cation, Subtraction and Division of P and Q are defined as
follow

Addition:

P⊕ Q
=
{〈
ω, tP (℘ (ω))+ tQ (℘ (ω))

− tP (℘ (ω)) tQ (℘ (ω)) , iP (℘ (ω)) iQ (℘ (ω)) ,

×fP (℘ (ω)) fQ (℘ (ω))
〉}

(2.3)

Multiplication:

P⊗ Q
=
{〈
ω, tP (℘ (ω)) tQ (℘ (ω)) ,

×iP (℘ (ω))+ iQ (℘ (ω))− iP (℘ (ω)) iQ (℘ (ω)) ,

×fP (℘ (ω))+ fQ (℘ (ω))− fP (℘ (ω)) fQ (℘ (ω))
〉}

(2.4)

Subtraction:

P	 Q =
{〈
ω,

tP (℘ (ω))− tQ (℘ (ω))

1− tQ (℘ (ω))

×
iP (℘ (ω))

iQ (℘ (ω))
,

fP (℘ (ω))

fQ (℘ (ω))

〉}
(2.5)

Which is valid under the conditions P ≥ Q, tQ (℘ (ω)) 6=1,
iQ (℘ (ω)) 6=0, fQ (℘ (ω)) 6=0

Division:

P� Q

=

{〈
ω,

tP (℘ (ω))

tQ (℘ (ω))

iP (℘ (ω))− iQ (℘ (ω))

1− iQ (℘ (ω))
,

×
fP (℘ (ω))− fQ (℘ (ω))

1− fQ (℘ (ω))

〉}
(2.6)

Which is valid under the conditions P ≤ Q, tQ (℘ (ω)) 6=0,
iQ (℘ (ω)) 6=1, fQ (℘ (ω)) 6=1

Definition
Let P andQ be the two NHSs then Compliment, Inclusion,

Equality, Union and Intersection of P and Q are defined as
follow

Complement:

Pc
= {〈ω, fP (℘ (ω)) , 1− iP (℘ (ω)) , tP (℘ (ω))〉} (2.7)

The case in this definition is based on pendency neutro-
sophic theory, all truthiness, and indeterminacy, and falsity
are dependent.

And Pc
={〈1−tP (℘ (ω)) , 1−iP (℘ (ω)) , 1−fP (℘ (ω))〉}

(2.8)

The case in this definition is based on independency neutro-
sophic theory, all truthiness, and indeterminacy, and falsity
are independent.
Inclusion:

P ⊆ Q if and only if tP (℘ (ω)) ≤ tQ (℘ (ω)) ,

iP (℘ (ω)) ≤ iQ (℘ (ω)) fP (℘ (ω)) ≥ fQ (℘ (ω))

for any ℘ (ω) (2.9)

Equality:

P = Q if and only if P ⊆ Q and Q ⊆ P (2.10)

Union:

P ∪Q =
{〈
ω, tP (℘ (ω))∨ tQ (℘ (ω)) , iP (℘ (ω))

×∧iQ (℘ (ω)) , fP (℘ (ω))∧fQ (℘ (ω)) (2.11)

where remember that
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Intersection:

P ∩Q =
{〈
ω, tP (℘ (ω))∧tQ (℘ (ω)) , iP (℘ (ω))

×∨ iQ (℘ (ω)) , fP (℘ (ω)) ∨ fQ (℘ (ω)) (2.12)

Definition
Let P be SVNHS over the common universe . Then P is

said to be Absolute SVNHS if

tP (℘ (ω)) = 1, iP (℘ (ω)) = 0 and fP (℘ (ω)) = 0 (2.13)

Let P be SVNHSS over the common universe . Then P is
said to be Empty SVNHS if

tP (℘ (ω)) = 0, iP (℘ (ω)) = 0 and fP (℘ (ω)) = 1 (2.14)

III. DISTANCE MEASURES WITH THEORY AND
APPLICATIONS
Based on the axiomatic concept of distance and similarity
between SVNHSs, we offer numerous new formulas for
SVNHS distance and similarity measures in this section.

A. DISTANCE MEASURES FOR SVNHSS
A real-valued function D : β( )×β( )→ [0, 1] is called a
distance measure and D satisfies the following axioms for
P, Q and R ⊆ β( )

D1): 0 ≤ D (P,Q)≤ 1

D2): D (P,Q) = 0 If and only if P = Q
D3): D (P,Q) = D (Q, P)
D4): P ⊆ Q ⊆ R Then

D (P,R)≥D (P,Q) and D (P,R) ≥ D (Q,R)

Broumi and Florentin [25] proposed Hausdroff distance
in NS, and we convert that distance in NHSs as follows:

d∗H (P,Q)

=
1
n

n∑
τ=1

max
{∣∣tP (℘ (ω))τ − tQ (℘ (ω))τ

∣∣ ,
×
∣∣iP (℘ (ω))τ − iQ (℘ (ω))τ

∣∣ ,
×
∣∣fP (℘ (ω))τ − fQ (℘ (ω))τ

∣∣} (3.1)

where the proofs of D1 )− D3) are very simple according to
the above definition

We will discuss D4)
The proof of D4) for the above definition between two

NHSs
Since P ⊆ Q ⊆ R implies

tP (℘ (ω))τ ≤ tQ (℘ (ω))τ ≤ tR (℘ (ω))τ
iP (℘ (ω))τ ≥ iQ (℘ (ω))τ ≥ iR (℘ (ω))τ
fP (℘ (ω))τ ≥ fQ (℘ (ω))τ ≥ fR (℘ (ω))τ

We have to prove thatD (P,R)≥D (P,Q), so for this we will
discuss three cases

Case-I
So, as ∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣

≥
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣
≥
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣
dH (P,Q) =

∣∣tP (℘ (ω))τ − tR (℘ (ω))τ
∣∣

But we have for all τ from discourse set we have∣∣iP (℘ (ω))τ − iQ (℘ (ω))τ
∣∣ ≤ ∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣
≤
∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣
(a)∣∣fP (℘ (ω))τ − fQ (℘ (ω))τ

∣∣ ≤ ∣∣fP (℘ (ω))τ − fR (℘ (ω))τ
∣∣

≤
∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣
(b)∣∣iQ (℘ (ω))τ − iR (℘ (ω))τ

∣∣ ≤ ∣∣iP (℘ (ω))τ − iR (℘ (ω))τ
∣∣

≤
∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣
(c)∣∣fQ (℘ (ω))τ − fR (℘ (ω))τ

∣∣ ≤ ∣∣fP (℘ (ω))τ − fR (℘ (ω))τ
∣∣

≤
∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣
(d)

On the other hand∣∣tP (℘ (ω))τ − tQ (℘ (ω))τ
∣∣ ≤ ∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣
And∣∣tQ (℘ (ω))τ − tR (℘ (ω))τ

∣∣ ≤ ∣∣tP (℘ (ω))τ − tR (℘ (ω))τ
∣∣

Combining (a)-(d) we obtain

1
n

n∑
τ=1

max
{∣∣tP (℘ (ω))τ − tQ (℘ (ω))τ

∣∣ ,
×
∣∣iP (℘ (ω))τ − iQ (℘ (ω))τ

∣∣ ,
×
∣∣fP (℘ (ω))τ − fQ (℘ (ω))τ

∣∣}
≤

1
n

n∑
τ=1

max
{∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣ ,
×
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣ ,
×
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣}
And

1
n

n∑
τ=1

max
{∣∣tQ (℘ (ω))τ − tR (℘ (ω))τ

∣∣ ,
×
∣∣iQ (℘ (ω))τ − iR (℘ (ω))τ

∣∣ ,
×
∣∣fQ (℘ (ω))τ − fR (℘ (ω))τ

∣∣}
≤

1
n

n∑
τ=1

max
{∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣ ,
×
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣ ,
×
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣}
So we conclude that

dH (P,Q) ≤ dH (P,R) and dH (Q,R) ≤ dH (P,R)

Case-II
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So, as ∣∣tP (℘ (ω))τ − tR (℘ (ω))τ
∣∣

≤
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣
≤
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣
dH (P,R) =

∣∣fP (℘ (ω))τ − fR (℘ (ω))τ
∣∣

But we have for all τ from discourse set we have∣∣tP (℘ (ω))τ − tQ (℘ (ω))τ
∣∣ ≤ ∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣
≤
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣
(a′)

And∣∣iP (℘ (ω))τ − iQ (℘ (ω))τ
∣∣ ≤ ∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣
≤
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣
(b′)

Now∣∣tQ (℘ (ω))τ − tR (℘ (ω))τ
∣∣≤ ∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣
≤
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣
(c′)

And finally∣∣iQ (℘ (ω))τ − iR (℘ (ω))τ
∣∣ ≤ ∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣
≤
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣
(d ′)

Combining (a′)− (d′) we obtain

1
n

n∑
τ=1

max
{∣∣tP (℘ (ω))τ − tQ (℘ (ω))τ

∣∣ ,
×
∣∣iP (℘ (ω))τ − iQ (℘ (ω))τ

∣∣ ,
×
∣∣fP (℘ (ω))τ − fQ (℘ (ω))τ

∣∣}
≤

1
n

n∑
τ=1

max
{∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣ ,
×
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣ ,
×
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣}
And

1
n

n∑
τ=1

max
{∣∣tQ (℘ (ω))τ − tR (℘ (ω))τ

∣∣ ,
×
∣∣iQ (℘ (ω))τ − iR (℘ (ω))τ

∣∣ ,
×
∣∣fQ (℘ (ω))τ − fR (℘ (ω))τ

∣∣}
≤

1
n

n∑
τ=1

max
{∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣ ,
×
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣ ,
×
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣}
So we conclude that

dH (P,Q) ≤ dH (P,R) and dH (Q,R) ≤ dH (P,R)

Case-III
So, as ∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣
≤
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣
≤
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣
dH (P,R) =

∣∣iP (℘ (ω))τ − iR (℘ (ω))τ
∣∣

But we have for all τ from discourse set we have∣∣tP (℘ (ω))τ − tQ (℘ (ω))τ
∣∣ ≤ ∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣
≤
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣
(a′′)

And∣∣fP (℘ (ω))τ − fQ (℘ (ω))τ
∣∣ ≤ ∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣
≤
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣
(b′′)

Now∣∣tQ (℘ (ω))τ − tR (℘ (ω))τ
∣∣ ≤ ∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣
≤
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣
(c′′)

And finally∣∣fQ (℘ (ω))τ − fR (℘ (ω))τ
∣∣ ≤ ∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣
≤
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣
(d ′′)

Combining (a′′)− (d′′) we obtain

1
n

n∑
τ=1

max
{∣∣tP (℘ (ω))τ − tQ (℘ (ω))τ

∣∣ ,
×
∣∣iP (℘ (ω))τ − iQ (℘ (ω))τ

∣∣ ,
×
∣∣fP (℘ (ω))τ − fQ (℘ (ω))τ

∣∣}
≤

1
n

n∑
τ=1

max
{∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣ ,
×
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣ ,
×
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣}
And

1
n

n∑
τ=1

max
{∣∣tQ (℘ (ω))τ − tR (℘ (ω))τ

∣∣ ,
×
∣∣iQ (℘ (ω))τ − iR (℘ (ω))τ

∣∣ ,
×
∣∣fQ (℘ (ω))τ − fR (℘ (ω))τ

∣∣}
≤

1
n

n∑
τ=1

max
{∣∣tP (℘ (ω))τ − tR (℘ (ω))τ

∣∣ ,
×
∣∣iP (℘ (ω))τ − iR (℘ (ω))τ

∣∣ ,
×
∣∣fP (℘ (ω))τ − fR (℘ (ω))τ

∣∣}
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So we conclude that

dH (P,Q) ≤ dH (P,R) and dH (Q,R) ≤ dH (P,R)

So finally, by combining all three cases, we can
obtain D4) �
Here in this section, we will define different distance mea-

sures in NHSs environment
Theorem: Let P and Q be two NHSs then dk (P,Q) for k
= 1, 2, 3 . . . 6 is a distance between NHSs then we define all
the distances like

1.

d1 (P,Q)

=
1

3 | |

∑
τ

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)
(3.2)

2.

d2 (P,Q)

=
1

3 | |

∑
τ

∣∣∣(t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

−

(
i
2
P (℘ (ω))τ − i

2
Q (℘ (ω))τ

)
−

(
f
2
P (℘ (ω))τ − f

2
Q (℘ (ω))τ

)∣∣∣)
(3.3)

3.

d3 (P,Q)

=
1
| |

∑
τ

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
∨

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
∨

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)
(3.4)

4. d4 (P,Q), as shown at the bottom of the next page.
5.

d5 (P,Q) = 1− α

∑
τ

(
t
2
P (℘ (ω))τ∧ t

2
Q (℘ (ω))τ

)
∑
τ

(
t
2
P (℘ (ω))τ ∨ t

2
Q (℘ (ω))τ

)
−β

∑
τ

(
i
2
P (℘ (ω))τ∧ i

2
Q (℘ (ω))τ

)
∑
τ

(
i
2
P (℘ (ω))τ ∨ i

2
Q (℘ (ω))τ

)
−γ

∑
τ

(
f
2
P (℘ (ω))τ∧ f

2
Q (℘ (ω))τ

)
∑
τ

(
f
2
P (℘ (ω))τ ∨ f

2
Q (℘ (ω))τ

)
(3.6)

where α + β + γ = 1 and α, β, γ ε[0, 1]

6.

d6 (P,Q)= 1−
α

| |

∑
τ

(
t
2
P (℘ (ω))τ∧ t

2
Q (℘ (ω))τ

)
(
t
2
P (℘ (ω))τ ∨ t

2
Q (℘ (ω))τ

)
−
β

| |

∑
τ

(
i
2
P (℘ (ω))τ∧ i

2
Q (℘ (ω))τ

)
(
i
2
P (℘ (ω))τ ∨ i

2
Q (℘ (ω))τ

)
−
γ

| |

∑
τ

(
f
2
P (℘ (ω))τ∧ f

2
Q (℘ (ω))τ

)
(
f
2
P (℘ (ω))τ ∨ f

2
Q (℘ (ω))τ

)
(3.7)

where α + β + γ = 1 and α, β, γ ε[0, 1]
In the light of the D1 )− D4) for dk (P,Q) for k=1, 2,
3. . . 6, if dk (P,Q) satisfied the all for axioms of the distance,
they are qualified for validity. So you can easily understand
just like the previous definition we can easily prove all four
properties.
Theorem: Let P and Q be two NHSs then dk (P,Q) for k
= 1, 2, 3 . . . 6. Then dk (P,Q) holds the following.

i. dk (P,Qc) = dk (Pc,Q)
ii. dk (P,Q) = dk (P∩Q, P∪Q)
iii. dk (P, P∩Q) = dk (Q, P∪Q)
iv. dk (P, P∪Q) = dk (Q, P∩Q)
Proof:

i. d1 (P,Qc) = d1 (Pc,Q)
Let

P =
{〈
tP (℘ (ω))τ , iP (℘ (ω))τ , fP (℘ (ω))τ ,

〉}
Q =

{〈
tQ (℘ (ω))τ , iQ (℘ (ω))τ , fQ (℘ (ω))τ

〉}
Qc
=
{〈
fQ (℘ (ω))τ , 1− iQ (℘ (ω))τ , tQ (℘ (ω))τ

〉}
Then by definition (Eq. 3.2) we have

1.

d1 (P,Q)

=
1

3 | |

∑
τ

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)
Then

d1
(
P,Qc)
=

1
3 | |

∑
τ

(∣∣∣t2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ − (1− i
2
Q (℘ (ω))τ

)∣∣∣
+

∣∣∣f2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣)
=

1
3 | |

∑
τ

(∣∣∣t2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣
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+

∣∣∣i2P (℘ (ω))τ + i
2
Q (℘ (ω))τ − 1

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣)
=

1
3 | |

∑
τ

(∣∣∣f2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣1− i
2
P (℘ (ω))τ − i

2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣t2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)
= d1

(
Pc,Q

)
Note: The theorem can be proved with the refined comple-
ment on the same line. �

ii.

d1 (P,Q) = d1 (P∩Q, P∪Q) = d1 (P∩Q, P∪Q)

=
1

3 | |

∑
τ

(∣∣∣(min
(
tP (℘ (ω)) , tQ (℘ (ω))

))2
−
(
max

(
tP (℘ (ω)) , tQ (℘ (ω))

))2∣∣∣
+

∣∣∣(max
(
iP (℘ (ω)) , iQ (℘ (ω))

))2
−
(
min

(
iP (℘ (ω)) , iQ (℘ (ω))

))2∣∣∣
+

∣∣∣(max
(
fP (℘ (ω)) , fQ (℘ (ω))

))2
−
(
min

(
fP (℘ (ω)) , fQ (℘ (ω))

))2∣∣∣
=

1
3 | |

∑
τ

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)
= d1 (P,Q)

�
ii.

d1 (P, P∩Q)

= d1 (Q, P∪Q) =
1

3 | |

∑
τ

×

(∣∣∣t2P (℘ (ω))− (min
(
tP (℘ (ω)) , tQ (℘ (ω))

))2∣∣∣
+

∣∣∣i2P (℘ (ω))− (max
(
iP (℘ (ω)) , iQ (℘ (ω))

))2∣∣∣
+

∣∣∣f2P (℘ (ω))− (max
(
fP (℘ (ω)) , fQ (℘ (ω))

))2∣∣∣
=

1
3 | |

∑
τ

×

(∣∣∣t2Q (℘ (ω))− (max
(
tP (℘ (ω)) , tQ (℘ (ω))

))2∣∣∣

+

∣∣∣i2Q (℘ (ω))− (min
(
iP (℘ (ω)) , iQ (℘ (ω))

))2∣∣∣
+

∣∣∣f2Q (℘ (ω))− (min
(
fP (℘ (ω)) , fQ (℘ (ω))

))2∣∣∣
∵
∣∣∣i2P (℘ (ω))τ − i

2
Q (℘ (ω))τ

∣∣∣
=

∣∣∣i2Q (℘ (ω))τ − i
2
P (℘ (ω))τ

∣∣∣
= d1 (Q, P∪Q)

�

In these proofs, iii and iv are similar in being verified in a
similar pattern.

Here these four proofs with six definitions are 24 proofs
and for sample we prove some results remaining you can
verify easily.

IV. SIMILARITY MEASURES WITH THEORY AND
APPLICATIONS
Let P and Q be two SVNHSs and a mapping S such that
S : β( )×β( )→ [0, 1] is called a similarity measure
between P and Q if S satisfies the following axioms for
P, Q and R ⊆ β( )
S1): 0 ≤ S (P,Q)≤ 1
S2): S (P,Q) = 0 If and only if P = Q
S3): S (P,Q) = S (Q, P)
S4): P ⊆ Q ⊆ R Then

S (P,R)≤S (P,Q) and S (P,R)≤S (Q,R )
Theorem: Let P and Q be two SVNHSs then Sk (P,Q) for

k = 1, 2, 3 . . . 6 are the similarity measures in between
SVNHSs P and Q.

1.

S1 (P,Q)

= 1−
1

3 | |

∑
τ

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)
(4.1)

2.

S2 (P,Q)

= 1−
1

3 | |

∑
τ

∣∣∣(t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

−

(
i
2
P (℘ (ω))τ − i

2
Q (℘ (ω))τ

)
−

(
f
2
P (℘ (ω))τ − f

2
Q (℘ (ω))τ

)∣∣∣)
(4.2)

d4 (P,Q) =

∑
τ

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣ ∨ ∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣ ∨ ∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)∑
τ

(
1+

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣ ∨ ∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣ ∨ ∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)) (3.5)
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3.

S3 (P,Q)

= 1−
1
| |

∑
τ

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
∨

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
∨

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)
(4.3)

4. S4 (P,Q), as shown at the bottom of the next page.
5.

S5 (P,Q) = α

∑
τ

(
t
2
P (℘ (ω))τ∧ t

2
Q (℘ (ω))τ

)
∑
τ

(
t
2
P (℘ (ω))τ ∨ t

2
Q (℘ (ω))τ

)
+β

∑
τ

(
i
2
P (℘ (ω))τ∧ i

2
Q (℘ (ω))τ

)
∑
τ

(
i
2
P (℘ (ω))τ ∨ i

2
Q (℘ (ω))τ

)
+γ

∑
τ

(
f
2
P (℘ (ω))τ∧ f

2
Q (℘ (ω))τ

)
∑
τ

(
f
2
P (℘ (ω))τ ∨ f

2
Q (℘ (ω))τ

)
(4.5)

where α + β + γ = 1 and α, β, γ ε[0, 1]
6.

S6 (P,Q) =
α

| |

∑
τ

(
t
2
P (℘ (ω))τ∧ t

2
Q (℘ (ω))τ

)
(
t
2
P (℘ (ω))τ ∨ t

2
Q (℘ (ω))τ

)
+
β

| |

∑
τ

(
i
2
P (℘ (ω))τ∧ i

2
Q (℘ (ω))τ

)
(
i
2
P (℘ (ω))τ ∨ i

2
Q (℘ (ω))τ

)
+
γ

| |

∑
τ

(
f
2
P (℘ (ω))τ∧ f

2
Q (℘ (ω))τ

)
(
f
2
P (℘ (ω))τ ∨ f

2
Q (℘ (ω))τ

)
(4.6)

where α + β + γ = 1 and α, β, γ ε[0, 1]

To check the validity of the proposed similarity measure,
we verify all four (S1 − S4)Axioms of the similaritymeasure.
S1, S3 and S4 are straightforward so we only prove the

conditions S2 and S4 in the interest of brevity we only present
the proof of Sk (P,Q) for k = 1, and the proofs for k =
2, 3, 4 . . . 6 can be generated in a similar way. So, for k = 1,
Sk (P,Q) is

S1 (P,Q)

= 1−
1

3 | |

∑
τ

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)

S1) : S1 (P,Q) = 1 if and only if P = Q

1−
1

3 | |

∑
τ

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣) = 1

(⇒)
∑
τ

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣) = 0

(⇒)Which is only possible when∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣+ ∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣) = 0

(⇒)
∣∣∣t2P (℘ (ω))τ − t

2
Q (℘ (ω))τ

∣∣∣ = 0,∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣ = 0,∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣) = 0

(⇒) t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ = 0,

i
2
P (℘ (ω))τ − i

2
Q (℘ (ω))τ = 0

f
2
P (℘ (ω))τ − f

2
Q (℘ (ω))τ = 0

(⇒) t2P (℘ (ω))τ = t
2
Q (℘ (ω))τ ,

i
2
P (℘ (ω))τ = i

2
Q (℘ (ω))τ f

2
P (℘ (ω))τ = f

2
Q (℘ (ω))τ

tP (℘ (ω))τ = tQ (℘ (ω))τ , iP (℘ (ω))τ = iQ (℘ (ω))τ
fP (℘ (ω))τ = fQ (℘ (ω))τ
(⇒)P = Q Hence

Conversely suppose that P = Q and we have to prove that
S1 (P,Q) = 1
So, as P = Q that implies

(⇐) tP (℘ (ω))τ
= tQ (℘ (ω))τ , iP (℘ (ω))τ = iQ (℘ (ω))τ

fP (℘ (ω))τ = fQ (℘ (ω))τ
(⇐) t2P (℘ (ω))τ = t

2
Q (℘ (ω))τ ,

i
2
P (℘ (ω))τ = i

2
Q (℘ (ω))τ

f
2
P (℘ (ω))τ = f

2
Q (℘ (ω))τ

(⇐) t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ = 0,

i
2
P (℘ (ω))τ − i

2
Q (℘ (ω))τ = 0

f
2
P (℘ (ω))τ − f

2
Q (℘ (ω))τ = 0

(⇐)
∣∣∣t2P (℘ (ω))τ − t

2
Q (℘ (ω))τ

∣∣∣ = 0,∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣ = 0,∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣) = 0
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(⇐)
1

3 | |

∑
τ

×

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣) = 0

(⇐) 1−
1

3 | |

∑
τ

×

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣) = 1− 0

= S1 (P,Q) = 1

�
Theorem: Let P and Q be two SVNHSs then Sk (P,Q) for

k = 1, 2, 3 . . . 6 are the similarity measures in between
SVNHSs P and Q , then for α = β = γ = 1

3 we have
i. Sk (P,Qc) = Sk (Pc,Q)
ii. Sk (P,Q) = Sk (P∩Q, P∪Q)
iii. Sk (P, P∩Q) = Sk (Q, P∪Q)
iv. Sk (P, P∪Q) = Sk (Q, P∩Q)

In brevity point of view we only prove the properties i-iii for
Sk (P,Q) when k = 1, it can be easily shown Sk (P,Q) for
k = 2, 3 . . . 6. The proof of property IV is similar to iii and
is therefore omitted.

Proof:
i. S1 (P,Qc) = S1 (Pc,Q)

Let

P =
{〈
tP (℘ (ω))τ , iP (℘ (ω))τ , fP (℘ (ω))τ ,

〉}
Q =

{〈
tQ (℘ (ω))τ , iQ (℘ (ω))τ , fQ (℘ (ω))τ

〉}
Qc
=
{〈
fQ (℘ (ω))τ , 1− iQ (℘ (ω))τ , tQ (℘ (ω))τ

〉}
Then by definition (4.1) we have

S1 (P,Q) = 1−
1

3 | |

∑
τ

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)
Then

S1
(
P,Qc)
= 1−

1
3 | |

∑
τ

(∣∣∣t2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣

+

∣∣∣i2P (℘ (ω))τ − (1− i
2
Q (℘ (ω))τ

)∣∣∣
+

∣∣∣f2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣)
= 1−

1
3 | |

∑
τ

(∣∣∣t2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ + i
2
Q (℘ (ω))τ − 1

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣)
= 1−

1
3 | |

∑
τ

(∣∣∣f2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣1− i
2
P (℘ (ω))τ − i

2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣t2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)
= S1

(
Pc,Q

)
Note: The theorem can be proved with the refined comple-
ment (Eq. 2.8) on the same line. �

ii.

S1 (P,Q)
= S1 (P∩Q, P∪Q) = S1 (P∩Q, P∪Q)

= 1−
1

3 | |

∑
τ

(∣∣∣(min
(
tP (℘ (ω)) , tQ (℘ (ω))

))2
−
(
max

(
tP (℘ (ω)) , tQ (℘ (ω))

))2∣∣∣
+

∣∣∣(max
(
iP (℘ (ω)) , iQ (℘ (ω))

))2
−
(
min

(
iP (℘ (ω)) , iQ (℘ (ω))

))2∣∣∣
+

∣∣∣(max
(
fP (℘ (ω)) , fQ (℘ (ω))

))2
−
(
min

(
fP (℘ (ω)) , fQ (℘ (ω))

))2∣∣∣
= 1−

1
3 | |

∑
τ

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣
+

∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)
= S1 (P,Q)

�
iii.

S1 (P, P∩Q)

= S1 (Q, P∪Q) = 1−
1

3 | |

∑
τ

×

(∣∣∣t2P (℘ (ω))− (min
(
tP (℘ (ω)) , tQ (℘ (ω))

))2∣∣∣

S4 (P,Q) =

∑
τ

1−
(∣∣∣t2P (℘ (ω))τ − t

2
Q (℘ (ω))τ

∣∣∣ ∨ ∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣ ∨ ∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)∑
τ

(
1+

(∣∣∣t2P (℘ (ω))τ − t
2
Q (℘ (ω))τ

∣∣∣ ∨ ∣∣∣i2P (℘ (ω))τ − i
2
Q (℘ (ω))τ

∣∣∣ ∨ ∣∣∣f2P (℘ (ω))τ − f
2
Q (℘ (ω))τ

∣∣∣)) (4.4)
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+

∣∣∣i2P (℘ (ω))− (max
(
iP (℘ (ω)) , iQ (℘ (ω))

))2∣∣∣
+

∣∣∣f2P (℘ (ω))− (max
(
fP (℘ (ω)) , fQ (℘ (ω))

))2∣∣∣
=

1
3 | |

∑
τ

×

(∣∣∣t2Q (℘ (ω))−(max
(
tP (℘ (ω)) , tQ (℘ (ω))

))2∣∣∣
+

∣∣∣i2Q (℘ (ω))− (min
(
iP (℘ (ω)) , iQ (℘ (ω))

))2∣∣∣
+

∣∣∣f2Q (℘ (ω))− (min
(
fP (℘ (ω)) , fQ (℘ (ω))

))2∣∣∣
∵
∣∣∣i2P (℘ (ω))τ − i

2
Q (℘ (ω))τ

∣∣∣
=

∣∣∣i2Q (℘ (ω))τ − i
2
P (℘ (ω))τ

∣∣∣
= S1 (Q, P∪Q)

�

V. ALGORITHM AND ILLUSTRATIVE EXAMPLES
This portion intends to discuss an algorithm depending upon
the proposed work, then use that algorithm in site selection
of solid-waste management systems.

A. THE ALGORITHM BASED ON NHSS SIMILARITY
MEASURES
Let 1, 2, 3, . . . n represent different sites separate set
of geographical areas. 1

,
2
,

3
, . . .

n Based on a set of
geographical region norms S1, S2, S3 . . . Sn is the set of
possibilities for SWM Systems in each geographical region.
Using a decision-making technique, a decision-maker can
evaluate regions and SWM system type under norms.
This analysis can be used to determine which SWM systems
should be deployed in which geographic region. As a result,
it will be able to select the greatest match between geographic
locations and SWMS.

Now we’ll go over how to put the proposed distance simi-
larity metrics for neutrosophic hypersoft sets into practice.

Step 1: To begin, geographical regions should be assessed
and SWMS that can be used in these areas. Following that, the
regional norms and SWMS should be determined. A decision
matrix in terms of neutrosophic hypersoft sets should be used
to show the relationship between geographical regions and
norms.

Step 2: The decision matrix in terms of neutrosophic
hypersoft sets should be used to show the relationship
between the norms and the alternatives, which is the type of
SWMS (see, e.g., below Table 2).

Step 3: Using equations ( Eq. 4.1)-( Eq. 4.6) to calculate
for the association between norms and alternatives.

Step 4: The best choice is determined by selecting the
greatest value, which indicates the best option for each geo-
graphical location. The bold font is used to emphasize this
value (see, e.g., below Table.4-Table.9).

To better understand the concept, we’ve included a flow
chart of the proposed algorithm.

FIGURE 1. Flow Chart of the proposed algorithm.

FIGURE 2. Air quality index (AQI).

VI. APPLICATIONS
A huge amount of solid-waste is generated in every urban
sector. Proper disposal and management of this solid waste
is a challenging task nowadays. There are many factors that
need to be considered for proper disposal and management,
including environmental, economic, ecological, social, and
political factors. After using 3R (Reduce, Reuse, and Re-
cycle) strategy, there is still some waste to be disposed of.
Incineration is a way in which energy can be produced
through solid waste. The organic portion of the solid waste
can be used for composting to produce good fertilizers for
crops. The final fate of all the remaining waste is landfilling.
Asmentioned earlier, for all three waste, themost challenging
task is site selection. For the solution of this issue, in this
study, we try to overcome the world problem by developing a
mathematical technique. For solving this problem, we assume
ten different geographical regions with linked with key fac-
tors that we discussed earlier

Let =
{

1, 2, 3, 4, 5, 6, 7, 8, 9, 10
}

Now we will take a set of the most useable WSM Systems
= {Landfill, Composting, Incinerator}

Now we will suppose the most suitable criteria’s that
effects both regions and SWMSs

Let =



1
(Air Quality Index (AQI))

2
(Slope)

3
(Distance From Population)

4
(Economical Factor)


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TABLE 2. Decision matrix between criteria’s and geographical regions.

TABLE 3. Decision matrix between criteria’s and geographical regions.

TABLE 4. Distance similarity measures using S1 (P,Q).

TABLE 5. Distance similarity measures using S2 (P,Q).

P :
(

1
×

2
×

3
×

4
)
→ P( ) and

Q :
(

1
×

2
×

3
×

4
)
→ P( ) Now we evaluate

{
1, 3 ,

7, 9
}
And Landfill, composting, and incinerator. So

1
=


0− 50 (Good) , 51− 100(Moderate)
100− 150 (Unhelthy for sensitive) ,

150− 200 (unhealthy) , 200− 300 (V.Unh)
> 300 (Hazardous)


2
=

{
0 (ideal), (2%− 09%) good,

(10%− 20%)moderate

}
3
= {1Km, 1Km− 2Km, 2 > km},

4
= {Very costly, costly, Moderately costly}

Now, we construct NHSs, with the association of Attribu-
tive values Geographical regions with and SWMS through
the following mappings. So, according to our defini-
tion, we construct the association between geographi-
cal regions and SWMS and showing in the following
table

VII. RESULT DISCUSSIONS AND COMPARISON WITH
EXISTING TECHNIQUES

We compared proposed similarity measures methodologies
to existing distance similarity measures in this research
on the basis of attribution and sub-attributions for SVNS,
Broumi and Samandrache [25], Cui and Ye [26], Ye [30],
sahin et al. [34], Ye and Zang [35], Ye and Fu. [36],Majumdar
and Samanta [37], Peng and Samandrache [38], Mondal and
Pramanik [39], Chai et al. [40], Liu et al. [41], Jafar et al. [42],
Garg and Nancy [43]. Here the comparison is proposed based
on additional bifurcation qualities and their corresponding
attributive values. The existing structure of SVNSS are not
dealing sub-attributions, But the proposed structure can deal
with sub-attributions. This comparison is not based on numer-
ical values. Saqlain et al. [63] suggested distance similarity
measures in NHSS, and finally, even we compared our results
with Jafar et al. [72] who given trigonometric similarity mea-
sures in NHSS’s environment considered sub-attributions, but
our proposed structure is uniquely presented using Max-Min
operators. In this study, the NHSS proposes six different dis-
tance similarity measures that deal with multi-attributive val-
ues and multi-objective decision-making problems. NHSS’s
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TABLE 6. Distance similarity measures using S3 (P,Q).

TABLE 7. Distance similarity measures using S4 (P,Q).

TABLE 8. Distance similarity measures using S5 (P,Q).

TABLE 9. Distance similarity measures using S6 (P,Q).

have a split construction that provides greater accuracy and
efficiency. We also made a comparison table in Table.10 to
demonstrate the originality of the suggested strategies and
how they differ from current parallels. The numerical results
are presented in Table 4-Table.9 shows the results that for
the SWMS where we install these systems, the result shows
that 1 should be selected for composting according to all of
the proposed distance similarity measures for NHSS are con-
sistent with each other. For composting, all of our processes
have the same 3 Weight. Furthermore, the results presented
in our theory suggest that Incinerator has the highest value
against 7, indicating that 7 should be chosen for Incinerator
for environmentally friendly solid waste treatment. Similarly,
landfills are the most significant method for managing solid
waste, but because they take more space and cash to install,
according to our recommended techniques, landfills have the
highest value versus, 9 hence 9 should be chosen for the
landfill. As a result, according to all of the proposed distance
similarity measures, the proportion of solid waste treatment
systems in the regions is calculated and shown in the above

tables. We discovered that this method of determining the
best system selection for solid waste treatment systems is a
highly beneficial selection tool.

VIII. CONCLUSION
For dealing with material that is partial, indeterminate, uncer-
tain, or imprecise, neutrosophic hypersoft Sets (NHSS’s) can
be a strong mathematical paradigm. NHSS is more effective
at dealing with uncertain and ambiguous information than
fuzzy sets and intuitionistic fuzzy sets in general. In the case
of NHSS, however, no one has examined distance similar-
ity measures using Max-Min operators. Six different newly
developed distances and applied in similarity measures to
the NHSS environment also developed an algorithm to solve
MCDM using the provided similarity metrics. Some proper-
ties, Theorems, Axioms as well as many results relating to
distance and similaritymeasures are proved and applied to the
site selection of solid waste management systems (SWMS)
using the proposed six distance and similarity measures. As a
result, we proposed a mathematical model as a solution to
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TABLE 10. A comparison of the proposed study with the existing studies on the basis of multi-Attributions.

a global problem. Finally, compare the proposed theory to
the existing theories in Table 10. Supplier selection, manu-
facturing frameworks, and several other management frame-
works could all benefit from the NHSS-Similarity metrics.
In the future, the presented methodologies could be used
in case studies with several qualities that are further bifur-
cated, as well as multiple decision-makers. This proposed
work can also be extended to many existing hybrids of the
hypersoft set, such as FHS’s, IHSs, Bi-polar HSs, m-polar
HSs, Pythagorean HSs (with its hybrids, fuzzy, intuitionistic,
and neutrosophic), and many others.
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