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ABSTRACT The occurrence of intelligent building fires causes huge economic losses to the country and
society, and even people’s safety. It is necessary to accurately assess the degree of intelligent building
fire risk so that the fire emergency management department can make scientific decisions. In this paper,
a trustworthy classification model for intelligent building fire risk is proposed, which provides a scientific
and reasonable model supporting the classification assessment of intelligent building fire risk. The model
integrates Bayesian Network (BN) and software trustworthy computing approach. BN is used to calculate
the risk value of attributes that describe the fire risk situation of the intelligent building from 7 profiles.
Based on the fire risk attribute values, trustworthy computing is adopted to classify the fire risk into 5 ranks
which indicates the severity degree of building fire risk: the higher the rank is, the greater the harm is. Taking
the Shanghai Jing’an 11.15 fire as an example, the result confirms that the method proposed in this paper
has good theoretical significance and practical value. In addition, we compare our method with 3 fire risk
assessment methods in the reference. The comparisons illustrate that the trustworthy classification model
proposed in this paper is more comprehensive, rational, and scientific.

INDEX TERMS Intelligent building, fire risk assessment, fire risk trustworthy classification model,
Bayesian network, trustworthy computing.

I. INTRODUCTION
In order to meet the needs of people’s production and life,
the functions of urban intelligent buildings are becoming
more and more complex, and the scale of buildings is
expanding. People’s awareness of fire protection needs to
be strengthened, so many potential fire risks will inevitably
arise in urban intelligent buildings. Once a fire accident
occurs, it will easily cause huge losses and even casualties
to the national society. Therefore, evaluating the fire risk
of urban buildings has become one of the hot topics in the
field of fire research [1]. Intelligent buildings in this paper
refer to intelligent monitoring equipment such as sensors
and cameras installed in buildings, which are connected
through the Internet of Things (IoT) platform to realize
real-time monitoring and prediction of fire risk information
in buildings. Intelligent buildings also support big data
processing. The fire big data monitored by smart devices and
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sensors can be calculated by the edge or uploaded to the cloud
computing center for unified analysis and processing, and
the processing results can be preserved permanently through
the database technology. The classification of fire risk of
intelligent buildings is a key link in the construction of urban
intelligent fire protection, which has great practical signifi-
cance. From the perspective of riskmonitoring, in the practice
of urban intelligent fire protection, the intelligent equipment
in the intelligent building is mobilized to monitor and predict
the fire risk accurately in real-time, and the emergency
command center can obtain the risk distribution of intelligent
buildings in real-time, and conduct risk investigation on
high-risk buildings, thus reducing the frequency of fire
accidents. From the perspective of emergency rescue, once
a fire accident occurs, the automatic fire risk classification
according to the severity is beneficial for fire emergency
management departments to make hierarchical decisions
and improve rescue efficiency. In emergency rescue, the
rescue police force will be allocated according to the fire
risk level, and relevant emergency rescue resources such
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as fire protection, transportation, and medical care will be
allocated.

The United States [2], China [3] and Hong Kong,
China [4], and other countries and places have successively
issued fire alarm classification systems for building fires.
These systems generally classify fires according to their
severity or danger, and each level corresponds to the
corresponding emergency rescue level. Once a fire breaks out,
the corresponding level of emergency aid resources will be
allocated according to the fire alarm level. However, these
national standards are relatively rough. On this basis, it is
necessary to introduce a strict quantitative risk assessment
system. The key to an accurate assessment of urban building
fire risk lies in the establishment of a scientific fire risk
assessment system. Many quantitative, semi-quantitative,
and qualitative building fire risk assessment models have
been studied. Zhou [5] puts forward a FRAME (Fire Risk
Assessment Engineering Method) model to evaluate and
classify the fire risk of urban residential buildings. This
method proposes three fire risk factors and classifies the risk
levels respectively. Xu et al. [6], [7] take the development of
fire accidents as the mainline and construct an index system
of building fire risk assessment by using analytic hierarchy
process (AHP). By dividing the evaluation index into static
and dynamic parts, the dynamic evaluation of building fire
risk is realized. Liu et al. [8] use the consequence probability
estimation method to divide fire risk into three dimensions:
the number of serious injuries, the number of deaths, and
the direct property loss, and evaluate the fire risk value
and grade of building cluster by estimating the probability
of risk dimensions. Dong and Wang [9] adopt the method
of combining Bayesian Network and Fuzzy Fault Tree to
analyse the fire risk factors of the high-rise building. Zhang
and Yu, [10] propose a Bayesian network analysis model of
the fire in the dormitory of colleges and universities, establish
a relevant index system, build a Bayesian model for fire
risk analysis. Matellini et al. [11] represent a three-part BN
to simulate the different stages of ordinary residential fires
from fire to extinguish. Liu et al. [12] construct a BN model
to predict the fire risk of urban buildings to calculate the
probability of building fires. Shu et al. [13] divided building
fires into four stages and identified fire risk assessment
factors from both dynamic and static aspects. The Bayesian
method is used to predict the risk of each fire stage, and
then the additive model is applied to assess the fire risks.
In addition, building fire risk is modeled from the perspective
of fire spread and emergency evacuation [14]–[17].

Building fire risk data collection is the premise of
its assessment. In recent years, the development of IoT
technology has made it possible to intelligently collect
building fire risk data: intelligent buildings are equipped
with many sensors and cameras, etc. With the help of these
devices, intelligent buildings can collect daily fire risk data
through the IoT platform and process them through various
algorithms for fire risk analysis [18]. For non-intelligent
buildings, there are other research methods that can assist

data collection. Tresa Sangeetha et al. [19] develop an
IoT-based smart sensing and alarming system with robotic
assistance to provide immediate monitoring and alerts for
emergency evacuation. Lazreg et al. [20] introduce a BN
model that derives the condition of fire risk and predicts its
future circumstance dependent on smartphone sensor data
gathered within the fire area. Australian firefighter Shan
Raffe [21] puts forward an empirical model for reading fire
scenes: BE-SAHF (building, environment, smoke, airflow,
heat, and flame) model. Combining risk indicators and
environment context to make empirical judgments on impor-
tant fire information. An intelligent multi-sensor detection
system [22], [23] is established for monitoring building
fires. Deep learning [24] and neural network [25] methods
are adopted to process diverse sensor signals in real-time.
The firebird model [26] proposes a data-driven method to
extract information about fire risk and introduces time-related
dynamic risks, which can be updated by fire inspection
checks every time. Tsai et al. [27] develop an automation
tool for a home fire safety check, image sensors are adopted
to automatically build an environmental model and reduce
the labor burden for a fire safety check. The fire risk
assessment and data collection methods in these researches
have important reference value for our work. However, these
research methods are mainly aiming at the stage of indoor fire
identification or the detection of fire occurrence, and can not
comprehensively assess building fire risks.

In this paper, we focus on the classification problem
for intelligent building fires. Our research objective is to
assess the fire risk of intelligent buildings and classify
the fire according to its severity. To address this issue,
we propose a comprehensive classification approach that
combines Bayesian network and trustworthy computing. This
method evaluates building fire risk from the 7 attributes
of fire stage(FS), fire evaluation(FE), burned area(BA),
building fire risk rating(BFRR), fire spread rate(FSR), cluster
fire possibility(CFP) and trapped toll(TT). Attributes are
decomposed into metric elements and the corresponding
monitoring system is built to obtain the fire risk data in real-
time. Based on the results of attribute decomposition, the
Bayesian network is established to calculate the risk value
of 7 attributes. Based on the attribute values provided by
BN, a trustworthy assessment and classification model are
constructed to calculate the fire risk value and risk rank
respectively. This approach gives full play to the advantages
of BN in dealing with the uncertainty of intelligent building
fires and the advantages of trusted computing in dealing with
quantitative classification problems.

We take the Shanghai Jing’an 11.15 fire as an example
to evaluate our approaches. The experiment result confirms
that the method proposed in this paper has good theoretical
significance and practical value, and can provide a reference
for fire rescue work. We further compare our proposed
methods with the existing methods including BN + fuzzy
fault tree approach [9], BN + 4D Radar chart approach [13],
and BN method [20]. The comparisons illustrate that our
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FIGURE 1. Evaluation framework of intelligent building fire risk.
It consists of 5 parts: 1. Attribute decomposition; 2. Bayesian network
construction; 3. Fire risk monitoring system design; 4. Trustworthy
assessment model construction; 5. Trustworthy classification model
construction.

proposed method makes the entire fire risk classification
process more comprehensive, rational and scientific.

The organizational structure of this paper is as follows:
Section II introduces the risk evaluation framework of
intelligent building fires. Section III introduces the fire risk
monitoring system. Section IV introduces the attribute value
calculation based on BN. Section V introduces the fire risk
classification based on trustworthy computing. Section VI
takes the Shanghai Jing’an 11.15 fire as an example to
conduct a case study of this method and compare it with
3 fire risk assessment methods in the reference. The last part
summarizes this paper and gives the future research contents.

II. EVALUATION FRAMEWORK OF INTELLIGENT
BUILDING FIRE RISK
The risk evaluation framework of intelligent building fires is
shown in figure 1. The evaluation framework shows the main
work of this paper, which can be divided into the following
5 parts:

1.Attribute decomposition. This paper defines attributes as
indicators for assessing the fire risk of intelligent buildings.
The definition of attributes is relatively macro, sometimes
difficult to evaluate directly, and needs to be broken down to
sub-attributes that are more detailed. First-level sub-attributes
are generated after the first decomposition and the first-level
sub-attribute can be decomposed several times as required.
For each sub-attribute, design related metric elements which
can be easily monitored or observed.

2.Bayesian network construction. Based on the results
of attribute decomposition, a Bayesian network structure is
established which describes the dependencies between fire

FIGURE 2. Data flow diagram of assessing fire risk rank. Firstly, the fire
risk data monitored by the fire risk monitoring system need to be
preprocessed to obtain the metric element value accepted by the BN
model. Secondly, the metric element values are integrated into 7 attribute
values through the BN model. Then, the risk value is calculated through
the trustworthy assessment model. Finally, the risk rank is output through
the trustworthy classification model.

risk nodes. We also set the network parameters which present
the probability of occurrence of the event corresponding to
each node. Finally, the attribute values are calculated based
on the probability distribution of the attribute node in BN.

3. Fire risk monitoring system design. The monitoring
system is constructed based on the designed metric elements
to obtain real-time fire risk data as the input to the Bayesian
network. It consists of 3 monitoring methods with different
update frequencies.

4.Trustworthy assessment model construction. This model
calculates the risk value of intelligent building fires, which is
positively correlated with the attribute value and its weight.
The weight of attributes in this paper is computed by
AHP(Analytic Hierarchy Process) method. And the value of
the attribute is calculated through the Bayesian network.

5.Trustworthy classification model construction. This
model is designed to classify fire risk into different ranks.
To this end, this model sets the corresponding risk value and
attribute value requirements for each fire risk rank.

Figure 2 demonstrates the corresponding data flow for
assessing the fire risk rank. First, monitor the fire risk in
real-time through the corresponding means of the monitoring
system to obtain the value of the metric element. Secondly,
BN is used to fuse these multivariate and heterogeneous
metric values, output the fire risk attribute value. Then,
use the trustworthy assessment model to calculate the
trustworthy value of fire risk. Finally, the fire risk trustworthy
rank is output by the trustworthy classification model
based on the risk value and attribute value. Note that the
calculation of fire risk value and rank depends on trustworthy
computing methods, so this paper defines these two outputs
as ‘trustworthy value’ and ‘trustworthy rank’.

With the input of metric element values, the model will
automatically calculate the risk value and rank of intelligent
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building fires. With the real-time change of fire risk data,
the risk value will also change dynamically. Note that after
the risk value is increased, if it does not meet the next rank
standard, the fire risk rank will not change.

III. FIRE RISK MONITORING SYSTEM
Building fire is a dynamic development process, and the
risk factors related to fire risk assessment, such as smoke
density, the water pressure of pipes, and the number of
construction personnel, are constantly changing. Dynamic
fire risk assessment needs to consider the risk factors in
the whole life cycle of fire occurrence and development.
Especially, the relationship between fire development trends
and building fire protection facilities, environment, and
personnel characteristics should be considered.

According to the sensitivity of fire risk to time, this paper
divides it into two categories: dynamic risk and static risk.
Dynamic fire risk changes in real-time with the change
of time, which can be obtained by controlling the smart
IoT devices and sensors in intelligent buildings and can be
calculated through real-time collected data, such as smoke
velocity, pipeline water pressure change, etc. Static fire risk
is not sensitive to time and will not change with time. The
system only needs to collect and input once, such as building
height and building fire resistance rating. Dynamic fire risk
data can be monitored by different means. For fire risk data
that need to be collected in real-time, it can be monitored
in real-time by establishing IoT-based fire risk monitoring
systems [7]. For example, use a smoke sensor to monitor the
smoke density; The camera sensor can be used to collect the
mobility of personnel and the occupation of emergency exits;
Use thewater levelmonitoring device tomonitor the real-time
water level of the fire water tank, etc. For dynamic fire risks
with a large time span that cannot be collected or updated in
real-time, it is considered that its value will not change in a
fire-fighting cycle, and it can be updated regularly by means
of fire-fighting inspection [15]. The static fire risk is input by
the system static collection method.

According to the update frequency, there are three main
ways to update the fire risk data of intelligent buildings in
this paper: 1. Real-time update through IoT-based fire risk
monitoring system of intelligent buildings; 2. Regular update
through fire inspection; 3. System static input. There are
63 factors affecting the fire risk of intelligent buildings to
be monitored in this paper, as shown in figure 3. Generally
speaking, the fire risk data of intelligent buildings are mainly
collected in real-time and monitored dynamically by the
IoT-based fire risk monitoring system of intelligent buildings,
while the risk data is missing, the manual experience can be
used to assist the input of missing data.

The monitoring system provides input for BN. There
are two kinds of node variables in BN: discrete variable
and continuous variable [28]. BN uses discrete tables for
probabilistic reasoning. In practical application, each BN
node corresponds to a physical event, and the state of the node
represents the value of the physical event. It is necessary to

FIGURE 3. The process of attribute decomposition. The fire rank is
directly influenced by 7 attributes. The attributes are more complicated
and sometimes difficult to evaluate directly. They are broken down into
sub-attribute nodes, marked with lower case letters. For each
sub-attribute node, the relevant metric elements are designated, marked
with Arabic numerals. As model input, metric element represents a basic
fire risk event, which is associated with the intelligent fire risk monitoring
system and updated in real-time. Attributes represent the integration of
metric elements and are used to calculate the fire risk value.

define the discrete state of each metric element (BN node)in
advance and save it in the database, stipulated that eachmetric
element can only take values from its defined discrete state.
The value state of the node after discretization is called the
metric element value.

For a continuous variable, discretize them through data
grouping [29]. When the upper and lower boundaries of
each group of data are clear, the mainly used discretization
methods of this paper include equal width, equal frequency,
and custom rules discretization. Equal width means that the
upper and lower bounds of each group of data are equal
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in width. Equal frequency refers to the variable that each
group of data has the same frequency although its width
is different, and the custom rule set the upper and lower
bounds of each group of data as needed. For continuous
data whose upper and lower bounds are not clear, use
machine learning discretization method [22] to divide it
into different groups. For discrete data, it can be regarded
as a simple state classification task, and the corresponding
classification situation of each state can be designed in
advance. For the input data of the video stream, the video
stream can be divided into image frames, and the input node
data can be classified into discrete states using an image
classification algorithm [23]. These discretization algorithms
can be embedded in the IoT devices and implemented by edge
computing, or the monitoring data can be transmitted to the
cloud for cloud computing.

For reasons of space, this paper only introduces the
discretization process of variables of two representatives BN
input node(metric element) in figure 3. The Smoke Density
node of metric element No.15 in figure 3 can be monitored
by smoke sensors, and it is divided into three grades by
setting the boundary of value range: dark, middle, and light,
which are the three discrete states of the node, respectively
corresponding to the variation of smoke density in the air. The
Smoke Color node of metric element No.16 can be monitored
by the image detector, the node input is a video stream format.
Three discrete states, black, gray, and white, are defined to
correspond to the color of smoke. The image classification
algorithm can be used to monitor the color of smoke in
real-time to realize the discretization of node input.

IV. ATTRIBUTE VALUE CALCULATION BASED ON BN
A. ATTRIBUTE DEFINITION
At present, the assessment of building fire risk rank is mainly
based on the evaluation of casualties and property losses.
In order to comprehensively assess the fire risk of intelligent
buildings, this paper sets up 7 attributes to evaluate fire
risk from the three aspects of fire, building, and personnel.
Attributes are indicators for evaluating fire risk conditions.
The definition of the 7 attributes are as follows:

(1)Fire Stage(FS), is used to determine the stage of
an intelligent building fire. In the fire emergency rescue
work, the commander’s first task is to correctly analyze the
fire stage and formulate corresponding fire extinguishing
strategies.

(2) Fire Evaluation(FE), is used to measure the flame size
in intelligent buildings. This attribute can be judged by the
factors such as the burning regime, ventilation, and control
situation of fire.

(3)Burned Area(BA), one of the important indicators of
fires, is used to measure the area of the flame burned in an
intelligent building.

(4)Building Fire Risk Rating(BFRR), is used to measure
the risk of intelligent buildings. The risk characteristics of
intelligent buildings are mainly considered from two aspects
of building occupancy and building height.

TABLE 1. The update method of metric elements.

(5)Fire Spread Rate(FSR), is used to measure the speed of
fire spread in intelligent buildings. The speed of building fire
spread is affected by many factors. It depends not only on the
development speed of fire itself, the smoke resistance ability,
the fire extinguishing ability of intelligent buildings, and the
fire management level of building managers will obviously
affect the speed of building fire spread.

(6)Cluster Fire Possibility(CFP), is used to measure the
probability of building cluster fire. With the uncontrolled
development of fire and the catalysis of external environ-
ment, fire may spread to adjacent buildings and become
a building cluster fire. The measurement factors of this
attribute mainly include the fire separation distance of nearby
buildings, whether there is a jump fire, and the wind
speed.

(7) Trapped Toll(TT), which is used to measure the number
of trapped people in an intelligent building fire. The level
of trapped people is mainly considered from two aspects:
personnel and building conditions. Personnel conditions
include personnel quality and density, and building condi-
tions include fire management level of intelligent buildings
and evacuation capability of buildings.

B. ATTRIBUTE DECOMPOSITION
Attribute decomposition is based on daily fire-fighting
practice and related work [6]–[9], [18], [25], [27], as well as
the Chinese fire alarm and emergency rescue classification
standard [3]. The process of attribute decomposition is
demonstrated in figure 3. There are 7 attributes, 25 sub-
attributes, and 63 metric elements in this paper. As model
input, the metric element represents a basic fire risk event,
which is associated with the intelligent fire risk monitoring
system and updated in real-time. The attribute is the output
of the BNmodel, which represents the integration of fire risk.
It is also the input of the trustworthy computing model, which
is used to calculate the fire risk value.

1) METRIC ELEMENT DESIGN
The metric element represents a basic fire risk event,
which is considered from four dimensions of fire situation,
building, environment, and personnel. It is the input of
the classification method proposed in this paper, which is
associated with the intelligent fire risk monitoring system and
updated in real-time. As mentioned in Section III, there are
three main ways to update the fire risk data of intelligent
buildings: 1. Real-time update through IoT-based fire risk
monitoring system of intelligent buildings; 2. Regular update
through fire inspection; 3. System static input. Table 1 lists
the update method of 63 metric elements.
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FIGURE 4. Bayesian network for fire risk attribute assessment of intelligent buildings (unit: %). The Bayesian network is constructed on the basis of
attribute decomposition defined in figure 3. The yellow node means the node has no input. The gray node represents that the corresponding
physical system has detected the relevant metric element(fire risk factor) value and the state corresponding to the ‘‘100%’’ confidence is the
physical monitoring state of the node. After inputting the metric element values provided by monitoring system, the model will automatically
calculate the probability distribution of 7 attribute node states(red box nodes) to output the attribute values.

2) DECOMPOSITION PROCESS
Due to space reasons, this paper only introduces the
decomposition process of FS attribute in figure 3. The fire
stage [30] attribute can be judged by the fire intensity,
the number of fire points, the occurrence of extreme fire
phenomena such as flashover, the ventilation situation, and
the burning regime of the fire(whether the fuel is fully
burned). So far, we have decomposed FE attribute for the
first time. The number of fire points can be detected by
image sensors in the building, so it is a metric element of the
FE attribute. The other three nodes are sub-attributes of FE
attribute that need to be further decomposed. For example,
as an extreme fire phenomenon, the time of flashover is short
and it is difficult to observe directly. This fire phenomenon
can be judged by whether the smoke outside the building is
auto-ignited(detected by roadsidemonitoring equipment) and
whether there is a flash fire inside the building (monitored by
a building video camera). In this way, we have designed the
metric elements for the ‘Flashover’ sub-attribute. Finally, the
FS attribute is decomposed into 3 sub-attributes and 10metric
elements.

C. BAYESIAN NETWORK CONSTRUCTION
Bayesian network is a directed acyclic graph. The nodes
are connected by unidirectional straight arrows representing
causality, and the parent node (cause) points to the child node
(result) [31]. Due to the combination of existing knowledge
and support complex field of uncertainty reasoning, BN is
an effective theoretical model for uncertain reasoning and
knowledge representation [32]. The Bayes construction

and calculation in this paper is completed by Netica
software [33].

1) DETERMINE THE NETWORK STRUCTURE
Based on the results of the fire risk attribute decomposition
shown in figure 3, this paper constructs the corresponding BN
structure for attribute value evaluation, as shown in figure 4.
The information contained in each node in figure 4 is the
node name, the discrete state of the node (physical scene
state), and its probability from top to bottom. The numerical
unit in the node is ‘‘%’’, which represents the confidence
degree of the state (occurrence probability). The yellow node
means the node has no input. The gray node represents that
the corresponding physical device has detected the relevant
metric(fire risk factor) value and the state corresponding
to the ‘‘100%’’ confidence is the physical monitoring state
of the node. At the same time, each node in the network
implies the conditional probability table (CPT) of the node.
After the metric element value is input, the probability of the
whole network can be updated by using the automatic update
function of Netica software.

There are 63 input nodes(metric elements) of Bayesian
network, which are the leaf nodes distributed around
the four peripheral boundaries in figure 4. The output
nodes(attributes) are the red box ones in figure 4. The model
will automatically calculate the posterior probability values
(ranging from 0 to 1) of these 7 attribute nodes.

2) DETERMINE NETWORK PARAMETERS
Bayesian network uses CPT to quantify all causal rela-
tionships defined in BN structure probabilistically. Each
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FIGURE 5. The partial BN structure of ‘‘Partition Facility Reliability’’ node.
Each node corresponds to a physical event that affects the fire risk of the
building. From top to bottom, the information contained in each node is
the node name(event name), the discrete state of the node (physical state
of the event), and its probability. The numerical unit in the node is ‘‘%’’,
which represents the confidence degree of the state (probability of the
event in that state).

table describes the probability distribution of variables.
The table lists the conditional probabilities of nodes under
all conditional combinations of all their parents, and the
probability values represent the confidence of node states.
The leaf node has no parent node, so the probability value is
its prior probability. This section takes the partial Bayesian
network composed of nodes in the upper left corner of
figure 4 (node of ClosedDoorAndWindow, FRSAvailability,
and PartitionFac-ilityReliability) as an example to illustrate
the method of setting network parameters. The partial
network is shown in figure 5, the state of the network is before
compilation (when there is no input state).

a: SETTING PRIOR PROBABILITY
Firstly, it is necessary to estimate the prior probability
of 63 leaf nodes(input nodes). The prior probability in
this paper came from fire data analysis, expert knowledge,
and on-site sampling statistics of urban buildings over the
past years [9], [11], [13], [20]. As shown in figure 5,
the node ClosedDoorAnd-Window shows that normally
fire-prevention doors and windows should be closed during
fire inspection. Let Good and Bad correspond to two discrete
states, namely, good closing and poor closing situation of
fire-prevention doors and windows. The prior probability
of these two states came from the fire inspection data
of fire-prevention doors and windows of buildings. The
proportion of the two states in the fire inspection is their prior
probability value [9]. The prior probability distribution of
node ClosedDoorAndWindow is Good(80%) and Bad(20%).
In the same way, the prior probability distribution of
fire resisting shutter integrity rate(FRSAvailability) in two
discrete states is Good (80%) and Bad (20%).

b: SETTING CONDITIONAL PROBABILITY TABLE
The CPT lists the probability distributions of child nodes
under the condition combination of all parent nodes, which
endows BN with reasoning ability when dealing with
complex situations. The CPT specifies in detail what events
happen under what conditions and how the state probability
distribution is. The more detailed setting of CPTs, the more
information stored in the network, the more intelligent the
decision system will be. Even if the information available

TABLE 2. The CPT of ‘‘Partition Facility Reliability’’ node. On the left side
is the state combination of the two parent nodes. On the right side is the
conditional probability distribution of node The probability distribution of
child node relative to the state combination of its parent node.

to the outside world is incomplete, the fire risk information
has been stored in the form of a conditional probability table.
Therefore, even if the information is missing, because of the
strong fault tolerance of BN, uncertain reasoning can still be
carried out. CPT can be defined by experts, learned from data,
or created by a combination of the two [32]. Since the existing
basic fire data cannot meet all the parameters designed
in this paper, the CPTs in this paper is given by expert
knowledge and risk change characteristics [34]. Taking the
node PartitionFacilityReliability in figure 5 as an example,
the setting of CPT is shown in table 2. On the left side of
the table is the state combination of the two parent nodes.
On the right side of the table is the conditional probability
distribution of node PartitionFacilityReliability relative to the
state combination of its parent node. As shown in the first
row of table 2, when the state of ClosedDoorAndWindow
node is Good and the state of FRSAvailability node is Good,
the state confidence of the PartitionFacilityReliability node
is Good(0.96), and Bad (0.04). It can be determined that the
fire partition facilities of the building are reliable under this
combination of parent node conditions. As shown in figure 5,
combining the probability distribution of the parent node
and the conditional probability table of the child node, the
probability distribution of node PartitionFacilityReliability
can be calculated by Bayes formula. The posterior probability
confidence of the two node states automatically calculated
by Netica software is Good(81.2%) and Bad(18.8%). This
node will be the parent node of another node, and its posterior
probability distribution will continue to pass down until the
posterior probability calculation of seven fire risk attribute
nodes is completed.

D. ATTRIBUTE VALUE CALCULATION
The quantitation between the seven attribute states and the
attribute value is shown in table 3, which also lists the
physical scenes corresponding to each attribute state. Among
them, the information of the burned area and the number of
trapped people can be counted accurately in the case of a
small number. Therefore, the physical scenes corresponding
to the risk states of these two attributes have quantitative data.

For the output state of attribute nodes, the maximum
posterior probability criterion is adopted, that is, the output
state of the node is the state with the highest posterior
probability. However, in order to participate in the calculation
of the fire risk value(equation 2), it is necessary to quantify
the value of the attribute state. The fire risk attribute state
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TABLE 3. Quantification criteria for building fire risk attributes. The table lists the quantitative relationship between the seven attribute states and the
attribute value and also lists the physical scenes corresponding to each attribute state.

defined in BN is graded according to the severity degree to
quantify the state of risk attributes, and each state corresponds
to an attribute risk level and a quantified value. The higher
the risk level, the higher the risk degree of this attribute, and
the greater the harm caused. It is the basic principle of risk
management to seek advantages and avoid disadvantages.
Once the risk level is found to rise, people tend to reduce risks.
In fact, the higher the risk level, the smaller the probability of
occurrence.

Therefore, this paper adopts the method of decreasing the
proportion of the value from the lowest attribute risk level
to the next level to approximate the golden section which
means that the higher the attribute risk level, the lower the
probability [35]. Specifically, if the attribute node defined
in BN has four states, it means that the attribute risk is
divided into four levels, and the attribute risk value range is
set to {2,7,9,10}. According to this criterion, if the number
of attribute risk states defined in BN is five, the attribute risk
value range is set to {2, 5, 7, 9, 10}.

V. FIRE RISK CLASSIFICATION BASED ON
TRUSTWORTHY COMPUTING
Trustworthy computing provides a measurement model and
a classification model for software trustworthy evaluation.
Because of its strict demonstration, it has been successfully
applied in many fields such as artificial intelligence [36],
aerospace [37], social networks [38] and computing plat-
form [39], etc.

A. FIRE RISK TRUSTWORTHY ASSESSMENT MODEL
According to the trustworthy measurement characteristics of
multi-dimensional attribute software systems, Tao et al. [40]
designed a software trustworthy measurement model based
on the product of power functions. This model embodies the
barrel principle and series connection rules of trustworthy
attributes and ensures the importance of each attribute. The
model divides the software trustworthiness into five ranks,
which is consistent with the five-level classification goal
of building fire risk in this paper. Therefore, this model is
adopted in our paper. The model accepts the input of fire risk
attribute value and outputs the fire risk trustworthy value.
In this paper, the risk trustworthy measurement model of
intelligent building fires is defined as follows:

T =
7∏
i=1

yαii (1)

where,
1) yi is the degree of trustworthy attributes and αi is its

weight, yi ∈ {2, 5, 7, 9, 10}, 0 ≤ αi ≤ 1,
∑
αi = 1;

2) T is the fire risk trustworthiness measure function
regarding y1, . . . , y7.

There are seven fire risk attributes in this paper, which
are: 1. fire stage (FS), 2. fire evaluation (FE), 3. burned area
(BA),4. building fire risk rating (BFRR), 5. fire spread rate
(FSR),6. cluster fire possibility(CFP), 7. trapped toll(TT), and

10378 VOLUME 10, 2022



W. Wu, Y. Chen: Trustworthy Classification Model for Intelligent Building Fire Risk

TABLE 4. Weight combination of risk attributes of intelligent building
fires.

attribute risk values are marked with y1, y2, y3, y4, y5, y6 and
y7 respectively.

In this paper, AHP weight calculation method introduced
in [41] is used to calculate the weight of fire risk attributes.
The weight reflects the importance of fire risk attributes
to the risk degree of intelligent building fires. The main
process [6] of calculating attribute weights by AHP method
is shown in figure 6. The two most important steps of AHP
are to establish a pairwise comparison matrix and check the
consistency of the calculation results. The elements in the
pairwise comparison matrix reflect people’s understanding
of the relative importance of each fire risk attribute and
generally use 1-9 scale to quantify its relative importance. The
consistency test is a vital basis of the pairwise comparison
method, which is performed to ensure that the decision maker
is being logical in his/her pairwise comparisons. Each group
of pairwise comparison matrices that passes the consistency
test corresponds to a combination of attribute weights.
In order to objectively obtain the AHP pairwise comparison
matrix and eliminate the influence of subjective factors to the
greatest extent, this paper uses the group decision method
to make it into a questionnaire survey. It is issued in the
fire protection forum, people with fire-fighting experience
are invited to compare and score in pairs according to the
importance of the risk attribute to the risk of intelligent
building fires, and finally collect back the surveys and
calculate the weight. The calculated combination of attribute
weights is shown in table 4.

After the calculation of attribute weights, the following
fire risk trustworthy measurement model with fixed weight
combination is as follow:

T = y0.211 × y0.222 × y0.213 × y0.054 × y0.135 × y0.16 × y
0.08
7 (2)

B. RISK TRUSTWORTHY CLASSIFICATION MODEL
In view of the fact that when most of the fires just broke
out, If the fire alarm is reported in time and the fire is
extinguished scientifically, the fire risk level is low, and the
impact and harm are small. With the increase of fire duration
and scope, the fire risk level will rise correspondingly. From
the perspective of probability, most fires can be extinguished
in time. The proportion of serious fire accidents caused by
untimely discovery is small. Numerically, according to the
fire data [42] released by the Fire and Rescue Bureau of the
Ministry of Emergency Management of China, 252,000 fires
were reported nationwide in 2020, including 63 relatively
serious fires, 1 serious fire, and no extremely serious fire.
It can be seen that the higher the fire risk level, the
smaller its proportion and the smaller the probability of its
occurrence. So the measurement distance between fire risk

FIGURE 6. The main flow chart of the analytic hierarchy process [6]. This
is the method used in Attribute Weight Calculation(figure 1.4).

TABLE 5. Fire risk trustworthy classification model. The table defines the
minimum trustworthy value and the corresponding attribute value
requirements of each rank of fire risk. When grading the risk of intelligent
building fires, it is not only necessary to meet the requirements of
trustworthy value to reach the rank, but also the attribute value needs to
meet the corresponding rank requirements.

trustworthy ranks should be non-equidistant, and the higher
the trustworthy rank, the smaller the measurement distance of
this risk rank.

Therefore, this paper constructs a risk trustworthy classifi-
cation model of intelligent building fires, as shown in table 5.
This table defines the minimum trustworthy value and the
corresponding attribute value requirements of each rank of
fire risk. When grading the risk rank of intelligent building
fires, it is not only necessary to meet the requirements of
risk value to reach the rank, but also the attribute values
need to meet the corresponding rank requirements. First,
the risk rank will be initially determined based on the risk
value (the 4th and 5th ranks are distinguished according
to the first item of the attribute requirements). When all
the attribute requirements are met, the final risk rank is
the initial rank corresponding to the risk value. When the
attribute requirements are not met, it will automatically drop
by one level as the final risk rank. In this paper, the risk
of intelligent building fires is divided into five trustworthy
ranks, corresponding to the five-level standards for fire alarm
and emergency rescue in China [3]. The risk of building fires
is divided into one to five ranks from low to high, of which
one is the lowest and five is the highest. From one to five, the
severity and hazard of fire accidents increase.
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VI. CASE STUDY
In this paper, a typical fire case, the Shanghai Jing’an
11.15 fire, is selected as the experimental fire case to verify
the method proposed in this paper. The case study shows that
the method in this paper has good theoretical significance and
practical value for fire risk assessment of urban intelligent
buildings.

The general situation of the fire is: On November 15,
2010, in Jing’an District, Shanghai, a fire disaster broke out,
58 people dead and more than 70 people injured. From an
intuitive point of view, it is a very serious fire, and the fire
level is the highest. China’s fire alarm and emergency rescue
classification [3] rank it as a five-level fire alarm, which is the
highest level of fire alarm. China’s fire accident classification
standard [43] classifies it as a particularly serious accident,
which is also the highest level of fire accident.

A. FIRE RISK METRIC ELEMENT VALUE INPUT
Due to the lack of real IoT devices’ monitoring data and
fire inspection data, this paper is based on the investigation
report [44] of the fire accident to simulate the fire risk data to
construct the input of the metric element value of this fire. For
the fire risk metric elements included in the model directly
mentioned in the investigation report, we extract them as
the input of the model; and for those metric elements not
directly mentioned in the report, reasonable assumptions are
made on the basis of the fire facts. Finally, the metric element
value input of Shanghai Jing’an 11.15 fire is demonstrated in
table 6.

There is strong uncertainty in the risk information of
intelligent building fires. In real fire scenes, due to equipment
damage and other reasons, the lack of fire risk data is very
common. The model needs to have the ability to make
judgments and reasoning under the condition of missing risk
data. BN supports uncertainty reasoning, stores knowledge in
the form of a conditional probability table. The more network
node is, the more information the whole network stores. Even
in the case of incomplete external information, BN can make
intelligent inferences based on pre-stored knowledge. This
explains why the total number of metric elements is 63, and
the input of metrics, in this case, can be 42. If more fire risk
data can be obtained in the future, more accurate assessment
results will be obtained.

Input the metric element values defined in table 6 into
the BN project constructed by Netica software, and the
result is shown in figure 4. Among them, the input nodes
(leaf nodes) which are not mentioned in the investigation
report are yellow nodes in figure 4, which represent that the
monitoring status of the fire risk metric element is abnormal.
The model will use the prior probability distribution of
these input nodes to participate in the posterior probability
calculation of the whole network. The input nodes of metric
elements defined in table 6 are gray in figure 4, which
means that the monitoring status corresponding to this node
is operating normally. After the metric element value is input
into the Bayesian network, the model will automatically

TABLE 6. Metric element value input of Shanghai Jing’an 11.15 fire. There
are three inputs per line. Id represents the number of metric element
defined in figure 3; State represents the input value of metric element.

update the posterior probabilities of all nodes in the entire
network.

B. CALCULATION OF FIRE RISK ATTRIBUTE VALUE
The red border nodes in figure 4 are fire risk attribute nodes.
After the input is complete, the posterior probabilities of each
state of the seven attribute nodes are automatically updated
by the Netica software. According to the maximum posterior
probability criterion, the ouput state of the attribute node is set
to the attribute state with the maximum posterior probability.
Taking the TT attribute in figure 4 as an example, it can
be seen from table 3 that the four states of the attribute
are {TT1,TT2,TT3,TT4}. The corresponding risk attribute
values of each state are {2,7,9,10}. In figure 4, the confidence
of these four states are {2.5%, 0,41.2%, 56.3%}. The attribute
states with the highest confidence value are TT4, so the
corresponding attribute value of TT attribute is 10. Thus,
the risk value of each attribute is obtained as shown in
table 7.

C. CALCULATION OF FIRE RISK TRUSTWORTHY VALUE
AND RANK
By substituting the seven fire risk attribute values into
formula 2, the trustworthy assessment value of the fire risk
can be obtained as follows:

∗−0.5pcT = 100.21 × 100.22 × 100.21 × 70.05

× 100.13 × 100.1 × 100.08 = 9.86

Combinedwith the fire risk trustworthy value and the seven
attribute values, the risk trustworthy rank of the fire can be
obtained. According to the fire risk trustworthy classification
model defined in table 5, it can be seen that:

1. The risk trustworthy value of this fire case is greater
than 9;

2. The number of attributes with an attribute value of less
than 9 is one. And there are no attributes with a value less
than 7.

According to the fire risk trustworthy classification model
(table 5), the Shanghai Jing’an 11.15 fire risk is rank V.
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TABLE 7. Risk attribute value of Shanghai Jing’an 11.15 fire. After the input is complete, the posterior probabilities of each state of the 7 attribute nodes
are automatically updated by the Netica software. According to the maximum posterior probability criterion, the output state of the attribute node is set
to the attribute state with the maximum posterior probability. The quantitative relationship between Attribute Sate and the Attribute value is shown in
Table 3. The risk assessment value T = 9.86, combined with the attribute values, the risk level is rank V, which is the highest level of fire.

D. ANALYSIS OF EXPERIMENTAL RESULTS
It can be seen from table 7 that

1. The output state of FS attribute is FS5, from the physical
scene corresponding to this state in table 3, it can be known
that the fire has broken through the fire compartment and
spread to the entire building. Meanwhile, the sub-attribute
and metric element information affecting the risk of this
attribute can be determined through the hierarchical structure
in figure 3. Analysis of these factors can provide targeted
guidance for rescue work. For example, attention should
be paid to observing the distribution of flame points
during rescue and increasing the allocation of fire-fighting
resources;

2. The output state of FE attribute is FE4. As above, it can
be seen that the fire has not been effectively controlled. At this
time, the fire is of ventilation control type, which is prone to
extreme fire phenomena(e.g. flash over and explode). Special
attention should be paid to the ventilation situation of the fire
site, and cooling measures should be taken before rescue;

3. The output state of the BA attribute is BA4, which
indicates that the affected area of the building is extremely
large, and the distribution of fire fighting and rescue
equipment and rescuers should be increased;

4. The output state of BFRR attribute is BFRR2. It shows
that although the risk factor of the building itself is not high,
it is necessary to pay attention to the usual fire inspection
work and improve the fire-fighting ability of the managers.

5. The output state of the FSR attribute is FSR4, which
shows that there are many combustibles in the building and
the combustion-supporting conditions are good. The build-
ing’s fire and smoke prevention capabilities and the building’s
fire extinguishing capabilities are defective. In normal times,
the inspection frequency of fire-fighting facilities should be
increased to ensure that these facilities are in good working
condition. Do not stack combustible materials in the building
and reduce the number of them;

6. The output state of the CFP attribute is CFP4, which
indicates that the risk of nearby construction is high, and the
fire is likely to spread to surrounding buildings. Attention
should be paid to theweather changes during fire-fighting and
rescue work. And the fire prevention and isolation of nearby
buildings should be done at the same time;

7. The output state of the TT attribute is TT4. The
large number of people affected by this fire shows that
the building’s fire management level and safe evacuation
ability are poor. At this time, more medical resources should
be increased to rescue the wounded. Usually, it is also

necessary to strengthen the fire-fighting training of personnel
and regularly check the reliability of emergency evacuation
facilities.

The risk trustworthy assessment value of the Shanghai
Jing’an 11.15 fire calculated in this paper is 9.86, and the
fire risk trustworthy level is rank V, which is consistent
with the fire situation and the classification result of China’s
fire alarm rating standards. Generally speaking, the fire has
the characteristics of large fire intensity, large burning area,
rapid fire spread, easy to spread to other buildings, and high
casualties, which means that it is a fire with high severity and
great social harm.

E. COMPARISON
We further compare our proposed method with the existing
methods in [9], [13] and [20]. The comparison results are
shown in table 8.

1. The method in [9] designs 24 fire basic events as
BN input to evaluate the probability of fire occurrence(BN
output) in high-rise buildings. The BN nodes defined in [9]
include two states of State0 (represents the probability that
an event occurs) and State1. The fire accident occurrence is
the output node of BN, which is influenced by fire probability
and personnel operation factors. The FSR attribute(figure 3)
in our method considers risk factors similar to those in [9].
For example, the evaluation of ‘f.FireDevelopmentSpeed’
and ‘g.FireManagement’ sub-attributes is related to fire
and personnel operation factors. We define FSR3 and
FSR4(table 3) as State0 of fire accident occurrence. The post
probability of FSR3 and FSR4 is 31.3% and 67.9%. The
output of Shanghai Jing’an 11.15 fire by the method in [9] is
State0(99.2%). It indicates that the fire incident occurs, with
99.2% confidence.

2. The method in [13] evaluates building fire risk
from fire situation. It divides building fires into 4 stages
of FireOmen(R1), FireAlarm(R2), FireBehavior(R3), and
FireSpread(R4), and uses the area of a 4-dimensional radar
chart to calculate the risk of building fire. The fire risk
calculation function is. Reference [13] divides attributes into
2 states of high-risk(participate in risk assessment) and low-
risk states. However, we have 7 attributes in our method,
among which the 4 attributes of FS, FE, BA, and FSR
are designed according to the fire situation. We define the
state with an attribute value of more than 7 (including 7)
in table 3 as a high-risk state, and the probabilities of these
states are summed as the high-risk probability. The high-risk
probability values of the 4 fire situation attributes(FS,
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TABLE 8. Comparison results for Shanghai Jing’an 11.15 fire.

FE, BA, FSR) are 0.847, 0.829, 1, 0.992 respectively(the
probability of attribute is in figure 4). Finally, the risk
assessment result of the Shanghai Jing’an 11.15 fire by the
method in [13] is R = 0.841. The fire risk range is [0,1].
According to the risk value, the risk level of fire situation can
be roughly judged.

3. The method in [20] constructs a BN to classify the
stage of indoor fire. The BN has 4 inputs: temperature,
humidity, visibility, and pressure which are collected by
smartphone sensors. The output of BN is the stage of indoor
fire. The indoor fire is divided into 5 stages of dormant,
growing, developed, decaying, and burnt-out, which is similar
to the FS attribute classification(table 3) in our method.
It can be seen from table 7 that the output state of FS
attribute is FS5(77.9%), it indicates that the fire spread
outside the room, but [20] only focuses on indoor fire
and has no corresponding state. So the output of Shanghai
Jing’an 11.15 fire by the method in [20] is FS5(77.9%).
It indicates that the fire spread outside the room, with
77.9% confidence.

Compared with the above methods, the advantages of the
method in this paper are the following three points:

(1) This paper is more capable of comprehensively
assessing building fire risks. It can be seen from table 8 that
we designed 7 attributes(BN output) and the 63 related metric
elements(BN input) to evaluate the building fire risk rank.
From comparison 1-3, our method includes the risk factors
considered by other methods and is more comprehensive.

(2) The risk assessment model in this paper is more
reasonable. We adopt a multi-attribute evaluation method
that embodies the barrel principle and series connection
rules of risk attribute to ensure the importance of each
attribute, and the degree of importance is reflected by weight.
From comparison 2, the method in [13] is only suitable for
4-dimensional attribute evaluation and lacks scalability.

(3) This paper realizes the classification assessment of
fire risk, that is, to classify the fire risk according to its
severity. The classification process is scientific and rational,
so the classification result is trustworthy, which can provide
a reference for fire rescue work.

VII. CONCLUSION
This paper introduces a novel approach that combines
BN and trustworthy computing approach to assess and
classify the fire risk of intelligent buildings. The model
comprehensively considers the basic risk factors involved in
intelligent buildings from four dimensions of fire situation,
building, environment, and personnel. An intelligent fire risk
monitoring system is built tomonitor the basic fire risk factors
and obtain fire risk data in real-time. We use BN to assess

the attribute value of fire risk. Based on the attribute value,
we adopt trustworthy computing to classify fire risk into
5 ranks. This approach gives full play to the advantages of
BN in dealing with the uncertainty of intelligent building
fires and the advantages of trusted computing in dealing with
quantitative classification problems. The case study verifies
the theoretical significance and practical value of the method
in this paper. The proposed model in this paper offers many
useful suggestions to fire rescue work for urban intelligent
buildings and plays a decisive role in reducing fire risk.

Different quantification methods of attribute risk value
will be tried to compare in the future. At the same time,
a fire protection big data platform will be built to accumulate
learning data, thereby improving the efficiency of model
performance. In addition, how to determine the level of
emergency rescue and the allocation of resources by fire risk
rank and attribute risk value is also an urgent problem to be
solved in the future.
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