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ABSTRACT Generating reliable trading signals is a challenging task for financial market professionals. This
research designs a novel decision-support system (DSS) for algorithmic trading and applies it empirically
on two main crude oil markets. The novel DSS enables investors to interactively build algorithmic trading
strategies by fine-tuning various predefined integral elements. The main novelty of this study is the
forecasting procedure encompassed into the DSS, and the flexibility of the system that allows users to adjust
the parameters of the predictive model embedded and the length of the recursive window, based on individual
preferences and the trade-off between prediction accuracy (increased computing intensity) and computing
efficiency. The DSS also introduces two new steps into a standard fixed-length recursive window out-of-
sample forecasting technique. It first estimates a universe of candidate models on each rolling window and
then applies a fitness function to optimize model fit and produce more reliable one-step predictions from
each recursive forecasting origin. Point-forecasts are subsequently fitted into algorithmic trading strategies,
whose absolute and risk-adjusted performance is finally evaluated by the DSS. In implementing the
DSS-based algorithmic trading strategies, the system performs 60760 estimations and 1736 optimizations
for each market. In robustness checks, an additional number of 8 DSS’s are designed and evaluated. The
results confirm the superiority of DSS-based algorithmic trading strategies in terms of predictive ability and
investment performance for both markets. Hence, owing to its performance, flexibility and generalizability,
the DSS is an important tool for prediction, decision-making, and algorithmic trading in the financial markets.

INDEX TERMS Algorithmic trading, COVID-19, decision support system, expected shortfall, oil price
forecasting, Sharpe ratio, trading performance, trading signals.

I. INTRODUCTION

Technology has transformed the way financial markets oper-
ate and assets are traded [36]. With the advent of compu-
tational intelligence, algorithmic (or automated) trading has
become integral to the operation of capital markets [83],
and it dominates the equity, futures, and Treasury markets,
among others, in the United States and across the world [19].
Currently, it is estimated that approximately 70-80 percent
of the overall trading volume in the US stock market and
many other mature financial markets is generated through
algorithmic trading [70]. Moreover, the proportion of par-
ticipants trading 80 percent or more of their portfolio via
algorithmic trading nearly doubled over the last year,
reaching 20.75 percent in 2021 from 10.98 percent in
2020 [79]. This trend is expected to continue and even
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intensify, as world financial markets become increasingly
reliant on computer-driven algorithms [83] and automated
trading is regarded as the “lynchpin of a successful trading
strategy”’ [45].

Unsurprisingly, numerous research efforts have been ded-
icated to understating how this intense automation of trading
impacts market dynamics [13]. Previous studies have found
that algorithmic trading improves market liquidity [37] and
facilitates price discovery [12], [11], and [38], also contribut-
ing to decreasing trading costs [21] and [47]. Nonetheless,
it is important to underline that these positive externalities
have been validated during “normal” market evolution [83],
whereas algorithmic trading can diminish liquidity and
exacerbate volatility during distressed markets, with dire eco-
nomic consequences [80].

By definition, in computer science an algorithm is
described as “a finite, deterministic, and effective problem-
solving method suitable for implementation as a computer
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program’ [73]. In the context of electronic financial mar-
kets, algorithmic trading refers to the use of computer pro-
grams to automate one or more steps of the trading process:
pre-trade data analysis, trading signal generation, and order
execution [63]. Consequently, algorithmic trading strategies
encompass pre-set rules that are coded into a computer pro-
gram and that issue signals on which trading decisions are
based [78]. This study proposes an integrated decision sup-
port system (DSS) aimed at building a trading algorithm that
covers all three steps of the trading process, while also per-
forming post-trading performance evaluation. Additionally,
the robustness of the novel approach is tested by estimating
the performance of empirical portfolios constructed with the
novel trading algorithm on main crude oil markets on abso-
lute and risk-adjusted terms relative to various benchmark
strategies.

The predictive ability and trading performance of any algo-
rithmic trading strategy intrinsically depend on the pre-set
rules coded into the algorithm, and their ability to predict
market movements through reliable trading signals. Trading
rules are thus the lifeblood of any trading strategy and have
the potential to create the link between automated trading
and automated trading success. The embedded pre-set rules
are in turn based on two important factors: (i) the predictive
model encompassed into the algorithm; and (ii) the procedure
employed to produce forecasts based on the predictive model.

The predictive model can range from simple indicators
pertaining to technical analysis to complex forecasting mod-
els. Mainly, starting from Breiman [10] two main cultures or
schools of thoughts in the field of data modeling have been
identified, econometrics (statistical methods) and machine
learning (self-learning systems, capable of learning from data
to improve their performance), respectively [16]. The two
frameworks bring distinct benefits and drawbacks [56], but
share two common (altough differently prioritized) goals:
information and predictability [48]. Thus, statistical methods
focus on the construction and fitting of a dataset-specific
probability model employed for inference, whereas machine
learning techniques concentrate on prediction and make mini-
mal assumptions about the data-generating systems [42]. The
optimal model is ultimately specific to the data-generating
process and is strongly linked to the main research goal.
In this research, we rely on previous findings and on dis-
tributional characteristics of data to make our choice for
the base model (i.e. a bivariate ARMA (p,q)-GARCH(1,1)),
while we canalize our interest and efforts on the second
element of crucial importance for the performance of the
trading rules embedded into the integrated algorithm, i.e. the
forecasting method. The algorithm is flexible and can accom-
modate any predictive model, as such the base ARMA (p,q)-
GARCH(1,1) framework employed in this study serves as an
initial example.

The forecasting procedure is at least as important as
the predictive model itself. However, in the field of finan-
cial markets, time series forecasting remains a challenging
task [74]. A recognized issue in forecasting continues to
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be the instability of parameters (Goyal and Welch, 2003;
Paye and Timmermann, 2006; Giacomini and Rossi, 2009).
To handle the problem of parameter instability, the recursive
(or rolling) out-of-sample forecasting procedure that uses a
fixed number of the most recent data (i.e. window) at each
point of time emerged as the accepted optimal solution [43].
This procedure also brings additional advantages, such as
more efficient splitting rules of the time series, distinct error
distributions by lead time, and elimination of sensitivity
to specific events, with further benefits when recalibration
of the parameters at each iteration is also performed [77].
However, the empirical evidence on the forecasting perfor-
mance of the fixed rolling scheme, as it emerges from the
extant literature, although superior relative to other tech-
niques, is unconvincing in absolute terms. Hence, the need
for its improvement has emerged [43]. One direction in this
respect has been towards the optimization of the window
size employed in rolling estimation and forecasting. Some
authors (i.e. Pesaran and Timmermann, 2007); Pesaran et al.,
2013; Giraitis et al., 2013, and Inoue er al. [43]) propose
different solutions for window size optimization and show
the forecasting superiority of the approach. In this paper,
we develop a new approach for improving the forecasting
performance of the rolling out-of-sample forecasting pro-
cedure. More specifically, unlike previous studies that fit
the predictive model to empirical time series, on a static
or sliding window, and further employ fitted parameters
to forecast future price movements (i.e. for the first two
iterations, this approach implies the sequence of steps:
Estimation on first window of data (one model specification)-
Prediction-Recalibration on the second window of data (one
model specification)-Prediction), this study uses compu-
tational intelligence to optimize model-fit daily (i.e., the
first two iterations now take the form: Estimation on first
window of data (multiple model specifications)-Selection
(fitness function)-Prediction- Recalibration on the second
window of data (multiple model specifications)- Selection
(fitness function)-Prediction sequence approach). The pro-
posed approach allows model parameters to adapt daily
through the fitness function applied following multiple recal-
ibrations at each iteration, and hence to achieve improved
forecasting accuracy and superior trading performance. The
novelty of the study and its superiority relative to previous
attempts lies in the multiple specifications of estimated mod-
els and the selection step introduced into the recursive fore-
casting sequence. Whereas in the standard rolling window
out-of-sample forecasting technique the model parameters
also adapt at each iteration following model recalibration on
the new fixed window of data, our approach re-estimates
an array of model specifications at each iteration and then
applies a fitness function to identify and select the best fit
model among multiple candidates for each window, which is
subsequently employed to issue the one-step-ahead forecast
using a rolling fixed-length window of data. The algorithm
thus re-estimates at each iteration (daily) the parameters of an
array of ARMA(p,q)-GARCH(1,1) models (i.e. [(p x q) — 1]
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parameters) and applies the fitness function to identify the
optimal parameters set (p,q) from the universe of [(p x g) — 1]
candidates. The best-fit model is then employed to issue one-
step-ahead forecasts, used by the algorithm to trigger buy and
sell signals, and execute the trade. This is repeated recursively
over the testing period.

A. OIL PRICE FORECASTING: A LITERATURE REVIEW

The proposed algorithm is applied to the task of forecast-
ing and trading the crude oil market. The choice of the oil
market for the empirical investigation is motivated by several
factors. First, the oil market is the biggest and most liquid
commodity market [53], it is also a highly oscillated market,
due to its “financialization” process with the increasing use
of oil as a financial asset ([84], Schmidt, 2017; Nguyen et al.,
2020). Second, oil is a significant impact factor for stock
markets [3], [46], [65], [90]. Third, WTT and Brent are major
benchmarks in the world of international trading [15]. Fourth,
the crude oil markets have been catastrophically impacted by
the “once-in-a-century” COVID-19 pandemic [30] that has
shrunk global energy demand, with crude oil prices plunging
to historic lows. Additionally, the effect of oil shocks on
stock returns is more pronounced during crisis periods [4].
Not in the least, oil is a notoriously unpredictable market,
which might explain the significant decrease in automated
trading for crude oil contracts, as opposed to other com-
modities and financial assets [35]. All these factors suggest
that a trading algorithm capable of superior performance on
crude oil markets is of particular interest to financial markets
practitioners and are thus important motivators for this study.
Moreover, forecasting crude oil prices and volatility facili-
tates macroeconomic and capital market policymaking [50],
further spurring our research interest, as well as the relevance
of results.

Previous studies employ various models to understand
and predict the behavior of crude oil prices, pertaining
to both cultures described by Breiman [10]. Thus, while
some authors estimate statistical models on crude oil series,
i.e. the vector autoregressive (VAR) model [7], Dynamic
Model Averaging (DMA), and Dynamic Model Selec-
tion (DMS) [22] and [61], ARIMA-GARCH models [57],
[71], [92], [85], [88], and [26], forecast combinations [8]
and [89], other studies employ machine learning techniques,
such as neural networks [33], [87], decision tree mod-
els [64], [17], and support vector machines (SVMs) [93].
However, no technique has emerged as particularly success-
ful; the non-linearity and non-stationarity of data, the com-
plex supply-demand relationships, the various unanticipated
events, and unpredictable factors that destabilize market equi-
librium, are all sources of crude oil price forecasting fail-
ures [20]. Consequently no “optimal” or commonly accepted
method for forecasting the crude oil price exists [22].

Nonetheless, the empirical literature does agree that oil
returns distributions present excess kurtosis, negative skew-
ness, and significantly deviate from normality, while volatil-
ity in oil returns is clustering and persistent. See among
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others [6], [58], [71], and [92] these empirical properties
of the oil time series indicate that ARMA-GARCH models
would be fit to consistently capture its properties. The sta-
tistical properties that emerge from our data sample echo
these previous findings and justify our choice of the model
embedded in the proposed DSS for algorithmic trading.

Some authors that employ GARCH-family models to pre-
dict crude oil returns go one step further and compare their
results in terms of return enhancement and/or risk reduc-
tion strategies, with divergent results. Among these stud-
ies, [5] investigate the relationships between oil prices (Brent)
and stock returns in Europe from a sector perspective (DJ
Stoxx 600 and twelve European sector indices) and provide
evidence of the out-of-sample benefit from portfolio diver-
sification by applying some index-based investment strate-
gies and constructing several portfolios composed of both
stocks and oil with different allocation rates. Results show
that introducing the oil asset into a diversified portfolio of
stocks allows to significantly improving its risk-return char-
acteristics. On the other hand, [86] also investigate whether
the inclusion of crude oil futures benefits typical stocks
and bonds portfolios. They find optimal asset weights based
on forward-looking estimates of expected returns (derived
via various forecasting techniques, including GARCH-family
models) and conclude that crude oil futures do not enhance
the out-of-sample portfolio performance of a stock and bond
portfolio. However, previous research does not focus on con-
structing and optimizing trading strategies specifically on
the crude oil market, but mainly assesses the importance of
adding crude oil in terms of portfolio diversification bene-
fits. The current study, different from prior research, focuses
on the two main crude oil markets (WTI and Brent) and
constructs energy portfolios based on algorithmic trading
strategies drawn from the novel DSS within the crude oil
market, whose trading performance is subsequently evaluated
in both absolute and risk-adjusted terms relative to the buy-
and-hold strategy and strategies drawn from alternative DSSs.
A particular interest is on performance evaluation during
distressed market periods, and thus the COVID-19 pandemic
deserves special attention. This approach is further motivated
by the fact that most markets have experienced disastrous
losses after the pandemic out-break in the first trimester
of 2020 and have been moving at a very similar trend at least
during the first months of the world pandemic [51]. As a
result, a within-market optimized trading strategy, contrary
to diversification, would be able to add value to energy port-
folios. Consequently, the results of this research have direct
applications for portfolio and risk management on crude oil
markets.

Compared with previous research, this paper makes several
contributions to the literature, as follows.

First, it develops a new approach for improving the stan-
dard recursive out-of-sample forecasting technique, which
offers important advantages over existing methods. It solves
the parameter instability problem by multiple model fitting
and selection (through applying a fitness function) on each
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recursive window of data. In-sample model fit (parameter
adjustment to new data) is hence continually and dynamically
optimized. From each rolling forecasting origin, only the
best-fitted model is employed to produce forecasts through-
out the lead-time. This procedure, which we call dynam-
ically optimized recursive window forecasting (or DOR),
can embed a wide range of predictive models. The ARMA-
GARCH framework employed in this study serves as an
initial example. DOR is further flexible by allowing the
user to fine-tune pre-defined integral elements, including
the length of the recursive window and the parameters of the
predictive model that it embeds. This choice is the prerog-
ative of the user, and must consider the trade-off between
forecasting accuracy and computing efficiency. In robustness
checks, alternative settings for various integral elements are
specified, including distinct window lengths and a restricted
optimization procedure, where the fitness function is applied
at each iteration within a narrow universe limited to three
candidate models. By all accounts, this restricted optimiza-
tion is nonetheless superior in terms of forecasting ability to
the standard recursive forecasting technique encountered in
the literature that recalibrates step-wise the predictive model
without applying a fitness function, but inferior to the base
DOR proposed in the study. On the other hand, it brings
important gains in term of computing efficiency when incor-
porated into an automated forecasting mechanism. DOR also
permits adaptation of the fitness function, allows multiple-
step-ahead forecasting, can be automated and is feasible
in practice. We thus empirically assess the practical value
of the technique for forecasting crude oil prices. Equally
importantly, DOR offers generalizability, as it can be easily
applied to other financial markets as well. To the best of our
knowledge, this is the first study to propose and apply this
approach for forecasting financial time series, and its findings
are particularly relevant to policymakers that incorporate oil
price predictions in their policymaking process.

Second, it designs an integrated decision support sys-
tem (DSS) that encompasses the improved DOR forecasting
procedure. The DSS serves for algorithmic trading covering
all three steps of the trading process and also performs post-
trading evaluation. To this aim, the paper goes further than
previous related literature that evaluates model in-sample
and out-of-sample performance by comparatively estimating
model fit and/or forecasting-fit metrics, and proceeds to show
the practical value of the integrated DSS. Hence, algorith-
mic trading strategies drawn from the DSS are implemented
on two crude oil markets, and their predictive ability and
performance over January 2014 - April 2021 is assessed in
absolute and relative terms, considering the buy and hold
strategy as benchmark. The outcome of algorithmic strategies
based on four alternative DSSs for each crude oil market is
additionally investigated in robustness checks. The onset of
the COVID-19 pandemic (i.e. January 2020 — April 2021) is
analyzed in a separate investigation. The findings show that
the optimized DSS-based algorithmic strategies are able not
only to avoid losses but also even achieve profits in turbulent
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markets. These findings have important consequences for
market professionals, contributing to enhanced risk manage-
ment and performance of crude oil portfolios by showing that
investors don’t need to sustain losses or exit crude oil markets
in times of turmoil, but instead follow superior investment
strategies.

Thirdly, unlike most of the previous studies that focus only
on one crude oil market, (usually the US market), it includes
the two most important crude oil markets, which are also two
relevant benchmarks for international trading, WTI and Brent
crude, respectively. This further assures the robustness of the
algorithm based on the novel DSS and increases the relevance
of results for market professionals.

The paper proceeds as follows. Section II presents the
dataset, and contains a discussion on the evolution of
the crude oil market over the analysis period. Section III
describes and motivates the integral elements of the decision
support system, designs the integrated DSS, and proposes
robustness checks for the system. Empirical findings that
emerge from implementing algorithmic trading strategies
drawn from the novel DSS on the two main crude oil markets
over two separate sample periods are contained in Section IV,
which also included a discussion of the results and robustness
checks. Finally, Section V concludes the study.

Il. DATA AND METHOD

A. DATA

This subsection provides a quick overview of the oil market’s
evolution, as well as the dataset for the current study and key
descriptive statistics.

1) THE EVOLUTION OF THE CRUDE OIL MARKET OVER THE
LAST DECADES

The most popular traded grades of oil are Brent North Sea
Crude (commonly known as Brent crude and sourced from
the North Sea between the Shetland Islands and Norway) and
West Texas Intermediate (commonly known as WTI, sourced
from U.S. oil fields). Their origin has a direct impact on
transportation costs. Thus, as Brent Crude is produced near
the sea, transportation costs are significantly lower, whereas
West Texas Intermediate is produced in landlocked areas,
which in turn increases its transportation costs. While WTI
stands as the major oil benchmark for the North American
market, Brent fulfills this task for Africa, Europe, and the
Middle East, whereas the price differential between the two
is called a spread. It is apparent in Figure 1, which reflects the
average weekly price evolution of the two crude oil markets
over the January 2014 — April 2021 period, that realignment
in the spread usually takes place during distressed markets.
It happened over 2014-2015, a challenging time for crude
oil markets globally, with both crude oils prices plunging
from levels above 100$ per barrel at the beginning of 2014 to
under 40$ per barrel by the end of 2015. This price drop was
primarily caused by the sharp rise in U.S. oil production due
to advancements in oil drilling and fracking (the so-called
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“American shale revolution’), and was further exacerbated
by the lifting of the export ban on U.S. crude that occurred at
the end of 2015.

WTI and Brent price evolution
WTI - blue colour, Brent - red colour

Zoom 1m 3m 6m YTD 1y All

From May 1, 1987 To Mar 29, 2021

1990 1995 2000 2005 2010 2015

FIGURE 1. Average weekly price evolution of WTI and Brent crude oil over
the 2014-2021 period, source of data: FRED, Federal Reserve Bank of St.
Louis. Author’s representation.

Most recently, the ongoing COVID-19 pandemic has sig-
nificantly affected the global energy market and has again
caused realignment in the spread over the first stages of the
pandemic outbreak. However, the crude oil prices deviated
again shortly by mid-April 2020 with the historical plummet
of the WTI market, before realigning. Moreover, as demand
for oil and gas fell sharply worldwide, a price war between
Saudi Arabia and Russia further contributed to put an excep-
tional downward pressure on crude oil prices. After trading
at over $61 per barrel in the beginning of 2020, both crude
oils prices plummeted to two-decade lows by April 2020 as
the pandemic spread, (with WTI even entering into uncharted
negative territory for future prices). WTI registered a negative
price for the first time in history, closing at —$37.63/bbl on
April 20th 2020. The dramatic situation on WTI oil market
was mainly caused by financial long positions on WTI crude
oil futures for May 2020 that were too large to be physically
accommodated because of the devastating collapse in demand
and scarcity of storage capacity caused by the COVID-19
pandemic, while contract expiry was approaching. As an
immediate response measure, OPEC members and other oil-
producing nations, including Russia, Azerbaijan, Malaysia
and Mexico, agreed in April 2020 that total global output
should be reduced by around 9.7 m barrels per day (bpd) in
order to help stabilize oil prices, which corresponds to about
10 percent reduction of world production. The 23-nation
group known as OPEC+- has further decided to intervene and
cap oil production during 2020. All these efforts, along with
increased optimism about post-COVID19 economic recovery
with the advent of new vaccines, have contributed to a recov-
ery of the oil prices to a level of above $60 per barrel by the
end of March 2021.

2) DATA SAMPLE
The research conducted in this paper employs daily spot
prices of the two main grades of crude oil (Brent crude and
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WTI), sourced from the Federal Reserve Bank of St. Louis’s
(FRED) database, which at its turn collects data from the
U.S. Energy Information Administration (EIA). The sample
period extends from January 2, 2014 to April 4, 2021 and
therefore includes 1857 observations for each crude oil series.
The timeframe provides a sufficing sample that includes
tranquil, as well as highly volatile (historically turbulent)
periods through which the predictability and performance of
algorithmic trading strategies can be tested.

Crude oil price series are subsequently turn into daily
return series in the manner described in Eq. (1) (the estimation
of logarithmic returns is avoided due to the aforementioned
negative value encountered in the closing prices of WTI on
April 20th):

Index; ;41

-1 (1)

Tit+1 =
Index;

where 1; (41 1S the return of the Index i on trading day ¢ + 1.

3) DESCRIPTIVE STATISTICS

Table 1 presents the descriptive statistics of the Brent
and WTI crude oil return series over the January 2014 -
April 2021 period.

TABLE 1. Descriptive statistics of one-day returns (%) for WTI crude oil
and Brent crude oil (January 2, 2014-April 4, 2021).

WTI crude Brent crude

Min -301.97 -47.47
Max 53.09 50.99
Range 355.05 98.45
Sum -275.65 35.03
Median 0.06 0.00
Mean -0.15 0.02
SE mean 0.19 0.08
CI, mean, 0.95 0.38 0.15
Variance 69.28 10.72
SD 8.32 3.27
Coef of var. -56.07 173.58
Skewness -27.20 0.80
Kurtosis 956.25 68.87
Shapiro-Wilk test 0.19 0.69

P ADF1 0.01 0.01

P KPSS 0.14 0.17

"' PADF and PKPSS are p-values of the ADF and KPSS unit root tests,
respectively. The null of ADF test is the existence of a unit root, whereas
the KPSS tests the null of stationarity.

As expected, the crude oil markets exhibit significantly
high volatility on average, with a daily volatility of 3.27%
for Brent crude and 8.32% for WTI crude over the analyzed
period. The Brent crude oil market is also more rewarding
in terms of returns, with an average daily return of 0.02%
compared to a negative daily return of —0.15% for the WTI
crude market over the same period. Also, the distributions
of the crude oil markets daily returns series are highly lep-
tokurtic, with huge excess kurtosis especially for the WTI
series. The leptokurtic behavior implies returns are likely to
produce outliers, and this behavior is present, with fat tails,
in both series. The Shapiro-Wilk test rejects the normality
assumption at any level of statistical significance for both
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crude oil series. This reflects the importance of the non-
normality assumption when estimating the predictive model.
ADF unit root tests and KPSS stationarity tests consistently
indicate a stationary return sequence for both crude oil series.

Next, Figure 2 plots the WTI and Brent crude returns over
2014-2021.

Daily crude oil returns 2014-2021

1
WTI_return

Brent_return

1

-
3

o

5

o

S eI e Lo by <
S

&

3

3

T  § T T
2014 2016 2018 2020
Time

FIGURE 2. Daily crude oil returns over 2014-2021.

There is a clear indication of volatility clustering in the
series. Indeed, the visual examination of crude oil daily
return series supports the volatility clustering hypothesis of
Bollerslev [9], meaning low volatility usually follows low
volatility and vice versa, unless a disruptive event impacts
the market. This empirical characteristic is also relevant for
determining the optimal predictive model embedded into the
novel forecasting procedure that is further encompassed into
an integrated DSS used for algorithmic trading. Significant
volatility is apparent on both crude oil markets over the
first trimester of the COVID-19 pandemic, with the WTI
experiencing the most dramatic one-day fall in history (over
300%) on April 20th. Hence, the recent dramatic evolutions
of crude oil markets reflect the need for trading rules capable
to issue reliable trading signals and further construct resilient
(and even over-performing) portfolios during turmoil.

lll. METHOD

A. SETTING UP THE SYSTEM

Each individual building block of the proposed DSS is pre-
sented next.

1) THE FORECASTING METHOD

The primary objective of this study is to produce more accu-
rate forecasts of the oil price, and then incorporate the novel
forecasting method into a decision-support system employed
for constructing and implementing algorithmic trading strate-
gies. The system embeds a novel method for estimating
and predicting oil price movements based on a recursive (or
rolling) fixed-size window approach, that is capable of cap-
turing any structural break in the dataset (Sermpinis et al.).
This technique requires the division of the historical data
series of length N into a training (or fit) period and a test
period, where the final observation in the training period

VOLUME 10, 2022

indicates the forecasting origin and the time being forecast
is the lead time (or the forecasting horizon) [77]. For our
purposes, the training set equals the length of the recursive
window (i.e. hereafter using the notation Sj; for the recursive
window of length / and with i € [1; N — [ — 1]), whereas the
lead time is thus equal to the testing period, or [/ 4+ 1; NJ.
This approach allows capturing any structural break in the
rapidly changing crude oil market that is used in this study as
the playground for the novel DSS. Subsequently, the rolling
out-of-sample forecasting method successively updates the
forecasting origin through the interval [/; N — 1] and pro-
duces one-step-ahead return forecasts r; from each new origin
(point-forecasts correspond to each first day of the lead time,
such asi e[ [/ 4+ 1; N]), as depicted in Figure 3.

S T2

Sini1) v

.

Recursive First day of
window of the lead
length | time (for
which
forecasts
are
produced)

FIGURE 3. The fixed-length recursive window out-of-sample forecasting
technique embedded in the DSS.

The novelty of our approach consists in the way estima-
tions and predictions are made through the rolling window
approach. More specifically, whereas the standard method
involves fitting the predictive model to empirical time series
on the rolling window, and further employ fitted parameters
to forecast future price movements (i.e. for the first two iter-
ations in the inner loop, this approach implies the following
sequence:

1. Estimation (fit one model specification on the first

window of data, i.e. S));

2. Prediction with model fit on S; (i.e. one step-ahead

forecast of r;4+1)

3. Recalibration (fit the same model specification on the

second window of data, i.e. S;+1)

4. Prediction with model fit on ;41 (i.e. one step-ahead

forecast of r/42)),
this study uses computational intelligence to optimize model-
fit daily (i.e., the first two iterations now involve a more
complex sequence:

1. Estimation (estimate multiple model specifications on

the first window of data, S;)
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2. Selection (identify optimal model specification for S;
with the fitness function)
3. Prediction with optimal model for S; (i.e. prediction of
I41)
4. Recalibration (re-estimate multiple model specifica-
tions on the second window of data, i.e. S;+1)
5. Selection (identify optimal model specification for
S14+1 with the fitness function)
6. Prediction with optimal model for S (i.e. prediction
of 1112)).
Thus, the novel methodology proposed here estimates mul-
tiple model candidates at each iteration (each recursive
window) and applies a fitness function that automatically
searches over a feature space (pool of covariates or model
parameters) to select the optimal model specifications (i.e. the
optimal parameter set (p,q)) for each recursive window). This
is repeated recursively a total of [N — [ — 1] times.

2) THE FITNESS FUNCTION
The choice of the fitness function embedded into the auto-
mated trading strategy is a subject by itself. Here, we justify
this choice by considering several factors. The Akaike Infor-
mation Criterion (AIC) [2] and the Bayesian Information
Criterion (BIC) [72] have emerged as the simplest, most
computationally tractable model selection tools. They gen-
erally show superior model-fit performance relative to more
sophisticated, computationally intensive methods [25] and
are especially convenient when the main task is to automate
forecast generation, where oftentimes there is a clear trade-
off between computational efficiency and forecasting accu-
racy. In addition, AIC has predictive optimality not possessed
by BIC [14], whereas BIC carries the additional fault of
being too conservative [69]. Moreover, minimizing AIC is
asymptotically equivalent to minimizing the cross-validation
statistics for any model [75]. Consequently, this property
makes AIC particularly valuable in model selection when the
central goal is prediction [41].

The fitness function that automatically goes over the pool
of covariates at each inner loop is thus specified as:

AIC = -2 log(maximum likelihood) + 2k, 2)

where k is the number of estimated parameters. Since the
AIC is estimated by maximum likelihood, adding additional
model parameters contributes to better model fit, whereas the
risk of over-fitting is eliminated by the penalty function [81].

3) THE PREDICTIVE MODEL

The choice of the predictive model embedded into the
novel forecasting methodology and further integrated into the
decision-support system for algorithmic trading constitutes
a secondary, but nonetheless integral element of the DSS.
We should mention that the predictive model is not the focal
point of this study, which rather focuses on bettering the fore-
casting technique, or how the model is used by the automated
system to issue daily-forecasts. Here, the empirical distribu-
tional characteristics of data, in light of previous findings
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in the literature, indicate that ARMA-GARCH models are
capable of explaining and predicting oil price movements.

The ARCH model introduced by Engle [24], the Gen-
eralized ARCH (GARCH) model introduced by Bollerslev
(1992) and their developments have been extensively used for
estimating and forecasting return and volatility in financial
time series. The main appeal of the GARCH approach con-
sists in the fact that the model that explains the conditional
variance or volatility is estimated jointly with a model for
asset returns [19]. In constructing the bivariate model, this
study first relies on results of Costello et al. [18] and assumes
that the crude oil return series follow an autoregressive mov-
ing average (ARMA) model developed by Box and Jenkins
(1970), with p autoregressive and ¢ moving average terms.
Second, considering that a more complicated GARCH spec-
ification does not improve on the forecasting performance of
basic GARCH(1,1) (i.e. [1], [27], [34], [71], [19], and [29]
the study proceeds) with a GARCH(1,1) order specification
for the conditional variance. Consequently, two equations are
combined to obtain an ARMA (p,q) -GARCH(1,1) model
that is embedded in the decision-support system for fore-
casting next day’s crude oil returns. The conditional mean
equation has thus an ARMA (p,q) specification, allowing for
the possibility of returns being auto-correlated and dependent
on the previous error terms in the following manner:

) q
Tip = Ci + Z kijrii—j + Z Wi j€it—j (3)
j=1 j=1

where p and ¢ describe the number of autoregressive and
moving average terms, respectively, k; ; is the autoregressive
constant, and ¢; ,; is the realized error.

The conditional variance equation given by GARCH(1,1)
then takes the following form:

2 2 2
Ofj—1 = @t o1a;_, +:310t—1\t—2 4)

All estimations are performed under the assumption of a
skewed generalized error distribution (SGED) for the error
process (as in [27]). Lee et al. [49] define the probability
density function for the SGED.

4) THE POOL OF COVARIATES

Whereas the equation for conditional variance stays restricted
based on the aforementioned arguments, the mean equa-
tion is subject to an automated optimization process within
the system. The algorithm thus re-estimates at each itera-
tion (i.e. daily) the parameters of an array of ARMA(p,q)-
GARCH(1,1) models (i.e. [(p x q) — 1] parameters) and
applies the fitness function to identify the optimal parameters
set (p,q) from the universe of [(p x ¢g) — 1] candidates.
The best-fit model is then employed to issue one-step-ahead
forecasts, used by the algorithm to trigger buy and sell signals,
and execute the trade. This is repeated recursively over the
testing period. In empirical investigations performed in this
study, the system is set to allow the parameters p and ¢ in
the conditional mean equation to vary in the interval [0:5],
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thus estimating 35 different candidate models at each iteration
(i.e. 6 x 6 — 1, as the (0,0) pair is excluded). This is the
pool of covariates over which the fitness function searches the
optimal model for each window Sj;. This approach of using a
universe of 35 different candidate models on each recursive
window [ is selected based on a trade-off between the model
performance (in-sample fit and subsequent predictive ability)
and the computational intensity needed for its estimation on
the dataset and for the execution of the integrated trading
algorithm. Given that the algorithm is intended for real world
trading, where rapid trade execution is most often crucial for
trading success, this is a non-trivial issue.

In subsequent robustness checks, a so-called “restricted
optimization” where the two parameters are only allowed
to vary in the interval [0:1] (i.e. at each iteration the fitness
function goes over a pool of 3 candidate models) is also
embedded into a DSS employed for automated trading.

5) THE TRAINING AND TESTING SETS AND THE WINDOW
LENGTH

The data sample covers a training period set for the first /
days in the sample, and a testing period of length N — [,
where N is the total number of observations, i.e. 1857. For
each trading day 7 in the testing interval [/ + 1:N], the return
is predicted after the rolling window of / past crude oil daily
returns (i.e. Sy, 1 € [1;N — 1 — 1] has been used to identify
the optimal ARMA (p,q)-GARCH(1,1) model specifications
for Sj;. To this end, the system fits ARMA models of order
(p,q) for the mean, where (p,q) € {0,1,2,3,4,5} and for each
recursive window Sj; the optimal pair of (p,q) is chosen by
applying the fitness function over the pool of 35 covariates.
Secondly, a GARCH (1,1) model is fitted for the conditional
variance, and these ARMA (p,q)-GARCH(1,1) specifications
are then used to forecast the crude oil price return for each day
nin [l + 1;N]. This sequence is repeated recursively over the
testing period.

The system first sets the lengths of the rolling window to
120 days, or approximately 6 months of trading. The narrow
rolling window eliminates the risk of failing to capture the
quickly evolving energy market events that a longer length
window would carry. Additionally, another argument for the
choice of / length relies on the work of Menkhoff [55], which
showed that practitioners have most often a trading horizon
of up to 6 months when they trade through technical trading
strategies. As the algorithm proposed in this study works in
a similar way by signaling market entries and exits, we argue
that a rolling window of 1/2 years is appropriate. As a result,
the forecasting model trains on the first 120 days of data (Si;)
and then rolls over in a daily sequence through the subsequent
recursive windows Sy, i € [2:N — [ — 1]. Overall, the system
embeds a total of N—/— 1 iterations, implying that the rolling
window goes through 1736 days (1857-120-1]). For each
time series, the DSS reestimates daily 35 candidate models
(i.e. p x g — 1), and applies the fitness function 1736 times,
for a total of 60760 estimations (i.e. 35 x 1736) and 1736
optimizations. DSS has the advantage of flexibility, so that
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users can fine-tune the size of the pool of covariates (p and gq)
and the length of the rolling window /, based on the individual
preference for the trade-off between prediction accuracy (that
increases with an increase in p and ¢, and with a decrease in
1, but also spurs computational intensity) and computational
efficiency (that requires lower values for p and ¢ and increas-
ing recursive window length /). Basically, the DSS performs a
number of [(p X ¢ — 1) x (N —1 — 1)] model estimations and
N — [ — 1 optimizations, the exact specifications being the
prerogative of the user. Another important advantage of the
DSS is its generalizability, as it can be easily applied to other
financial markets as well. This can in turn also influence this
choice, particularly with respect to the window size /, which
is dependent on market structure.

B. THE INTEGRATED DSS

The automatic forecasting procedure described earlier (inte-
grating the predictive model, the fitness function, and the
forecasting technique, together with the specifications of its
integral elements) is further combined with a trading strategy
and embedded together into an integrated trading algorithm.

The predictions issued automatically through the dynami-
cally optimized forecasting procedure work as trading signals
and for each forecasting origin n; (i € [/; N — 1]) the pre-
programmed rules instruct the system to go long (buy) if the
one-step-ahead forecast is positive (ri+1 > 0), go short (sell)
if the one-step-ahead forecast is negative (ri+; < 0), and
stay out of the market otherwise, including in the event that
ri+1 = 0. Hence, the algorithm proceeds accordingly to the
signals issued from the decision-support system and executes
trades following these rules at the closing price in the recur-
sive forecasting origin, i.e. P;.

Lastly, the system performs the final task and assesses the
predictive ability and trading performance of the algorithmic
trading strategy based on the novel DSS in absolute and
relative terms. The steps involved for this particular task are
summarized below:

1. Set up the empirical portfolio drawn from DSS-based
algorithmic trading strategies (i.e. the DOR A-G120
portfolio);

2. Implement the corresponding basic buy-and-hold (BH)
trading strategy on the same dataset;

3. Compute risk and return of the DOR A-G120 and BH
portfolios;

4. Estimate risk-adjusted performance measures of the
DOR A-G120 and BH portfolios (the Standard Devi-
ation Sharpe ratio and the Conditional or Expected
Shortfall Sharpe ratio;

5. Create and print the cumulative return plot for the DOR
A-G120 and BH portfolios.

The Sharpe ratio is a measure of risk-adjusted perfor-
mance, estimated as the return over the risk-free rate per unit
of risk. In the classic case of the Standard Deviation Sharpe
(SD Sharpe), the unit of risk is the standard deviation of the
returns. In addition, the DSS estimates a conditional Sharpe
ratio, defined as the ratio of expected excess return to the
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expected shortfall. In this study, the risk-free rate is assumed
0% in all estimations.

Expected Shortfall attempts to measure the magnitude of
the average loss exceeding the traditional mean-VaR and
is able to capture all of the nonlinearities and asymmetries
of the return distribution. Thus, while the numerator of the
conditional Sharpe ratio is identical to that in the SD Sharpe
ratio, the denominator replaces standard deviation with the
Expected Shortfall or the Expected Tail Loss (ETL), giving a
more relevant reward-to-risk measure for practitioners. Also,
a more conservative approach is taken and the conditional ES
Sharpe ratio is estimated at a 99% confidence level within
the DSS.

Summing up the above discussion, there are overall seven
major phases integrated in the proposed decision-support sys-
tem (DSS) for algorithmic trading, namely: (a) data retrieval,
(b) data preprocessing and dataset generation, (c) model
estimation (multiple candidates), (d) model feature selection
(fitness function), (e) oil return prediction, (f) trading signal
generation and trade execution, and (g) performance evalua-
tion. The phase’s c-f make up the novel forecasting procedure
embedded into the DSS and are repeated recursively over
the testing period. The novelty of the study and its main
contribution to the extant literature hence lies in phases ¢
and d of the proposed DSS, consisting in the re-estimation
of an array of model specifications at each iteration and the
application of a fitness function to identify and select the
best fit model among multiple candidates for each recursive
window.

Figure 4 summarizes the integrated decision-support sys-
tem employed for algorithmic trading.

3

Crude oil dataset

WTiand
Brent crude

oil Data L/‘

Testing data set [+ ;N]

l Computer; H Generate data set ‘
Evaluate distributional
characteristics

Apply ARMA(5g)*-GARCH(1,1) 35
‘candidates)foreach ollng window S,
i€ [N+1)

N

Predict iy, ie
(SR

Apply fitness function
and find optimal
parameter set (p,q) at
each forecasting origin
n, i [+1;N-1)

Trade at
price B,
e (kN

Generate
Long/Short/Hold
Tradin Signal for
forecasting origin
i [FN]

Apply ARMA(p,q)*
(GARCH(1,1) on Sy  pool of
35 covarigtes)

Trading Signal for
forecasting origin
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FIGURE 4. Schematic outline of the decision support system for
algorithmic trading (source: own design).

Evaluate
profitabiity/Estimate rsk-
adjusted performance

Appy fitness function and
find optimum parameter
set(pq)

C. ROBUSTNESS CHECKS
To assure the robustness of results, the aforementioned strat-
egy is subsequently tested on a rolling window of length 250,
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corresponding to approximately one year of trading, while
keeping the same pool of covariates. In this scenario, the
DSS thus performs a number of 56210 model estimations
(i.e. 35 x 1606) and 1606 optimizations (i.e. N — [/ — 1,
or 1857-250-1). The sensitivity of the strategy performance
to the length of [ is thus also tested.

Additionally, the robustness of results will be further tested
by discarding the optimization procedure for the mean equa-
tion and instead employing a so-called “restricted optimiza-
tion” procedure where parameters (p,q) are only allowed to
take values in [0:1], except the (0,0) pair. For each itera-
tion, the restricted optimization will thus choose the opti-
mal parameter pair by minimizing the AIC from a restricted
universe of three possibilities. The optimal model is then
fit to the rolling window of length / of data and the return
for the next day forecasted. The algorithm will then buy
when a positive return is forecasted and sell when a negative
return is forecasted, or stay out of the market in all other
situations. As in the case of the “full” optimization proce-
dure, the restricted optimization is run for / = 120 and for
! = 250. The DSS automatically performs 5208 (3 x 1736)
model estimations and 1736 optimizations in the first case
(when I = 120) and 4818 model estimations (3 x 1606)
and 1606 optimizations in the second case (when [ = 250),
for each of the two crude oil series.

This allows analyzing the value of the model selection and
model fit optimization steps introduced in the classical fixed-
length recursive window forecasting technique, in terms of
trading strategy predictive ability and performance.

The robustness of results is further assessed through con-
sidering a separate time interval corresponding to the onset
of the COVID-19 pandemic. This approach has a secondary
research purpose, being further motivated by the generalized
market downturn produced in the first trimester of 2020 that
suggests the theoretical superior performance of a within-
market strategy, relative to diversification strategies. Hence,
the actual performance of trading strategies constructed and
executed through the trading algorithm drawn from the novel
decision-support system over the period January 2020 — April
2021 is assessed in both absolute an relative terms.

Consequently, as our study involves two crude oil mar-
kets (WTI and Brent), two separate time frames over which
the analysis is conducted (i.e. 2014-2021 and 2020-2021),
two model-fit and selection strategies (selection from a pol
of 35 candidates versus a pool of 3 candidates, or full opti-
mization versus restricted optimization) and also two dis-
tinct lengths for the recursive window (i.e. 120 and 250),
it requires the construction and implementation of eight dif-
ferent trading-decision systems for algorithmic trading.

IV. RESULTS AND DISCUSSION

A. EMPIRICAL RESULTS

Figure 5 shows the cumulative returns achieved by the algo-
rithmic trading strategy drawn from the DSS that embeds
the proposed dynamic optimized recursive (DOR) forecasting
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method, while specifying the length of 120 days for the
rolling window and encompassing the ARMA (p,q)-GARCH
(1,1) predictive model, applied on the Brent crude oil market
over January 2014- April 2021.

It is obvious that the algorithm-based strategy con-
sistently outperforms the BH benchmark throughout the
2014-2021 period, with some interim exceptions over the bull
market around 2018. The overall cumulative returns of the
DSS-based algorithmic trading strategy are positive during
the bear market periods in 2014-2015 and also over the
outbreak of the COVID-19 pandemic. Strategy returns fall
into negative territory for most of the subsequent period, but
nonetheless manage to significantly surpass the BH returns
throughout the remaining sample period.

DOR A-G Strategy with | = 120 days on the Brent crude oil market
Benchmark BH Strategy on the Brent crude oil market

L

T
2016 2018 2020
Time

FIGURE 5. Performance (Log of cumulative gross returns) of the
optimized DSS-based algorithmic trading strategy versus performance
(Log of cumulative gross returns) of the buy-and-hold strategy with
rolling window length = 120 days on the Brent crude oil market. The
dynamic optimized model embedded into the DSS trains on the

first 120 days in the sample, finds the optimal pair of (p,q) in [0:5] and
then makes its first prediction for Brent returns on the first day in the
lead time, i.e. 20.06.2014 (day / + 1), subsequently rolling over and
forecasting daily returns 1736 times until April ath, 2021,

Similar patterns are found for the WTI crude oil market
(the optimized DSS-based algorithmic trading strategy on
the WTI crude oil market is visually presented in Figure 6).
These results indicate that trading strategies based on the new
dynamically optimized recursive forecasting method are able
to achieve superior returns relative to the BH strategy and are
capable to protect portfolio from heavy losses during crisis
periods.

B. RISK-ADJUSTED PERFORMANCE EVALUATION
To further confirm the findings above, the risk-adjusted per-
formance of the DSS-based algorithmic trading strategy over
the entire period and over the outbreak of the COVID-19
pandemic is also analyzed. To this end, two risk-adjusted
performance measures are estimated: the Standard Deviation
Sharpe ratio and the conditional Sharpe (or Expected Short-
fall Sharpe) ratio.

Table 2 shows both the performance and the risk-adjusted
performance for the overall period (January 2014- April
2021) and separately for pandemic times (no allowance for
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DOR A-G Strategy with | = 120 days on the WTI crude oil market
Benchmark BH Slrategy on the WTI crude oll market

L L 1

2016 2018 2020

Time

FIGURE 6. Performance (Log of cumulative gross returns) of the
optimized DSS-based algorithmic trading strategy versus performance
(Log of cumulative gross returns) of the buy-and-hold strategy with
rolling window length = 120 days on the WTI crude oil market. First daily
WTI return prediction is made for day 20.06.2014 (first day of the lead
time) and is repeated recursively 1736 times until April 4, 2021.

transaction costs). Results confirm the over-performance of
the DSS algorithmic trading strategies based on a dynami-
cally optimized forecasting technique both in terms of abso-
lute returns and risk-adjusted returns.

Over the entire period, the base strategy produces a daily
excess return of 0.0442% (0.0631% for the optimized DSS
algorithmic strategy relative to 0.0189% for the BH on the
Brent market). In annual terms, this translates into 11.8%
excess return produced over the 2014-2021 period. On the
Brent market, the optimized DSS algorithmic strategy man-
aged to additionally improve the risk-adjusted performance,
both in terms of the SD and in terms of the conditional
(ES) Sharpe ratio. The over-performance is more spectacular
over the pandemic out-break. The strategy eliminates losses
(i.e. the Brent market daily return averaged a negative —1.3%
over the outbreak of the COVID-19 pandemic), and gains
a positive average daily return of approximately 1%. This
further translates into an average excess daily return of 2.29%
(300% annualized), too high to be explained by transaction
costs (that have been neglected in estimations).

The performance of the optimized DSS-based algorith-
mic strategy on the WTI market is superior relative to
results on the Brent market both in terms of absolute and
risk-adjusted returns. The dynamically optimized forecasting
method embedded into the designed DSS contributed to the
strategy’s average daily return of 0.106% over the entire
period, relative to a negative average daily return for the WTI
market (i.e. —0.148%) over the corresponding period. This
implies an excess daily return of 0.254% over 2014-2021 (or
89.5% annualized) for the DSS-based algorithmic strategy.
Sharpe ratios are higher than those estimated for the bench-
mark BH strategy over the same period and also surpass the
risk-adjusted performance achieved by the DSS-based algo-
rithmic strategy on the Brent market. Over the COVID-19
outbreak period (i.e. a severe bear market for WTI crude with
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average daily returns of —6.32%), the DSS-based algorithmic above the benchmark during the 2015- 2016 bear market, but
strategy performs exceptionally well, gaining 3.64% per day. is underperforming for the rest of the period (Figure 8).

The excess return of 9.96% per day well surpasses any pos-

sible transaction costs, while the level of risk that it assumes DOR A-G Strategy with | = 250 days on the Brent crude oil market
iS similar to the I‘iSk level Of the BH strategy. Benchmark BH ggategy on the Brent crude oil market

TABLE 2. Risk, return, and reward-to-risk ratios of dynamic optimized
algorithm-based trading strategies on the Brent crude oil market (Panel
A) and on the WTI market (Panel B). 7

SD ES SD ES
Shar  Shar Shar  Shar
pe pe . pe pe o]
Rdail SDd (Rf= (Rf= Rdail i]i?d Rf=  (Rf=
y aily 0%, 0%, cév cg 0%, 0%,
Who  Wh =9 p=99 p=9 p=9
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d od le _ le_ cak*  reak VID VID
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od d outb  outb
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Panel A: Brent crude
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ized T T T T T
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based  0.00 0.03 0.01 000 0009 .. 007 0.02 Time
algorit 0631 38 87 106 95 ’ 63 15 i
hmic FIGURE 7. Performance (Log of cumulative gross returns) of the
strateg optimized DSS-based algorithmic strategy versus performance (Log of
v 120 cumulative gross returns) of the buy-and-hold strategy with rolling

window length | = 250 days on the Brent crude oil market. First
BH 0.00 0.03 0.00 0.00 - 013 009 002 prediction is made for Brent returns on 20.06.2014 (day / + 1).
Brent 0189 27 576 0327 0.013 : 3 \

99 07

Panel B: WTI crude
Optim ,

. DOR A-G Strategy with | = 250 days on the WTI crude oil market
ized EBenchmark BH igtrateqy on the I crude oil market

DSS- \ L 1 1 1 L 1
based 0.00 0.08 0.01 0.01 0.036 0.43 0.08 0.04
algorit 106 6 23 31 4 5 36 13

hmic
strateg =7
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BH p 0.08 N 0.43

WTI 0.00 3 X X 0.063 2 X X

148 2

*On January 30th, 2020, following the recommendations of
the Emergency Committee, the WHO declared the novel
coronavirus outbreak in China to be a public health emergency of
international concern (PHEIC). At this time, crude oil markets
have been already impacted by the shrinkage of global energy ]
demand. Thus, although the official pandemic classification had
only occurred on March 11th, 2020, in this study the “COVID-19
outbreak” interval spans January 2nd, 2020 - April 4th, 2021.

T T T
2015 2016 2017 201B 2019 2020 2021

C. ROBUSTNESS CHECKS Time
Several robustness tests are performed to further confirm the FIGURE 8. Performance (Log of cumulative gross returns) of the
above results. In this regard, first the optimized strategy is 0ptim|ized DSS-based algorifth|l1l1icb strategyhvelzsus performall:ce |§L°g of
: : : : : cumulative gross returns) of the buy-and-hold strategy with rolling
re-estimated by increasing the lgngth of the r.olhng window to window length / = 250 days on the WTI crude oil market. First prediction
250 days. Results presented in Figure 7 confirm that the novel is made for WTI returns on 20.06.2014 (day / + 1).
optimized forecasting procedure has value for Brent crude oil
traders, and cumulative returns of the DSS-based algorithmic In addition, the robustness of results is further tested by dis-

trading strategy (DOR A-G) strategy generally stay over the carding the full optimization procedure for the (p,q) parame-
BH returns for the whole period, with the exception of some ters of the predictive model and instead employing a so-called

temporarily under-performance. On the WTI market, increas- “restricted optimization” procedure were parameters (p,q)
ing the rolling window-length from [ = 120 to [ = 250 are only allowed to take values in [0:1], with the exception of
eliminates over-performance. The strategy produces returns the (0,0) pair. The restricted (minimally-optimized) models
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then roll over in a similar manner to produce da]ly forecast TABLE 3. Risk, return, and reward-to-risk ratios of trading strategies on
. . . . the Brent crude oil market (Panel A) and on the WTI market (Panel B).

through the lead time. All estimations are again run for length

of I = 120 days and for [ = 250 days.

- ) SD  ES SD  ES
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of the buy-and-hold strategy with rolling window length / = 120 days Rollin
(a) and I = 250 days (b) on the Brent crude oil market. Al l)g
('1 (1}) 0.00 0.08 0.01 043 004 001
5k 001 93 X X 81 6 16 81
D. DISCUSSION Restiic 4
In calibrating the adaptive system on daily crude oil series t;?{) E—T E—T
for WTI and Brent spanning January 2014-April 2021, the WTI  0.00 32 X X 0.06 2 X X
paper confirms the phenomenon of volatility clustering and 148 32
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TABLE 3. (Continued.) Risk, return, and reward-to-risk ratios of trading
strategies on the Brent crude oil market (Panel A) and on the WTI market
(Panel B).

Optimi
zed
DSS-
based 0.00 0.08 001 001 003 043 0.08 0.04
algorith 106 6 23 31 64 5 36 13
mic
strategy
120
The “COVID-19 outbreak” interval spans January 2™, 2020- April 4™
2021
x - Negative Sharpe ratios are unreliable because, counter-intuitively,
when returns are negative, greater risk results in a higher Sharpe ratio.
Thus, negative Sharpe ratios are not reported.

Rolling-over A'_(IT -G, 1) Slrat%x_wﬂh I = 120 days on the \WTI crude oil market ——
Benchmark BH Strategy on the I erude oil market —

T T T
2016 2018 2020
Tirme
Rolling-over AAT ,1)-G(1,1) Strat?ﬁ}f_with 1 = 250 days on the WTI crude oil market ——
Benchmark BH Strategy on the I crude oil market Sp—

T
2015 2016 2017 2018 2019 2020 2021
Time

FIGURE 10. Performance (Log of cumulative gross returns) of the
algo-trading strategy based on a DSS with restricted rollover ARMA
(1,1)-GARCH (1,1) versus performance (Log of cumulative gross returns)
of the buy-and-hold strategy with rolling window length | = 120 days
(a) and | = 250 days (b) on the WTI crude oil market.

other empirical properties for crude oil empirical distributions
reported by previous studies [6], [58], [71], and [92]: high
volatility and high excess kurtosis (on both crude oil markets)
and negative skewness (on the WTI crude oil market).
Results further confirm that the optimization of the
recursive fixed-length window out-of-sample forecasting
procedure through the introduction of the fitness function
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pays off in terms of the empirical performance of algorith-
mic strategies drawn from the integrated DSS. Additionally,
algorithmic strategy performance is sensitive to the length
of the rolling window specified in the DSS, with narrower
windows being more reliable, which further confirms the
rapidly changing evolutions of the crude oil market. On the
Brent crude oil market, algorithmic trading strategies based
on dynamically optimized DSS tents consistently outperform
the BH over the entire period, but are more successful over
the COVID-19 outbreak, while the length of the rolling
window directly affects strategy performance. On the WTI
crude oil market, the algorithmic strategy drawn from the
base DSS with [ = 120 (DOR A-G 120) is significantly
over-performing both over the entire period and exceptionally
during the COVID-19 outbreak, but again increasing window
length to [ = 250 eliminates its success. The findings thus
suggest that evolutions on the crude oil markets happen so fast
that a longer window is unable to appropriately capture them.
Results are also in line with the finding of Menkhoff [55]
in what the timeframe for trading decisions- making is con-
cerned. Results also echo those of Pesaran and Timmermann
(2007), Pesaran et al. (2013), Giraitis, Kapetanios and Price
(2013), and [43], and confirm that the optimization of the
window length is a complementary approach that contributes
to improved time series forecasting.

The restricted (minimally-optimized) rolling-over trading
strategies achieve mixed results on both markets, performing
better over the pandemic outbreak.

Forecasting models on the oscillated crude oil markets
benefit from smaller training periods, and thus algorithmic
trading strategies drawn from the novel dynamically opti-
mized DSS with a rolling window length set to 120 days is
most successful. For the Brent market, the restricted trading
strategy with a wide recursive window (I = 250 days) is the
only one that fails to over-perform the BH strategy over the
analysis period. This is explained by the fact that the cumula-
tive returns of the BH strategy benefited from the elimination
of the bear market, which occurred over the second half of
2014, from the testing period. Thus, when the length of the
rolling window [ is set to 250 days, the training period spans
January 2nd 2014 to December 26th 2014 and hence the
lead time over which cumulative returns for the benchmark
are estimated only starts at the very end of 2014, not being
affected by the tumultuous second half of the year, when
crude oil prices plunged from levels above $110 per barrel
by mid-end June 2014 to around $50 by year end. The value
of the optimization procedure for the parameters of the mean
equation is even more obvious in this situation. Thus, the
investment strategy based on DSS (with [ = 250) produces
an average daily return of 0.00556% over the same period,
whereas the restricted trading strategy which encompasses
the same window size produce a negative daily average return
of -0.131%, and the BH strategy (that benefited from the
aforementioned elimination of the bear market from the lead
time) achieves a daily average return of 0.00189% on the
Brent market over the corresponding period.

VOLUME 10, 2022



C. Tudor, R. Sova: Flexible Decision Support System for Algorithmic Trading: Empirical Application on Crude Oil Markets

IEEE Access

In summary, although the optimized algorithmic trad-
ing drawn from the novel DSS with a rolling window
of 120 days doesn’t produce portfolios with attractive Sharpe
ratios (i.e., above 1) in the two crude oil markets, it does how-
ever manage to significantly improve performance without
higher costs in terms of investment risks. Therefore, all port-
folios based on dynamically optimized trading algorithms
with [ = 120 have higher estimated reward-to-risk Sharpe
ratios (both standard and conditional) than the benchmark
BH strategy. More importantly, optimized DSS-based algo-
rithmic trading strategies can eliminate losses during turmoil
and even gain significant profits in distressed markets. Our
results thus deviate from the conclusions of Hongsakulvasu
and Liammukda [39], Drachal [22], and Naser [61], as this
research shows that it is the model selection step intro-
duced through the fitness function (i.e. multiple recalibra-
tions and optimal model selection at each iteration) in the
rolling forecasting procedure that improves the predictive
ability, and not merely the simple recalibration that produces
time-varying parameters. Current findings are nonetheless
in line with those of recent studies that confirm the weak-
form inefficiency of the crude oil market during the out-
break of COVID-19, such as Gil-Alana and Monge [31],
Qin et al. [68], Liu et al. [51], or Tudor and Anghel [82]. This
result has important implications for market practitioners. For
example, Mushir and Suryavanshi [59] analyze the impact of
COVID-19 on the portfolio allocation decisions of individ-
ual investors and confirm that investors are moving towards
conservative portfolios and away from risky-assets during
the pandemic. Instead, the paper shows that over-performing
strategies in terms of risk-adjusted returns can be imple-
mented in some of the riskiest markets, such as the Brent and
WTI crude oil markets. Investors thus don’t need to exit crude
oil markets in times of turmoil, but instead change invest-
ment strategy. Moreover, by proposing an improved recursive
fixed-length window out-of-sample forecasting procedure,
the study is important for policy makers that use oil price
forecasts in the policymaking process, such as the European
Central Bank (ECB), the IMF and the Federal Reserve Board,
as Naser [61] contends.

V. CONCLUSION

In this paper, a novel decision support system (DSS) using
computational intelligence and integrating a dynamically
optimized forecasting procedure is designed and employed
for algorithmic trading on two crude oil markets, WTI and
Brent crude, respectively.

The DSS integrates seven major phases: (a) data retrieval,
(b) data preprocessing and dataset generation, (c) model
estimation (multiple candidates), (d) model feature selection
(fitness function), (e) oil return prediction, (f) trading signal
generation and trade execution, and (g) performance evalua-
tion. The phase’s c-f make up the novel forecasting procedure
embedded into the DSS and are repeated recursively over the
testing period.

VOLUME 10, 2022

The most important feature of the system proposed in this
study is the introduction of two new steps in the implemen-
tation of a standard fixed-length recursive window out-of-
sample forecasting technique that it embeds, corresponding
to phases ¢ and d within the DSS. The DSS thus estimates
multiple model candidates for each recursive window and
applies a fitness function that automatically searches over the
pool of covariates to select the optimal model specifications at
each iteration. This is repeated recursively a total of [N—/—1]
times. The novel DSS relies on distributional characteristics
to embed an ARMA (p,q)-GARCH(1,1) as the core predictive
model and performs a number of [(p x ¢ — 1) x (N—] — 1)]
model estimations and (N — [ — 1) optimizations. The speci-
fication of the system’ integral elements is the prerogative of
the DSS’s user and should rely on an informed and assumed
choice that considers the trade-off between prediction accu-
racy and computing efficiency. In empirical applications on
two crude oil series, the base DSS designed in this study rees-
timates daily 35 candidate models (i.e. p x ¢ — 1), and applies
the fitness function 1736 times (i.e. N—[ — 1)], for a total
of 60760 model estimations (i.e. 35 x 1736) and 1736 daily
optimizations on each market.

The DSS uses the optimized model specifications to pro-
duce one-step ahead forecasts from each recursive forecast-
ing origin, which then trigger buy and sell signals that the
algorithm follows to execute trades. As such, the proposed
approach is fully tradable and is further implemented on the
WTI and Brent crude oil markets.

The findings show that over-performing and resilient port-
folios can be constructed via algorithmic trading strategies
based on the novel DSS on the two main crude oil markets.
The DSS-based algorithmic trading strategies are able to
generate a long strake of winning trades and consistently
outperform the BH benchmark, with a daily excess return
on the WTI market of 0.254% (i.e. 89.5% annualized), while
on the Brent market the DSS strategy gains a daily excess
return of 0.0442% (11.8% annualized) over 2014-2021. The
ongoing COVID-19 pandemic, which during its outbreak
produced historical disruptions on the global crude oil mar-
kets, provides an excellent sample period that is analyzed
separately. It is found that the DSS-based trading strategies
are able to diminish and even eliminate losses during market
downturn, including during the outbreak of the COVID-19
pandemic.

Thus, signals produced using the forecasting procedure
embedded into the DSS prove to be reliable trading signals
for crude oil markets, and a particularly suitable solution for
algorithmic trading. Results hence contribute to improved and
more accurate forecasting of oil prices, which further leads
to improved policy issuance processes and more effective
policies. Consequently, results of this study have important
implications for policymakers, crude oil markets practition-
ers, and academic researchers.

Robustness checks confirm that the introduction of two
additional steps in a standard fixed-length recursive win-
dow forecasting procedure has merits. When compared to
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an algorithmic trading strategy drawn from a DSS, which
encompasses a minimally optimized recursive out-of-sample
forecasting technique, results confirm the superiority of the
dynamically optimized DSS in terms of predictive ability and
trading performance of algorithmic trading strategies based
on the system on both crude oil markets.

Additional robustness checks reveal that the forecast abil-
ity depends on the length of the rolling window, and decreases
when the length of the window is increased to 250 days
as compared to the initial length of 120 days. A smaller
window is thus more capable of capturing the time-varying
relationships that dominate the crude oil market. This also
suggests that developments on the oil markets happen quickly
and past movements have little influence on future evolutions,
confirming previous findings.

However, as with all studies this work has several limita-
tions. One of them is that the optimized trading algorithm can
trigger very frequent signals, which theoretically might lead
to the elimination of superior returns when transaction costs
are considered. Nonetheless, the relatively small transaction
costs involved nowadays in trading commodities and the high
excess returns achieved by the strategies (as high as 9.96% per
day excess return on the WTI market over the pandemic out-
break) indicate that results would still present economic value
after including transaction costs, especially over (limited)
turbulent periods. Further, the strategy still presents some
interim inefficiency and as such the superior performance
of the optimized algorithm-based trading strategy is lost on
upward trading markets such us over the last half of year
2020. Also, there is room for improvement in Sharpe ratios
of DSS portfolios in absolute terms. This in turn implies that
a combination of methods might produce superior forecasts
of oil prices during bull markets and consequently better
performing oil portfolios. As this empirical research serves as
an initial investigation, these would constitute good opportu-
nities for future research.

In addition, other avenues could be followed from the
current research. First of all, its generalizability character-
istic makes it suitable for implementation in other financial
markets, including other energy products or equities. This
would in turn further contribute to assess its robustness out-
side of the two oil markets that constitute the base play-
ground for the novel DSS in this study. Secondly, it should
be assessed whether the optimization outcome is influenced
by the fitness function introduced for model selection in
the forecasting procedure. Thirdly, employing different data
frequencies could also contribute to assure the robustness of
the DSS. Finally, more sophisticated prediction models could
be embedded into the proposed DSS.
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