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ABSTRACT Metaheuristic algorithms are extensively utilized to find solutions and optimize complex
industrial systems’ performance. In this paper, metaheuristic algorithms are utilized to predict the optimum
value of the operational availability of a cooling tower in a steam turbine power plant. These techniques
have some flaws like poor convergence speed, being stuck in local optima, and premature convergence.
For this purpose, a novel efficient stochastic model is proposed for a cooling tower that is configured
with six subsystems. The Markovian birth-death process is utilized to develop the Chapman-Kolmogorov
differential-difference equations. All the random variables are statically independent, and repairs are perfect.
Failure rates are exponentially distributed, while repair rates follow the arbitrary distribution. Steady-state
availability (SSA) of the system is derived concerning various failure and repair rates. The sensitivity analysis
of SSA is also performed to identify the most critical component. Further, system availability is optimized
using genetic algorithm (GA) and particle swarm optimization (PSO) because they are found to be more
suitable for such types of problems. It is revealed that the PSO outperforms GA in predicting the availability
of cooling towers used in steam turbine power plants.

INDEX TERMS Particle swarm optimization, genetic algorithm, cooling tower, availability, Markov
modeling.

I. INTRODUCTION
In physics, energy is termed as the capability to do work and
occurs in the form of nuclear, thermal, renewable, electrical,
chemical, kinetic, and potential. Energy remains in practice to
transfer from one body to another. It is classified according
to its nature. The heat converts itself as thermal while work
done becomes mechanical energy. But all these kinds are
associated with motion. Electrical energy is termed elec-
tricity generated through the transformation of other energy
sources. This transformation/conversion is done in power
plants. These industrial entities generate electricity from coal,
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steam, thermal, wind, tidal, and nuclear-using generators
and transform mechanical energy into electrical energy and
transfer it to the grid to use it into society and industries.
Nuclear, thermal, solar, wind, and coal feed power plants
are situated in various countries and dominated according to
the availability of primary energy sources as fuel. Thermal
power plants are mostly established plants in various coun-
tries. In thermal power plants, water is heated up to gener-
ate steam, and then at high pressure, it passes through the
turbine. The turbine spin operates the generator, and motion
started between the coil of wire and magnet available in
the generator. This whole process resulted in electricity flow
inception. Very high heat is generated during this process, and
waste heat is rejected to the atmosphere with the help of heat
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rejection devices, namely cooling towers. It uses the process
of evaporation of water to remove the heat. Cooling towers
are vast entities divided into several zones like rain zone,
fill packing zone and spray zone. These systems are very
complex, and the operation of such systems is very crucial.
The failure causes complete power plant failure that causes
a severe effect on societal and industrial production. Hence,
it becomes necessary to handle cooling towers with high
reliability.

The cooling tower and steam generators of power plants
have been simulated using an artificial neural network [1].
A modified and improved version of the butterfly opti-
mization algorithm utilized in combined cooling, heat, and
power (CCHP) system operated by proton exchange mem-
brane fuel cells (PEMFC) [2]. A systematic review of the
optimization algorithms applying sustainability energy is pre-
sented in the literature [3]. A study on the performance
management of solar thermal power plants has been carried
out using multi-objective dynamic programming for opti-
mization [4]. An optimal design using the Cuckoo search
algorithm (CSA) was proposed for a solar-hybrid cogen-
eration system [5]. The results of the cuckoo search have
been compared with a genetic algorithm using MATLAB
toolbox and an effective time-saving procedure using simple
parallel computing is the key finding of this study. A ground-
breaking technology developed for geothermal and cooling
cogeneration systems [6]. To improve the efficiency zeotropic
mixtures have been used in subsystems. The thermodynam-
ical and optimization characteristics of this system are also
analyzed. Thermo-flow measures of the dry cooling system
designed with only one tower in power plants have been
investigated [7].

An experimental study has been carried out to investi-
gate the efficiency of the wet cooling tower having diverse
packing compaction using the artificial neural network and
particle swarm optimization algorithm [8]. An analysis to
reduce water intake for cooling towers used in thermal power
plants as a pilot study [9]. Membrane capacitive deion-
ization (MCDI) has been done in this study. A response
surface methodology is developed through which optima pro-
cess conditions of MCDI cooling tower can be determined
given cost and efficiency. Supercritical combined gas-steam
cycle systems analyzed technically as well as economic
aspects [10]. Here, it is recommended that investments in
adopting components of the steam part may be balanced from
higher profit. The impact of the integration of hybrid thermal
plants into energy complexes has been investigated [11].
A generalized methodology for the selection and calculation
of technology schemes for mini plants has been utilized. The
concept of Thermoeconomic has been chosen for deciding
the criteria for the best option of placing a mini thermal
plant. Failure evaluation of power industry instruments done
using probabilistic arguments [12]. It is concluded through
experimental results that the proposed framework gain supe-
riority over other typical data-based approaches. Several tech-
niques like failure mode and effect analysis, reliability block

diagram, semi-Markov process, minimal cut set approach,
and Markov birth-death process, exist in the literature for
reliability evaluation of industrial systems with a certain
set of assumptions [67]. But when failure and repair rate
of components follow memoryless property and exponential
distribution then the Markov birth-death process approach is
recommended [79]–[81].

Nature-inspired algorithms (NIAs) are very efficient algo-
rithms used to find solutions and optimize complex indus-
trial systems’ performance. NIA is a group of efficient
methodologies derived from natural activities [13]. In the
present study, NIAs have been used to predict the optimum
value of the operational availability of a cooling tower in
a steam turbine power plant. These techniques have some
lacks like being stuck in local optima and slow conver-
gence rate. For this purpose, an efficient stochastic model
has been proposed for cooling towers configured with six
subsystems. Markovian birth-death process has been utilized
to develop the Chapman-Kolmogorov differential-difference
equations. All the random variables are statistically indepen-
dent, and repairs are perfect. Failure rates are exponentially
distributed, while repair rates follow the arbitrary distribu-
tion. Steady-state availability of the system has been derived
concerning various failure and repair rates. Further, system
availability has been optimized using the Genetic Algo-
rithm (GA) [50], [51] and Particle Swarm Optimization
(PSO) [52]. The results will be shared with plant personnel.
It is revealed the PSO outperforms GA in predicting the
availability.

In short, the major contribution of this work is highlighted
as follows:
• Anovel efficient stochastic model is developed using the
concept of cold standby redundancy for a cooling tower
of Steam Turbine Power Plants.

• Availability and profit analysis of cooling towers are
achieved by considering all failure rates as exponentially
distributed while repair rates as arbitrary.

• Sensitivity analysis of availability function is carried out
to identify the most critical component.

• Metaheuristic techniques namely Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO) are
applied to obtain the optimum availability of the pro-
posed model.

• Validation of obtained results is statistically investigated
using Mann-Whitney U Test.

The remainder of this paper is organized as follows: Section 2
presents some work related to the work presented in this
manuscript. Nomenclature, system description, and assump-
tions are provided in Section 3. Section 4 presents the stochas-
tic modeling and sensitivity analysis of the cooling tower
subsystem. Profit analysis is depicted in Section 5. Section 6
depicts materials and methods viz. reliability measures,
Markov process, simulation environment, and optimization
strategies. Numeric results and discussions are presented in
Section 7. Finally, Section 8 presents the concluding remarks
with some future directions.
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II. RELATED WORK
Many studies have been done by researchers related to steam
turbine power plants and their subsystems. Reliability aspects
of combined cycle power plants (CCPP) were studied through
mathematical modeling and availability analysis because
generators play a critical role in the operation of CCPP
and steam turbine power plants [15]. Operational availabil-
ity investigation of these systems has been done using the
Markovian approach [14]. Advanced data mining techniques
supported by data like support vector regression and data
reconciliation have been used in air-cooling condensers o
thermal power plants [16]. The applicability of dry cooling
towers as condensers has been observed in geothermal power
plants [17]. A reliability-based approach has been proposed
for maintenance in combined cycle power plants based on
identifying the most critical component of it [18]. Some
amendments in the VGB guidelines suggested improving the
design for manufacturing cooling towers in power plants [19].
The effect of climate change on cooling towers’ performance
was investigated to optimize technical, economic, and design
perspectives [20]. Performance evaluation of thermal power
plants to improve accuracy and reliability model-based data
reconciliation techniques has been used [21]. A systematic
review was done to observe the performance of natural draft
dry cooling towers by using inlet air spray [22]. The use
of cooling towers in chimneys and solar power plants is
discussed in [23]. The technical aspects of cooling towers
associated with river basins have been appended in [24].
A new design of the hybrid cooling system for large-scale
steam turbine power plant generators was developed to assess
the performance [25]. The water flow in the power plant’s
cooling towers also shows a significant effect, and a numer-
ical investigation has been done in this direction [26], [27].
An investigation was made to assess thermal power plants’
sustainability in low water areas using cooling towers [28].
Fault tree analysis and system reliability evaluation have been
done for combined cycle power plants [29]. The performance
assessment and optimization of spray cooling system design
in solar power plants is studied in [30]. Machine learning
techniques are frequently used to optimize evaporation-based
cooling towers, and performance is optimized using particle
swarm optimization [31]. A novel model exists in the litera-
ture to understand water use in power plants [32]–[36]. A pre-
diction model for performance and cost analysis in hybrid
cooling towers in power plants has been developed [33].
The stochastic Petri nets technique is utilized to develop
efficient and optimized maintenance strategies for a coal-
fired power plant [34]. Themathematical model for efficiency
prediction of thermal plants’ cooling towers was discussed
and extended it up to three towers [35]. A new methodol-
ogy for the reliability evaluation of thermal power plants is
proposed under different assumptions [37]. Energy-saving
benefits and economic evaluation of cooling towers using
fuel gas are analyzed [38]. Variable ambient conditions that
impact the cooling system of power plants are investigated
using mathematical modeling [39].

During the last few years, reliability analysis and opti-
mization of thermal plants have attracted researchers.
A Multicriteria decision-making model for optimization of
operational routes in thermal power plants has been devel-
oped [40]. A study for reliability improvement of power
systems using the idea of transmission line switching has
been conducted with ac power flows [41]. The reliability
evaluation of power systems using power outage model-
ing is carried out by the researcher [42]. The combina-
tion of Markov and matrix methods is extensively used
in reliability assessment [43]. The reliability evaluation of
wind power plants also attracted researchers [44], [45].
Recently, several advanced metaheuristics approaches were
developed for the performance optimization of industrial sys-
tems [46]–[48], [67]. Some popular optimization algorithms
namely Chimp, dynamic Levy flight chimp, and weighted
Chimp optimization algorithms are proposed for the opti-
mization of industrial systems [68], [69], [71]. For sonar
dataset classification some improved migration models based
on biogeography-based optimization has been proposed
using neural network [70]. Recently, a new binary meta-
heuristic algorithm Binary Chimp Optimization Algorithm
(BChOA) is developed for solving the optimization prob-
lem [72]. Various algorithms like chaotic fractal walk trainer,
whale trainer, modified grey wolf optimizer, and fuzzy
grasshopper optimizer are proposed for sonar data analy-
sis [73]. Deep learning models [74]–[78] have been exten-
sively utilized to solve many optimization problems too.
But due to non-availability of the required data, we have
used metaheuristic techniques only. Sensitivity analysis of
the algorithms and parameter initializations in metaheuristics
is also important and has wide applicability in optimization
algorithms [79]. The literature review observed that several
studies were conducted on performance analysis of steam
turbine power plants. But reliability aspects of steam turbine
power plants and their components like cooling towers are
still not explored extensively. The optimization of reliability
measures of cooling towers and steam turbine power plants
were not discussed yet. Therefore, in this paper, to optimize
the availability of cooling towers, nature-inspired algorithms
like genetic algorithms and particle swarm optimization are
used.

III. PRELIMNARIES
A. NOMENCLATURE
Following notations are utilized to develop the mathematical
model of the cooling tower:

B. SYSTEM DESCRIPTION
A concise depiction of a cooling tower in a steam turbine
power plant has been given in this part. Cooling tower mainly
comprises seven parts: hydro turbine, pressure-driven valves,
water splash framework, programmed deaerator valves, cool-
ing water siphon, engine valves, and standpipe. All segments
are organized in a series arrangement. The concept of cold
standby redundancy at the component level is adopted. All the
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TABLE 1. Notation of various system states, failure rates, and repair rates.

time-dependent random variables associated with failure and
repair rates of components are statistically independent. The
failed component after the repair was performed as a new one.
A sufficient repair facility is available with the system.

The visual portrayal of segments is shown in Figure 1.
The working of different components of the cooling tower
subsystem are briefed as under:

1) Hydro turbine: It comprises one unit of a hydro turbine.
This current unit’s disappointment causes total frame-
work disappointment as it is associated with different
units in series.

2) Hydraulic valves: It comprises one bunch of Hydraulic
valves. This present unit’s failure causes total framework
failure as it is associated with different units in series.

FIGURE 1. Configuration diagram of Cooling tower subsystem.

3) Water supply framework: It comprises one unit of water
splash framework. This current unit’s failure causes total
framework failure as it is associated with different units
in series.

4) Programmed deaerator valves: It comprises two arrange-
ments of programmed de-aerator valves; one is employ-
able, and the other is on standby. The disappointing pace
of both units is the same, and the disappointment of the
two units keeps an eye on framework disappointment.

5) Cooling water siphon: It comprises one unit of Cooling
Water Pump. This present unit’s failure causes total
framework failure as it is associated with different units
in series.

6) Engine valves: It comprises one bunch of engine valves.
This current unit’s failure causes total framework failure
as it is associated with different units in series.

7) Standpipe: It comprises one bunch of engine valves. This
present unit’s failure causes total framework failure as it
is associated with different units in series.

C. ASSUMPTIONS
For the development of the model, several assumptions are
incorporated as follows:

1) The failure rate of subsystems follows an exponential
distribution, whereas repair rates are arbitrarily dis-
tributed (as per Table 1).

2) Random variables are independent and identical to each
other.

3) Case of concurrent failures not considered in model
development.

4) Perfect repairs and switch-over devices.
5) Availability of sufficient repair facilities in the plant.

IV. STOCHASTIC MODELING AND SENSITIVITY
ANALYSIS OF COOLING TOWER
By using simple probabilistic arguments and the Markov
birth-death process, a novel stochastic model is developed
as shown in Figure 2. Analytical solution of the proposed
stochastic model is obtained using the supplementary vari-
able technique. The differential-difference equations are as
follows:

N0(t +1t)

= (1− ϑ11t − ϑ21t − ϑ31t − ϑ41t − ϑ51t

−ϑ61t − ϑ71t)0N (t)+
∫
∞

0
σ1 (y)N1 (y, t)1tdy

+

∫
∞

0
σ2 (y)N2 (y, t)1tdy

+

∫
∞

0
σ3 (y)N3 (y, t)1tdy+

∫
∞

0
σ4 (y)N4 (y, t)1tdy

+

∫
∞

0
σ5 (y)N5 (y, t)1tdy+

∫
∞

0
σ6 (y)N6 (y, t)1tdy

+

∫
∞

0
σ7 (y)N7 (y, t)1tdy (1)
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FIGURE 2. State transition diagram of a generator in steam turbine power plant.

Dividing both the sides of Eq. (1) by 1t , we get

No (t +1t)− N0 (t)
1t

= (−ϑ1 − ϑ2 − ϑ3 − ϑ4 − ϑ5 − ϑ6

−ϑ7)N0 (t)+
∫
∞

0
σ1 (y)N1 (y, t) dy

+

∫
∞

0
σ2 (y)N2 (y, t) dy

+

∫
∞

0
σ3 (y)N3 (y, t) dy+

∫
∞

0
σ4 (y)N4 (y, t) dy

+

∫
∞

0
σ5 (y)N5 (y, t) dy+

∫
∞

0
σ6 (y)N6 (y, t) dy

+

∫
∞

0
σ7 (y)N7 (y, t) dy (2)

As 1t → 0 on Eq. (2), we obtain Eq. (3) as follows:

lim
1t→0

No (t +1t)− N0 (t)
1t

= (−ϑ1 − ϑ2 − ϑ3 − ϑ4 − ϑ5 − ϑ6

−ϑ7)N0 (t)+
∫
∞

0
σ1 (y)N1 (y, t) dy

+

∫
∞

0
σ2 (y)N2 (y, t) dy+

∫
∞

0
σ3 (y)N3 (y, t) dy

+

∫
∞

0
σ4 (y)N4 (y, t) dy+

∫
∞

0
σ5 (y)N5 (y, t) dy

+

∫
∞

0
σ6 (y)N6 (y, t) dy+

∫
∞

0
σ7 (y)N7 (y, t) dy (3)

⇒
dNo
dt
+ (ϑ1 + ϑ2 + ϑ3 + ϑ4 + ϑ5 + ϑ6 + ϑ7)N0 (t)

=

∫
∞

0
σ1 (y)N1 (y, t) dy+

∫
∞

0
σ2 (y)N2 (y, t) dy

+

∫
∞

0
σ3 (y)N3 (y, t) dy+

∫
∞

0
σ4 (y)N4 (y, t) dy

+

∫
∞

0
σ5 (y)N5 (y, t) dy+

∫
∞

0
σ6 (y)N6 (y, t) dy

+

∫
∞

0
σ7 (y)N7 (y, t) dy (4)

The Eq. (4) can be expressed in abbreviated form using
summation and represented as Eq. (5).

⇒
dNo
dt
+

∑7

i=1
ϑiNo (t) =

∑7

i=1

∫
∞

0
σi (y)Ni (y, t) dy

(5)

⇒ (
d
dt
+ u0)No(t) = f0 (6)

Here, u0 =
∑7

i=1 ϑi & f0 =
∑7

i=1
∫
∞

0 σi(1)Ni(y, t)dy
Similarly,

N1(y+1y, t +1t) = ϑ11tN0(t)+ 1− σ1(1)1y)N1(y, t)

(7)

Differentiate Eq. (7) by considering y and t partially as:

(
∂

∂y
+
∂

∂t
+ σi(1))Ni(y, t)

= ϑiN0(t) ∀ i = 1, 2, 3, 5, 6, 7 (8)

N4(y+1y, t +1t)

= (1− ϑ11t − ϑ21t − ϑ31t

−ϑ41t − ϑ51t − ϑ61t − ϑ71t)(1− σ4(1)1t)N4(y, t)

+ϑ41tN0(t)+ σ1(1)1yN8(y, t)+ σ2(1)1yN9(y, t)

+σ3(1)1yN10(y, t)+ σ4 (y)1yN11 (y, t) σ5(1)1y

×N12(y, t)+ σ6(1)1yN13(y, t)

+σ7(1)1yN14(y, t) (9)
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Differentiate Eq. (9) by considering y and t partially as:

⇒ (
∂

∂y
+
∂

∂t
+ β4(1)+

∑7

i=1
ϑi)N4(y, t) = ϑ4N0(t)

+β1(1)N8(y, t)+ β2(1)N9(y, t)

+β3(1)N10(y, t)+ β4(1)N11(y, t)+ β5(1)N12(y, t)

+β6(1)N13(y, t)+ β7(1)N14(y, t) (10)

Eq. (11) is derived using Eq. (9-10) as:

⇒ (
∂

∂y
+
∂

∂t
+ β4(1)+ u0)N4(y, t) = f1(y, t) (11)

Here,

f1 (y, t)

= β1 (y)N8 (y, t)+ β2 (y)N9 (y, t)

+β3 (y)N10 (y, t)

+β4 (y)N11 (y, t)+ β5 (y)N12 (y, t)+ β6 (y)N13 (y, t)

+β7 (y)N14 (y, t)

Similarly,

N7+j(y+1y, t +1t)

= ϑj1tN4(y, t)+
(
1− σj (y)1y

)
N7+j (y, t)

∀ j = 1, 2, . . . 7 (12)

Differentiate Eq. (12) with respect to y and t partially as: get(
∂

∂y
+
∂

∂t
+ σj (y)

)
N7+j (y, t) = ϑjN4 (y, t)

∀j = 1, 2, . . . .., 7 (13)

The boundary conditions are given as

N1(0, t) = ϑ1N0(t) N 2(0, t) = ϑ2N0(t)
N3(0, t) = ϑ3N0(t) N 4(0, t) = ϑ4N0(t)
N5(0, t) = ϑ5N0 (t) N6(0, t) = ϑ6N0(t)
N7(0, t) = ϑ7N0(t) N 8(0, t) = ϑ1N4(t)
N9(0, t) = ϑ2N4 (t) N10(0, t) = ϑ3N4(t)
N11(0, t) = ϑ4N4 (t) N12(0, t) = ϑ5N4(t)
N13(0, t) = ϑ6N4(t) N14(0, t) = ϑ7N4(t)


(14)

and initial conditions are given as

Ni(t = 0) =

{
1, if i = 0
0, if i = 1 to 14

(15)

Eqs. (6–13), boundary (14) and initial (15) conditions con-
stitute a set of Chapman-Kolmogorov differential-difference
[67]. In particular, to show the importance of results based on
the availability of the system and profit analysis, we assume
repair rates to follow an exponential distribution. There-
fore, the boundary and initial conditions can be redefined as
follows:

(
d
dt
+ u0)No(t) = σ1N1(t)+ σ2N2(t)+ σ3N3(t)

+σ4N4(t)+ σ5N5(t)+ σ6N6(t)

+ σ7N7(t) (16)

(
d
dt
+ σi)Ni(t) = ϑiN0(t) ∀i = 1, 2, 3, 5, 6, 7 (17)

(
d
dt
+ u0 + σ4)N4(t) = ϑ4N0(t)+ σ1N8(t)+ σ2N9(t)

+ σ3N10(t)+ σ4N11(t)+ σ5N12(t)

+ σ6N13(t)+ σ7N14(t) (18)
d
dt
+ σj)N7+j (t) = ϑjN4 (t) ∀j = 1, 2, . . . ., 7 (19)

The steady-state probabilities and long-time availability

of the system can be evaluated by using d
dt = 0 as

t → ∞,Ni(t) = Ni in Eqs. (16-18) and initial condi-
tions (15), we get

σ1N8 = ϑ1N4 σ2N9 = ϑ2N4
σ3N10 = ϑ3N4 σ4N11 = ϑ4N4
σ5N12 = ϑ5N4 σ6N13 = ϑ6N4

σ7N14 = ϑ7N4 Nj =
ϑi

σi
N4

where i = 1, 2, 3, 4, 5, 6, 7;
j = 8, 9, 10, 11, 12, 13, 14

σ1N1 = ϑ1N0 σ2N2 = ϑ2N0
σ3N3 = ϑ3N0 σ5N5 = ϑ5N0
σ6N6 = ϑ6N0 σ7N7 = ϑ7N0

N0Nj =
ϑj

σj
N0

where j = 1, 2, 3, 5, 6, 7



(20)

From Eq. (20), the probability of states S1 to S14 in terms of
N0 can be computed as:

N1 =
ϑ1

σ1
N0 N2 =

ϑ2

σ2
N0

N3 =
ϑ3

σ3
N0 N4 =

ϑ4

σ4
N0

N5 =
ϑ5

σ5
N0 N6 =

ϑ6

σ6
N0

N7 =
ϑ7

σ7
N0 N8 =

ϑ1

σ1
N4 =

ϑ1ϑ4

σ1σ4
N0

N9 =
ϑ2ϑ4

σ2σ4
N0 N10 =

ϑ3ϑ4

σ3σ4
N0

N11 =
ϑ2
4

σ 2
4

N0 N12 =
ϑ5ϑ4

σ5σ4
N0

N13 =
ϑ4ϑ6

σ4σ6
N0 N14 =

ϑ4ϑ7

σ4σ7
N0



(21)

Using normalizing condition
∑14

i=0 Ni = 1 and expressions
given in Eq. (21), the following expression obtained:

⇒ N0 = [1+
ϑ1

σ1
+
ϑ2

σ2
+
ϑ3

σ3
+
ϑ4

σ4
+
ϑ5

σ5
+
ϑ6

σ6
+
ϑ7

σ7

+
ϑ1ϑ4

σ1σ4
+
ϑ2ϑ4

σ2σ4
+
ϑ3ϑ4

σ3σ4
+
ϑ2
4

σ 2
4

+
ϑ4ϑ5

σ4σ5
+
ϑ4ϑ6

σ4σ6

+
ϑ4ϑ7

σ4σ7
]−1 (22)

⇒ N0 = [1+ (1+
ϑ4

σ4
)(
ϑ1

σ1
+
ϑ2

σ2
+
ϑ3

σ3
+
ϑ4

σ4
+
ϑ5

σ5

+
ϑ6

σ6
+
ϑ7

σ7
)]−1 (23)
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The steady-state availability of the system has been obtained
using Eqs. (22-23) as follows:

Av = N0 + N4 ⇒ Av = N0 +
ϑ4

σ4
N0 ⇒ Av = (1+

ϑ4

σ4
)N0

(24)

As the availability of a cooling tower is crucial for the
operation of STPP, its sensitivity analysis becomes necessary
with respect to various failure rates [79]–[81]. Sensitivity is
termed as the rate of change in availability and defined as
the partial derivate of availability (24) with respect to θi. The
partial derivatives are shown in Eqs. (25–31) and results of
sensitivity analysis are presented in Table 13.

V. PROFIT ANALYSIS
Let K1 be the total revenue per unit uptime of the system and
K2 be the total repair cost then profit incurred to the system
model in steady-state is obtained as:

Profit = K1Av − K2 (32)

The value of profit function after considering the arbitrary
values for K1 = 3500 and K2 = 500 is defined in Eq. (33) as

follows:

Profit = [3500[(1+
ϑ4

σ4
)N0]− 500 (33)

VI. MATERIALS AND METHODS
A. RELIABILITY MEASURES
1) RELIABILITY
It is the probability that the system performs its intended func-
tion under stated operating conditions without any failures.
It ranges from 1 to 0.

2) AVAILABILITY
It is a kind of probability states that a system is available
for utilization as and when required. It ranges from 0 to 1.
At time t = 0, availability is 1, and at infinity, its value is 0.
It is defined as the ratio of uptime and total life duration [67].

B. MARKOV PROCESS
It is a well-known stochastic process (developed by A.A.
Markov) that is widely used in reliability and queuing theory.
It states that the behavior of future states depends on the
present conditions and is independent of the past [79]–[81].

∂A
∂θ1
=

−
1
σ1

{
1+ θ4

σ4

}2
{
1+

(
1+ θ4

σ4

) (
θ1
σ1
+

θ2
σ2
+

θ3
σ3
+

θ4
σ4
+

θ5
σ5
+

θ6
σ6
+

θ7
σ7

)}2 (25)

∂A
∂θ2
=

−
1
σ2

{
1+ θ4

σ4

}2
{
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(
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) (
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+

θ2
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+

θ4
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+
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)}2 (26)
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FIGURE 3. Flowchart of genetic algorithm.

A process of continuous time discrete space is utilized in the
reliability estimation of mechanical and electrical systems.

C. OPTIMIZATION STRATEGIES
Computational intelligence-based optimization strategies are
widely used to obtain optimal solutions to several prob-
lems of humankind. Metaheuristics are one of the promi-
nent computational intelligence-based optimization strategies
that are problem independent in nature. Meta-heuristics are
generally classified into three main classes viz. evolutionary,
physics-based, and swarm intelligence algorithms. Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO) are
some of the most popular algorithms [53]. These algorithms
have achieved more efficient results for various problems
such as availability optimization of process industries. Also,
GA and PSO are not influenced by the size and non-linearity
of problems [49]. There are many other algorithms such
as Chimp optimization, dynamic Levy flight chimp, and
weighted Chimp optimization [54]–[60], [62]–[66] that can
be applied in the future for estimating their performances in
availability computations of STPP.

1) SIMULATION ENVIRONMENT
For simulating the experiments, we have used MATLAB
R2019a on the Windows 10 64-bit operating system with
8 GB of RAM and Intel Core i5 8th generation CPU.

2) GENETIC ALGORITHM
GA is one of the well-known Evolutionary Computa-
tion (EC) approaches that is inspired by the biological
evolution process [50], [51]. The process of EC is mainly
characterized by the fitness computation of individuals
who participate in achieving global optimization. Individ-
uals with fitness greater than the specified threshold are
retained for further evolution. Once the problem is encoded
using decision parameters, the optimum solution can be
obtained. GA starts by generating an initial random popula-
tion based on initialization of values of decision parameters
followed by computation of fitness of individuals as depicted
in Figure 3.

The overall search process comprises of the following
steps:

1. Problem encoding and generation of an initial random
population (chromosomes) based on threshold values
(lower bound and upper bound) of decision parameters.

FIGURE 4. Flowchart of particle swarm optimization algorithm.
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In our case, failure rates and repair rates of various
subsystems of the cooling tower of steam turbine power
plant are considered as decision parameters and their
threshold values according to distributions (exponential
in case of failure rates, whereas arbitrary for repair rates).

2. Fitness of individuals is evaluated using fitness function.
In our case, the availability function (Av) is considered
as a fitness function that needs to be optimized.

3. Identification of terminating conditions (i.e., stopping
criteria for convergence of algorithm after meeting spec-
ified constraints). If terminating conditions are satisfied,
the algorithm converges, otherwise, it moves further.

4. Selection of parents (based on threshold values) and
generation of new offspring by applying genetic operator
(crossover and mutation).

5. Go to step 2.
Numerous variations of genetic operators (i.e., crossover and
mutation) are presented in the literature. The main aim of
these operators is to exchange genes so that a new population
with high fitness values can be obtained. In a crossover,
the parts of chromosomes are shuffled in different ways
whereas in mutation new genetic material is introduced as a
replacement of older one. One-point crossover and uniform
mutation are adopted in this work for a generation of new
offsprings.

3) PARTICLE SWARM OPTIMIZATION (PSO)
PSO developed by Eberhart and Kennedy [52] is one of the
efficient swarm intelligence-based metaheuristic techniques
that are inspired by birds’ social behavior. The principal
mechanism is the coordination of individuals for finding out
optimal solutions to a problem. The term ‘particles’ refers
to the individuals in a problem space, whereas swarm refers
to their population. To obtain an optimal solution, particles
move themselves to an appropriate position at a specified
speed referred to as ‘velocity’. For achieving a ‘global best’
solution, at every instance, each particle identifies its best
position known as ‘personal best’. This process is generally
referred to as learning from experience. The algorithm con-
verges upon either satisfying the stopping criteria or reaching
maximum iterations as specified.

The position of the particles and their velocity is updated on
every iteration. The working mechanism of PSO is depicted
with the help of a flowchart in Figure 4. The basic mathe-
matical foundations of PSO are given in Eq. 34 and 35. The
position of a particle i at time t in the search space is denoted
by xi (t). The new position of particle i is achieved by adding
the velocity vi(t) to its current position, as stated in (34).

xi (t + 1) = xi (t)+ vi (t + 1) (34)

Here, vi(t+1) indicates the combined value of inertia coef-
ficient, cognitive component, and the social component as
given in eq. 35

vi (t+1)=w.vi (t)+c1 (pi (t)− xi (t))+c2 (g (t)− xi (t))

(35)

In eq. (35), w indicates the inertia coefficient, vi(t) the initial
velocity, pi (t) to be personal best, g (t) indicates the global
best, and c1 and c2 are acceleration coefficients. On every
iteration, the position of individuals is getting updated based
on various parameters viz. personal best, global best, and the
velocity of movement from one position to another (towards
global optimization).

4) ENCODING OF COOLING TOWER SUBSYSTEM
USING GA AND PSO
To obtain the maximum availability of the cooling tower sub-
system, the optimum values of failure and repair rates have
been computed using GA and PSO. The availability function
(Eq. 24) consisting of failure and repair rates of several cool-
ing towers’ subsystems (as given in Table 1) is considered as a
fitness function. Optimizing the availability of cooling towers
is measured as single-objective optimization subject to cer-
tain constraints of failure and repair rates. The optimization
of the availability function has been checked against varying
certain parameters of GA viz. population size, evolutions,
crossover probability, and mutation probabilities, as shown
in Tables 6-9.

The optimization of the availability function has been
checked against varying certain parameters of PSO (i.e., iter-
ation, population size, and damping ratio) by keeping the
values of inertia weight, p-best, and g-best to be 1, 1.5, and 2,
respectively, as shown in Tables 10-12.

D. MANN-WHITNEY U TEST
The Mann-Whitney U test is the non-parametric analogous
to the independent t-test. It is used for testing the significant
difference between two populations or to identify that both
samples are drawn from the same distribution. If the null
hypothesis is accepted, then both the samples have more
or less the same values. The test statistic can be defined
as:

U1 = n1n2 +
n1(n1 + 1)

2
− R1

U2 = n1n2 +
n2(n2 + 1)

2
− R2 (36)

where n1 and n2 are sample sizes, R1 and R2 are rank sums of
corresponding samples.

By using (36), the test statistics is as follows:

z =
U2 − µU2

σU2

(37)

In the present analysis, a statistical comparison of GA and
PSO results has been done using Eq. (37), as both the samples
are independent and assumptions of parametric tests like
normality, heteroscedasticity does not achieved [61].

VII. NUMERICAL RESULTS AND DISCUSSION
Here, the influence of variation in the failure rate of various
subsystems of the cooling tower is estimated on availability
(Eq. 24) and profit function (Eq. 32) for an arbitrary set
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TABLE 2. Impact of variation in failure rates on availability with respect to hydraulic valves failure rate (ϑ2).

TABLE 3. Impact of variation in failure rates on profit with respect to hydraulic valves failure rate (ϑ2).

of parametric values. The initial parametric values are as
follows:

ϑ1 = 0.006, ϑ3 = 0.0009, ϑ4 = 0.00075, ϑ5 = 0.0018,

ϑ6 = 0.0054, ϑ7 = 0.0008, σ1 = 0.09, σ2 = 0.085,

σ3 = 0.033, σ4 = 0.026, σ5 = 0.075, σ6 = 0.066,

σ7 = 0.045

The variation is observed concerning hydraulic valves failure
rate (ϑ2). It is revealed that hydro turbine, cooling tower
pump, and standpipe are the most sensitive components in
the cooling tower. By changing the value of ϑ1 = 0.006 to
ϑ1 = 0.06 and keeping rest values as constant, it is revealed
from Table 2, that the availability of cooling tower reduces

up to 0.534392 while in a subsystem where the provision
of standby unit is given, the availability does not show high
variation. From Table 3, the same behavior is depicted for
the profit function. The availability and profit function values
decline by increasing the failure rates of all the components.
Availability of the system decreases by 5.35% approximately
with the increase in failure rate ϑ1 = 0.006 to ϑ1 = 0.06.
Similarly, the availability of the system decreases 6.53%,
7.49%, 5.82 %, 7.32%, and 4.21% approximately with the
increase in the failure rate of ϑ3 from 0.0009 to 0.009,
ϑ4 from 0.00075 to 0.0055, ϑ5 from 0.0018 to 0.035, ϑ6
from 0.0054 to 0.15 and ϑ7 from 0.0008 to 0.052 respec-
tively and in Table 3, it is revealed that profit of the system
decreases 6.99% approximately with the increase in failure
rate ϑ1 from 0.006 to 0.06. Similarly, the profit of the system
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TABLE 4. Impact of variation in repair rates on availability with respect to hydraulic valves repair rate (ϑ2).

TABLE 5. Impact of variation in repair rates on profit with respect to hydraulic valves repair rate (ϑ2).

TABLE 6. Steady-state availability with respect to population size having no. of evolutions 400, mutation probability 0.65, and crossover probability 0.85.

decreases 8.05%, 8.95%, 7.40%, 8.79%, and 6.02% approxi-
mately with the increase in the failure rate of ϑ3 from 0.0009
to 0.009, ϑ4 from 0.00075 to 0.0055, ϑ5 from 0.0018 to
0.035, ϑ6 from 0.0054 to 0.15 and ϑ7 from 0.0008 to 0.052
respectively.

From Table 4, it is found that the availability of the system
shows a 2.31% enhancement along with the increase in repair
rate σ1 from 0.09 to 2.1. Also, the availability of the system
is improved by 2.23%, 2.19%, 2.23%, 2.33%, and 2.22%,
respectively with the increase in repair rate σ3 from 0.033
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FIGURE 5. Availability vs. population size in GA.

FIGURE 6. Availability vs. number of evolutions in GA.

to 0.95, σ4 from 0.26 to 0.2, σ5 from 0.075 to 1.9, σ6 from
0.066 to 0.95 and σ7 from 0.045 to 0.81 respectively and
Table 5 reflected that profit of the system increases 2.72%
approximately with the increase in repair rate σ1 from 0.09 to
2.1. Similarly, profit of the system increases 2.65%, 2.60%,
2.64%, 2.74%, and 2.63% approximately with the increase in
repair rate σ3 from 0.033 to 0.95, σ4 from 0.26 to 0.2, σ5 from
0.075 to 1.9, σ6 from 0.066 to 0.95 and σ7 from 0.045 to 0.81
respectively.

From Tables (4-5), it is observed that water spray pumps
and motor valves are highly influential components. Any
increment in their repair rate significantly contributes to
increasing system availability and profit. Availability showed
a highly inclined trend when the variation was made in repair
rates as given in Table 4.

As depicted in Table 6, the availability of the cooling tower
subsystem has been computed by varying the population
size. The values of evolution, mutation, and crossover are
kept fixed at 400, 0.65, and 0.85, respectively. It is observed
that the maximum availability has been obtained when the
population size is 15. An increase in population results in
decreasing overall availability.

The optimum values of failure and repair rates of different
subsystems can also be seen from Table 6 against maximum
availability when the size of the population is 15. The rela-
tionship of availability vs. population in GA as computed for
the cooling tower subsystem is also depicted in Figure 5.

FIGURE 7. Availability vs. crossover probability in GA.

In GA, the impact of evolution has also been observed
towards optimizing the availability computations of cooling
tower subsystems. As shown in Table 7, the availability of
the cooling tower subsystem has been computed by varying
evolutions. The values of population, mutation, and crossover
are kept fixed at 60, 0.65, and 0.85, respectively. It is observed
that the maximum availability has been obtained on 360
evaluations. An increase in evolution results in an increase in

TABLE 7. Steady-state availability with respect to the number of evolutions having population size 60, mutation probability 0.65, and crossover
probability 0.85.
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TABLE 8. Steady-state availability with respect to crossover probability having population size 60, number of evolutions 400, and mutation
probability 0.65.

FIGURE 8. Availability vs. mutation probability in GA.

FIGURE 9. Availability vs. number of iterations in PSO.

overall availability. The optimum values of failure and repair
rates of different subsystems can also be seen from Table 7
against maximum availability when the value of evolution
is 360. The relationship of availability vs. evolutions in GA
as computed for cooling tower subsystem is also depicted
in Figure6.

The impact of crossover rate has also been observed
towards optimizing availability computations of cooling
tower subsystems. As shown in Table 8, the availability of
the cooling tower subsystem has been computed by varying
the crossover rate. The population, evolution, and mutation
values are kept fixed at 60, 400, and 0.65. It is observed that
the maximum availability has been obtained when the value

of crossover is 0.4. The optimum values of failure and repair
rates of different subsystems can also be seen from Table 8
against maximum availability when the value of crossover is
0.4. The relationship of availability vs. crossover probability
in GA as computed for the cooling tower subsystem is also
depicted in Figure 7.

The impact of mutation rate has also been observed
towards optimizing availability computations of cooling
tower subsystems. As shown in Table 9, the availability of
the cooling tower subsystem has been computed by varying
the crossover rate. The values of population, evolution, and
crossover are kept fixed at 60, 400, and 0.65, respectively. It is
observed that the maximum availability has been obtained
when the value of mutation is 0.48. The optimum values of
failure and repair rates of different subsystems can also be
seen from Table 9 against maximum availability when the
value of mutation is 0.48. The relationship of availability vs.
mutation probability in GA as computed for the cooling tower
subsystem is also depicted in Figure 8.

FIGURE 10. Availability vs. population size in PSO.

In PSO, the impact of iterations over-optimizing avail-
ability computations of cooling tower subsystems has been
observed, as shown in Table 10. The values of other parame-
ters such as population size, inertia weight, damping ratio,
p-best, and g-best are kept at 60, 1, 0.9, 1.5, and 2,
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TABLE 9. Steady-state availability with respect to mutation probability having population size 60, number of evolutions 400, and crossover
probability 0.85.

TABLE 10. Steady-state availability with respect to the number of iterations having population size 60, inertia weight 1, damping ratio 0.9, p-best 1.5,
and g-best 2.

TABLE 11. Steady-state availability with respect to population size having a number of iterations 20, inertia weight 1, damping ratio 0.9, p-best 1.5, and
g-best 2.

respectively. It is observed that the maximum availability has
been obtained when the value of iteration is 28.

The optimum values of failure and repair rates of different
subsystems can also be seen from table 10 against maximum
availability when the value of iteration is 28. The relation-
ship of availability vs. iteration in PSO as computed for the
cooling tower subsystem is also depicted in Figure 9.

In PSO, the impact of population size over optimizing the
availability computations of cooling tower subsystems has
also been observed, as shown in Table 11. The values of

other parameters such as iteration, inertia weight, damping
ratio, p-best, and g-best are kept at 20, 1, 0.9, 1.5, and 2,
respectively. It is observed that the maximum availability
has been obtained when the value of the population is 80.
The optimum values of failure and repair rates of differ-
ent subsystems can also be seen from Table 11 against
maximum availability when the value of the population is
80. The relationship of availability vs. iteration in PSO as
computed for the cooling tower subsystem is also depicted
in Figure 10.
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TABLE 12. Steady-state availability with respect to population size having a number of iterations 20, inertia weight 1, population size 60, p-best 1.5, and
g-best 2.

TABLE 13. Sensitivity analysis of steady-state availability with respect to failure rates.

FIGURE 11. Availability vs. damping ratio in PSO.

In PSO, the impact of damping ratio over optimizing the
availability computations of cooling tower subsystems have
also been observed, as shown in Table 12. The values of
other parameters such as iterations, inertia weight, popula-
tion, p-best, and g-best are kept at 20, 1, 60, 1.5, and 2,
respectively. It is observed that the maximum availability
has been obtained when the value of the damping ratio is
0.36. The optimum values of failure and repair rates of dif-
ferent subsystems can also be seen from Table 12 against
maximum availability when the value of damping ratio is
0.36. The relationship of availability vs. iteration in PSO as
computed for the cooling tower subsystem is also depicted
in Figure 11.

The availability computations of cooling tower subsys-
tems are computed using two well-known population-based
metaheuristic approaches, viz. GA and PSO. To obtain the

FIGURE 12. Availability vs. number of iterations in GA.

optimum availability, various parameters of these approaches
have been evaluated by varying their values.

It is observed that PSO outperforms GA in terms of avail-
ability computations in very few iterations, as shown in
Figures 12 and 13. Figure 12 and 13 depicts the availability
of the cooling tower subsystem concerning the number of
iterations performed by GA and PSO respectively. As shown
in figure 13, the maximum availability of 99.8% is achieved
by PSO in just 18 iterations, whereas GA took 60 iterations
in achieving a maximum availability of only 98.8%. PSO is
efficient in providing optimum values of failure and repair
rates of cooling tower subsystems in achieving maximum
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FIGURE 13. Availability vs. number of iterations in PSO.

availability of the whole system in a few iterations. Table 13
shows that the failure rate of automatic deaerator valves is
most sensitive, and the operation of this component needs
high attention. The comparison of GA and PSO availability
results is statistically validated using Mann-Whitney U-test.
The cooling tower availability corresponding to population
size has been statistically analyzed at a 5% level of signif-
icance, under null hypothesis: both algorithms are equally
effective and alternative hypothesis: PSO performs better
than GA. Using SPSS (Version 21) software the absolute
calculated value of test statistics z = 3.576 while absolute
critical z value is 1.645 at a 5% level of significance. Here, the
calculated value is greater than the tabulated value so cannot
accept the null hypothesis. So, it is statistically significant that
PSO outperforms GA.

VIII. CONCLUSION
The failure mechanism and repair policies have a significant
impact on the system’s operational availability and profit
function. A mathematical model for the cooling tower in a
steam turbine power plant (STPP) has been developed using
the Markov birth-death process and supplementary variable
technique. A critical evaluation of the model was carried out,
and the impact of various failure and repair rates has been
investigated. It was revealed that the standpipe, hydro turbine,
and cooling water pump failure rates are very sensitive.While
repair rates of motor valves and water supply systems show
steep increments concerning their repair rate. The availability
and profit decline concerning the failure rate of all subsys-
tems. The sensitivity analysis shows that the failure rate of
Automatic Deaerator Valves (ADV) is highly influential that
can reduce the overall operational availability of the system.
The overall availability was optimized using two well-known
metaheuristic approaches viz. Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO). GA and PSO proved to
be more efficient for such types of problems. It was revealed
from the experimental evaluations that the PSO outperforms
GA in optimizing the availability computations. Optimum

availability of cooling tower achieved through GA was found
to be 0.9884, whereas through PSO the same was recorded
to be 0.9980. It has been observed that the convergence rate
of PSO was very fast in achieving the optimum availability
of cooling towers as compared to GA. Therefore, the present
model and derived results are very helpful to STPP designers
to develop highly reliable and available systems. Further, GA,
PSO, and other metaheuristic techniques can be utilized to
obtain the optimum availability of various process industries,
i.e., Paper and Pulp, ShoeManufacturing, Sugar Industry, and
Sewage Treatment Plant.
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